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a b s t r a c t

Following the pioneering work of Felsenstein and Garland, phylogeneticists have been using regression

through the origin to analyze comparative data using independent contrasts. The reason why regression

through the origin must be used with such data was revisited. The demonstration led to the formulation

of a permutation test for the coefficient of determination and the regression coefficient estimates in

regression through the origin. Simulations were carried out to measure type I error and power of the

parametric and permutation tests under two models of data generation: regression models I and II

(correlation model). Although regression through the origin assumes model I data, in independent

contrast data error is present in the explanatory as well as the response variables. Two forms of

permutations were investigated to test the regression coefficients: permutation of the values of the

response variable y, and permutation of the residuals of the regression model. The simulations showed

that the parametric tests or any of the permutation tests can be used when the error is normal, which is

the usual assumption in independent contrast studies; only the test by permutation of y should be used

when the error is highly asymmetric; and the parametric tests should be used when extreme values are

present in covariables. Two examples are presented. The first one concerns non-specificity in fish

parasites of the genus Lamellodiscus, the second the richness in parasites in 78 species of mammals.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Biologists generally agree that when looking for correlations
between phenotypic traits across species, or between traits and
environmental factors, one must take the phylogenetic related-
ness of the species into account; see Harvey and Pagel (1991) or
Martins et al. (2002) for reviews. The reason is that species cannot
be considered to be independent observations; they are related to
one another through their phylogeny and share inherited
attributes. The phylogeny acts as a confounding variable and
must be controlled for. The many approaches developed to control
for the phylogeny (e.g., Stearns, 1983; Cheverud et al., 1985;
Felsenstein, 1985, 2008; Grafen, 1989; Lynch, 1991; Diniz-Filho
et al., 1998; Houseworth et al., 2004) are grouped under the
designation ‘‘comparative analyses’’ or ‘‘comparative methods’’.
The first of these techniques, which is still widely used (e.g.,
Laurin, 2004; Fjerdingstad and Crozier, 2006; Kolm et al., 2007;
Kohlsdorf et al., 2008; Xiang et al., 2008; Poorter et al., 2008), is
the method of phylogenetically independent contrasts proposed
by Felsenstein (1985).

In a classical paper, Garland et al. (1992) showed how to carry
out the analysis of comparative data using phylogenetically
independent contrasts. This type of analysis is important, in
particular, when relating phenotypic traits of species to one
another, or to environmental or ecological factors, using simple or
multiple regression. In summary: (1) for each variable, indepen-
dent contrasts are computed for each bifurcation of the phyloge-
netic tree by subtracting one observed value of the variable from
the other; for a fully resolved tree, there are (n�1) contrasts for n

objects; (2) before using them in statistical analyses, contrasts
must be standardized by dividing each one by its standard error,
computed as the square root of the sum of the branch lengths for
this variable on the tree. Branch lengths represent evolutionary
time since divergence and the variance of the character under
study is proportional to time. Note that branch lengths can be
transformed to meet the method’s assumptions. After standardi-
zation, the branch lengths are expressed in units of expected
standard deviation of change; and (3) the contrasts are analyzed
using regression through the origin.

The method of independent contrasts has been developed
under the Brownian motion model, which gives support to the
assumption that the contrasts should be normally distributed.
This applies to the evolutionary process underlying the data, but it
is no guarantee that the contrasts computed from observed
variables will actually be normally distributed. There are three
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main reasons for this: (1) we measure variables on physical scales
that often make them, as well as the contrasts calculated from
them, non-normal. This is true of many of the ecological variables
that are analyzed using independent contrasts. Examples are:
basal metabolic rate (27.1–18,943 ml O2/g h), mammal density
(0.02–7500 ind/ha), body mass (3–65,320 g) in the study of
Morand and Harvey (2000); host geographical range
(32,690–505,000 km2), longevity (12–60 months), parasite species
richness (4–28 species) in Feliu et al. (1997). Users of independent
contrasts often find it useful to transform the data to approach
normality before computing contrasts, but also to solve problems
of allometry (e.g., Diaz-Uriarte and Garland, 1996, 1998); (2) there
are cases where we can be rather confident that the evolution of
the trait under study can be modelled by Brownian motion (see
Felsenstein, 1985, 1988; Hansen and Martins, 1996; Houseworth
et al., 2004), but the contrasts are not normally distributed
because the data (e.g., molecular sequences) and/or the method
used to construct the tree did not produce an unbiased estimate of
the true tree. In particular, branch lengths, which are in units of
expected evolutionary change, may not accurately represent time,
which is a strong assumption of the independent contrasts
method; and (3) the clade under study may not be entirely or
randomly sampled; this may result in highly asymmetric
distributions, including the presence of extreme values (outliers).
In these situations, it can often be extremely difficult to find a
transformation that will effectively normalize the data and
prevent extreme contrast values from exerting high leverage in
regression models. These limitations have sometimes precluded
the use of independent contrasts in previous studies (e.g.,
Pouydebat et al., 2008). Parametric tests in regression through
the origin cannot be used to identify relationships between sets of
computed contrasts in such cases, because of the lack of normality
of the contrasts, but permutation tests can. However, the
independent contrasts method always relies on the assumption
of a Brownian motion model of phenotypic evolution, regardless
of the testing procedure used to study the relationships between
contrasts. These situations define the domain of application of the
permutation test described in this paper.

In an appendix to their paper, Garland et al. (1992) gave
algebraic reasons why regression through the origin should be
used, but they did not provide an intuitive geometric interpreta-
tion. Users of the method may be wondering whether the
algebraic reasons given are sufficient, or whether estimation
should not allow for departures from the ideal model. Doubts are
nourished by the observation that, in many instances of contrasts,
the regression line does not seem to willingly go through the

origin. Kvålseth (1985) and Neter et al. (1996) commented that
regression through the origin has to be used with caution. If the
regression model has an intercept near zero, there is no harm in
estimating it; if it does not, the regression-through-the-origin
model is probably inadequate for the data at hand. What about
independent contrast data which, in most instances, do not seem
to obey a linear model going through the origin?

The present paper recalls the statistical reasons why regression
through the origin should be used in this type of analysis, and
supports the recommendation of Garland et al. (1992) through
additional geometric reasons. The geometric line of reasoning
leads to the formulation of a permutation test for regression
through the origin. This type of test can be used when the data are
not normally distributed.

2. Regression through the origin

Regression through the origin can alternatively be described as
a form of linear regression based upon a doubled data set. This
property will be used as the basis for a double-permutation
procedure, described in this paper for testing the significance of R2

and the regression coefficients. Consider an explanatory variable x
whose values complement the nsp species names labelling the
leaves of the tree. A contrast is noted Dx ¼ xa–xb, for any two sister
species a and b; likewise for the internal nodes found at the
various bifurcation points of the tree. When computing contrasts,
one makes the arbitrary decision that a, for instance, is the ‘upper’
species or node (for a tree drawn sideways) and b is the ‘lower’
one, or the opposite.

There are n ¼ (nsp�1) contrasts in any bifurcating tree of nsp

species. A given tree leads to the calculation of particular values
for each contrast, c ¼ Dx ¼ xa�xb, for variable x. Depending on the
way the tree happens to be drawn, either c or �c can be obtained
at each node. Actually, branches can be swapped at any node of a
tree without changing the phylogeny that it represents. Since the
order (upper or lower) of the branches at any node is arbitrary, we
are just as likely to observe Dx ¼ xb�xa as we are to obtain
Dx ¼ xa�xb. Likewise for any contrast Dy ¼ ya�yb of a response
variable y. The only constraint is that the direction of the
subtraction must be the same for all variables. Hence, the
particular set of contrasts observed on a tree has signs that could
very well have been partly or entirely different, had the tree be
drawn in some other equivalent way. There is no reason to give
more importance to the set of contrast values that has been
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Fig. 1. Three-species example showing the contrasts observed on all 2(n�1)
¼ 4 possible flipped-branch trees.

P. Legendre, Y. Desdevises / Journal of Theoretical Biology 259 (2009) 727–743728



Author's personal copy

obtained than to another set that could be calculated on any other
tree obtained by swapping branches at any or all nodes.

We can combine the sets of contrasts from all possible
swapped trees. For nsp species and n ¼ (nsp�1) contrasts in a
fully resolved binary tree, 2(nsp�1) different trees can be drawn,
since branches can be swapped at every node. When swapping
branches at a given node, the contrasts calculated at that node
change signs. Each contrast appears 2(nsp�2) times in the data set
combining the contrasts from all possible swapped trees. In Fig. 1
for instance, where nsp ¼ 3, there are 2(nsp�1)

¼ 4 possible trees
containing 2 contrasts each. Each contrast appears 2(nsp�2)

¼ 2
times in the combined data set.

Analysis of the relationship between the contrasts of the
dependent (y) and independent (x1, x2, y, xm) variables can be
done by simple or multiple ordinary least-squares (OLS) linear
regression, using the combined contrasts from all possible trees.
What we are seeking is the expected regression parameter(s) for
the set of all possible flipped trees.

The exact same regression line can be obtained by using a
smaller data set containing each signed contrast only once. This
data set, hereafter called the doubled data set, contains
2n ¼ 2(nsp�1) values for each variable; each contrast is repre-
sented once by a value having a positive sign (c) and another time
by a value having a negative sign (�c). Any one set of calculated
contrasts contains half this number of values, in any particular
case, since we are computing Dx ¼ xa�xb, for example, and not
Dx ¼ xb�xa.

An equivalent calculation is to use regression through the
origin on the original set of n ¼ (nsp�1) contrast values; this is
illustrated by the example in the next section. The equivalence
between regression through the origin and simple linear regres-
sion on a doubled data set will be used below to design a
permutation procedure for the tests of significance in regression
through the origin. The slope of the regression line obtained is the
same using regression through the origin or by simple linear
regression on the doubled data set. Only the slope parameter(s)
have to be estimated, not the intercept which is fixed at 0 by
construction.

The demonstration in Garland et al. (1992) is clear about the
number of degrees of freedom that should be used to test the
significance of the regression parameters. The number of contrasts
is n ¼ (nsp�1) for nsp species, whereas the number of estimated
parameters is equal to the number of variables (m), not (m+1)
since the intercept is fixed at zero by construct and, thus, does not
have to be estimated from the data. These concepts are illustrated
by the following example.

3. Example 1: specificity of lamellodiscus parasites, part 1

When a program for regression through the origin is not
available, correct estimates of the regression parameters can be
obtained as illustrated by the following example. The data are
from Desdevises et al. (2002a, b) who studied the factors that
affect parasite specificity (parasites of the genus Lamellodiscus:
Monogenea, Diplectanidae) with respect to their teleostean hosts
(Sparidae) in the Mediterranean. The response variable that we
will consider is a non-specificity index (NSI). NSI is a semi-
quantitative descriptor of specificity (Desdevises et al., 2002b)
recorded as follows: (1) specialists using a single host; (2)
intermediate specialists using two closely related hosts; (3)
intermediate generalists using two or more hosts in the same
terminal clade; and (4) generalists using two or more hosts across
several clades. The lower NSI is, the higher is host specificity,
hence its name. Contrasts computed from NSI all take different
values; so, these contrasts will be treated as a quantitative

variable in the present example. The explanatory variable is the
maximum size of the host species. Standardized contrasts were
computed using the program CAIC version 2.6.9 (Purvis and
Rambaut, 1995), based upon a maximum likelihood reconstruc-
tion of the phylogeny of the Mediterranean Lamellodiscus (Fig. 2;
Desdevises et al., 2002a). After trying all combinations of
contrasts computed from the original and the log-transformed
NSI and maximum host size data, we found that the regression
with both variables log-transformed before computation of the
contrasts produced the highest R-square. That regression is used
here to illustrate the method. The contrasts used in this
illustrative example are shown in Table 1. Table 2 presents the
parameters and statistics computed using ordinary least-squares
regression through the origin for the original set of contrast data,
and also using ordinary least-squares regression on a ‘‘doubled
data table’’ in which each row of the data set of contrasts is
doubled by adding a row with opposite signs. For example, the
contrast vector (0.04152, 0.00405) is doubled by adding the vector
(�0.04152, �0.00405) to the data table.

Fig. 3a shows that the regression line through the origin
(slope ¼ �1.30324) differs from the ordinary OLS regression line
(slope ¼ �0.99395). In Fig. 3b, the five leftmost points were
moved to the right of the scattergram by changing their signs on
both coordinates; this result corresponds to flipping the
corresponding nodes of the Lamellodiscus tree. The regression
line through the origin remains unchanged (slope ¼ �1.30324),
but the OLS regression line has changed (slope ¼ �1.70849). In
Fig. 3c, the doubled data table is used for regression: the OLS
regression line is now identical to the regression line through the
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Fig. 2. Phylogenetic trees of the Mediterranean Lamellodiscus parasites estimated

from 18S rDNA partial sequences. The labels identify the contrasts calculated at the

nodes of the tree.
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origin (slopes ¼ �1.30324). A doubled data table has also been
used by Ackerly and Donoghue (1998) to obtain principal
component axes of contrast data that passed through the origin.

Table 2 shows that by using OLS regression on a ‘‘doubled data
table’’, one obtains correct estimates of the intercept and slope
parameters, and of the coefficient of determination (R2). All
statistics involved in tests of significance are incorrect because the
correct number of degrees of freedom is 16, since the number of
independent contrasts is 17 (not 34) and the number of
parameters to be estimated is 1 (not 2). The F-statistic obtained
for the ‘‘doubled data table’’ has a doubled value and twice the
number of degrees of freedom in the denominator, but this does
not lead to a correct probability estimate. Likewise, the standard
error of the regression coefficient (b) and its t-value are incorrect,
hence the test of significance for b is wrong.

Any OLS regression line passes through the centroid of the data
points. It is for this reason that the OLS regression on a ‘‘doubled
data set’’ always passes through the origin. Table 2 has shown that
OLS regression on a ‘‘doubled data table’’ did not provide correct
tests of significance of the regression parameters. It may, however,
provide hints as to how a permutation test of the coefficient of
determination (R2) and the partial regression coefficients should
be constructed for regression through the origin.

4. Parametric and permutation tests

Regression through the origin is available in a number of
statistical packages. When the contrasts are not normally
distributed or contain extreme values, for the reasons described
in the Introduction, the parameters of the regression equation
should be tested using a permutational procedure. The simula-
tions reported in the next two sections will show that the
proposed permutation test is indeed insensitive to a lack of
normality (even very strong asymmetry) in the data.

We will now describe a permutation procedure for regression
through the origin and compare it to the parametric test using
numerical simulations, in order to demonstrate its validity. Before
we discovered the procedure described in the next paragraphs, we
carried out simulations for two more simple forms of permutation
tests: (1) permuting at random the values of the response
contrasts y with respect to the explanatory contrasts x in the
original (not doubled) data set and using regression through the
origin, and (2) permuting at random the values of y with respect
to x in the doubled data set and using simple linear regression.
Results of these procedures are reported at the end of the
simulation results: these simple permutation methods did not
have correct rates of type I error or failed in power. The double-
permutation procedure that will now be described was developed
to correct these problems.

4.1. Permutation test: double-permutation procedure

The permutational method that we will describe for testing
the significance of R2 as well as the regression coefficients is a
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Table 2
Comparison of regression parameters and statistics for non-specificity index as a function of maximum host size.

OLS regression through the origin OLS regression on doubled data table Estimates

n 17 34

Intercept Forced to 0 0.00000 Correct

Slope (b) �1.30324 �1.30324 Correct

Standard regression coefficient �0.75937 �0.63078 Incorrect

r �0.63078 �0.63078 Correct

R2 0.39788 0.39788 Correct

R2
adj

0.36025 0.37907 Incorrect

F 10.57295 21.14589 Double

Degrees of freedom n�1 ¼ 16 n�2 ¼ 32 Double

Standard error of b 0.40080 0.28341 Incorrect

t-value for b �3.25161 �4.59847 Incorrect

p-value for R2

Parametric 0.00500 0.00006 Incorrect

Permutational (99,999 perm.) 0.00763 0.00012 Incorrect

p-value for t

Parametric, one-tailed 0.00250 0.00003 Incorrect

Parametric, two-tailed 0.00500 0.00006 Incorrect

Permutational, one-tailed (99,999 perm.) 0.00380 0.00005 Incorrect

Permutational, two-tailed (99,999 perm.) 0.00763 0.00012 Incorrect

Center-left: regression through the origin. Center-right: regression on the ‘‘doubled data table’’. The right-hand column indicates whether the estimates by regression on

the doubled data table are correct or incorrect.

Table 1
Contrasts computed from the log-transformed variables, computed on the

phylogenetic tree of Lamellodiscus parasites (from Desdevises et al., 2002b): non-

specificity index (NSI, dependent variable) and maximum host size (explanatory

variable).

Contrasts NSI Maximum host size

1 0.04152 0.00405

2 0.00000 0.00000

3 0.01716 0.03023

4 0.00000 0.00000

5 0.16553 0.09463

6 0.45859 �0.20256

7 0.18470 �0.11613

8 0.00000 0.09224

9 0.00000 �0.03719

10 �0.08754 �0.08257

11 0.11719 �0.02669

12 0.16120 �0.00904

13 0.25614 �0.07076

14 0.12913 �0.08901

15 0.09254 �0.04756

16 0.11082 �0.00829

17 (Root) 0.01401 0.04786

The numbers in the left-hand column identify the contrasts in Fig. 2.
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double-permutation procedure involving n independent contrasts,
or in general n observed values yi of the dependent variable y. The
method is based on the concept of doubling the data set, used in
the previous sections to explain why regression through the origin
can be used in the case of independent contrasts. The objective is
to obtain, under the null hypothesis (H0) of the test, repeated
randomized scatters of points of the doubled data set that have
slopes near zero. The slope estimated for the real data set can then
be compared to the distribution of slopes obtained under H0 in
order to test the hypothesis that the actual slope is not different
from 0. The procedure is the following:

(1) Compute the (multiple) regression through the origin of y on
x (or matrix X) using the n observed sets of values (yi, xi)
with yi representing the values of the response and xi the
values of the single explanatory variable, or (yi, xi1, xi2,y, xij,
y, xim) in the case of a multiple regression with yi the values
of the response and (xi1, xi2, y, xij, y, xim) the values of all
the explanatory variables. Calculate R2, the F-statistic
associated with R2, the vector of Gaussian multipliers located
on the diagonal of matrix [X0X]�1, the regression coefficients
bj for the explanatory variables xj, the standard errors of the
regression coefficients SE(bj), and the associated tj-statistics;
see Appendix A.

(2) Consider the vector y ¼ [y1 y2 y yi y yn] and the vector of
doublets xt

d ¼ ½ðx1;�x1Þðx2;�x2Þ . . . ðxi;�xiÞ . . . ðxn;�xnÞ� where

xt denotes the transposed of vector x . For a multiple
regression involving m regressors, consider the doubled
matrix with n rows and 2m columns:

xd ¼

½x11 . . . x1m� ½�x11 . . .� x1m�

½x21 . . . x2m� ½�x21 . . .� x2m�

. . . . . .

½xi1 . . . xim� ½�xi1 . . .� xim�

. . . . . .

½xn1 . . . xnm� ½�xn1 . . .� xnm�

2
6666666664

3
7777777775

(1)

(3) Permute vector y at random to obtain a vector of permuted
values y� ¼ ½y�1 y�2 . . . y

�
i . . . y

�
n�. This is the first level of

permutation, noted by a single asterisk, involved in this
procedure.

(4) Create a vector of doublets of the y values:

y�d ¼ ½ðy
�
1;�y�1Þðy

�
2;�y�2Þ . . . ðy

�
i ;�y�i Þ . . . ðy

�
n;�y�nÞ� (2)

(5) For each doublet yi, draw a number ui at random from a
uniform distribution U(0,1). Ifo0.5, leave the corresponding
pair unmodified. If Z0.5, change the order of the elements in
the pair. One might obtain, for instance:

y��d ¼ ½ð�y�1; y
�
1Þðy

�
2;�y�2Þ . . . ðy

�
i ;�y�i Þ . . . ð�y�n; y

�
nÞ�

This is the second level of permutation, noted by two
asterisks, in this procedure.
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Fig. 3. Regression of contrasts of NSI on contrasts of maximum host size: (a) regression line through the origin (full line) and OLS regression line (dashed) for the original

data table containing 17 pairs of contrasts; (b) same, after moving five points from the leftmost portion of the scattergram to the right by changing their signs on both

variables; (c) when using the doubled data table, the two regression lines are identical.
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(6) Create the doubled response vector y��d and explanatory
matrix Xd that will be used in the regression procedure (the
original and doubled portions are separated by dashes):

ynn
d ¼

ynn1

. . .

ynni

. . .

ynnn

��

�ynn1

. . .

�ynni

. . .

�ynnn

2
6666666666666666666666666664

3
7777777777777777777777777775

for example:

ynn
d ¼

�yn
1

. . .

yni

. . .

�ynn

��

yn1

. . .

�yni

. . .

ynn

2
6666666666666666666666666664

3
7777777777777777777777777775

and xd ¼

x11 . . . x1m

. . . . . . . . .

xi1 . . . xim

. . . . . . . . .

xn1 . . . xnm

�� �� ��

�x11 . . . �x1m

. . . . . . . . .

�xi1 . . . �xim

. . . . . . . . .

�xn1 . . . �xnm

2
666666666666666666666666664

3
777777777777777777777777775

(3)

The size of the permutation set (i.e., the number of
possible, different permutations) is n! for the first permuta-
tion (step 3) and 2n for the second permutation (step 5). So,
the permutation set for the double-permutation procedure is
of size (n!)(2n).

(7) Compute the (multiple) regression of y��d against xd (or Xd).
One can apply: (1) an OLS (multiple) regression procedure to
the doubled data sets created during step 6, or (2) a
procedure for (multiple) regression through the origin using
the doubled data sets, or else (3) regression through the
origin using either the upper or the lower half of the doubled
data sets as presented in step 6. Compute the R2 statistic and
the vector of regression coefficients b ¼ [bj ]: the obtained
values are the same for all three regression methods.

(8) Calculation of the degrees of freedom is based upon the n

original observations (contrasts or other types), not the 2n

values of the doubled data sets. One degree of freedom is lost
for each of the estimated regression parameters, but none is
lost for the intercept, even if OLS regression is used: the
intercept does not have to be estimated since it is 0 by
construct.

(9) The permutational test of significance for R2 can be based
either upon the R2 statistic itself, or on the derived
F -statistic. In simple or multiple regression, R2 is a statistic
equivalent to F for permutation testing because F is a
monotonic function of R2 for any constant value of n and m

(Manly, 1997; Legendre and Legendre, 1998). R2 can be
compared to the distribution of R2� values obtained under
permutation, or F can be compared to the distribution of F*
values obtained under permutation. Under permutation, one

must be careful to use the correct numbers of degrees of
freedom in the calculation of F*:

F� ¼
R2�=m

ð1� R2�
Þ=ðn�mÞ

(4)

Otherwise, the values F* will not be comparable to the
F-statistic computed for the unpermuted data. The prob-
ability P(F) associated with R2 will be estimated by compar-
ing the value F to the distribution of the F* obtained under
permutation. The reference value F is added to the distribu-
tion of F* values before computing the probability (Hope,
1968) to insure that the test is valid (Edgington, 1995).

(10) In multiple regression, through the origin or not, the tj -
statistic associated with regression coefficient bj is used for
testing. Since tj is a pivotal statistic, it is expected to produce
correct type I error and is thus appropriate for permutation
testing. This is not the case for bj: under permutation, the
values b�j are not monotonic to the corresponding values t�j
because the standard error of the partial regression coeffi-
cient, SE(bj), changes from one permutation to the next
(Legendre and Legendre, 1998). For permutation testing, the
two statistics are only equivalent in the case of simple linear
regression. One must be careful to compute the t�j -statistics
correctly under permutation. The standard error of b�j is
computed as

SEðb�j Þ ¼

Pn
i¼1ðresidualiÞ

2

ðn�mÞ
� Gaussian multiplierj

" #1=2

(5)

One can either use the Gaussian multipliers obtained during
step 1, or recompute them during each permutation using
the first n points only of the double data set of step 6. The
latter procedure would be a waste of computer time since
the column vectors of matrix X are not permuted with
respect to one another during the permutations, in accor-
dance with the principle of ancillarity (which means
relatedness; Welch, 1990; ter Braak, 1992). Hence [X0X]–1

remains unchanged through the permutations. The values t�j
can now be computed as

t�j ¼ b�j =SEðb�j Þ (6)

The probability P(tj) associated with bj will be estimated by
comparing the value tj to the distribution of the t�j obtained
under permutation. The reference value tj is added to the
distribution of t�j values before computing the probability
(Hope, 1968).

For permutation testing, one could use a pseudo-F statistic
computed without degrees of freedom instead of the classical
F-statistic. The degrees of freedom form a multiplicative constant
which has the same effect on the unpermuted value F and on all
permuted values F* of the statistic. Hence, the permutational
probability calculated using F or pseudo-F would be the same. One
must exert caution and make sure that F is compared to the
distribution of F*, or pseudo-F to the distribution of pseudo-F*.
Likewise, one can compute a pseudo-SE(bj) and pseudo-t statistic
without degrees of freedom and then compare pseudo-t to the
distribution of pseudo-t*, instead of comparing t to the distribu-
tion of t*.

Permutations will be carried out in two different ways: (1) by
permuting the values of y, as described above, or (2) permuting
the residuals of the full regression model, where the permuted
elements are the residuals of the regression of y on X. A third
method, which consists in permuting the residuals of a null
model, will not be used here because, in multiple regression, it
requires a new set of permutations to test each regression
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coefficient. The three methods are described in Legendre and
Legendre (1998), ter Braak and Smilauer (1998), Anderson and
Legendre (1999), and Legendre (2000). They have been compared
by Anderson and Legendre (1999), using numerical simulations, in
tests of partial regression coefficients, and by Legendre (2000) in
tests of partial correlation coefficients. Permutation of the values
of y is appropriate for testing R2. In previous studies, permuting
the residuals has been found in some situations to be better than
permuting the values of y, so it must be investigated here for
regression through the origin:

� The simulations of Anderson and Legendre (1999) showed that
the normal-theory t-tests for partial regression coefficients had
incorrect level of type I error, and less power than any of the
permutation methods, when the error in the data departed
strongly from normality. All methods of permutation gave
asymptotically equivalent results in most situations and had
good power. Permutation of the values of y had destabilized
type I error when the covariable contained extreme values; the
two methods of permutation of residuals were more appro-
priate in that situation.
� In partial correlation analysis (Legendre, 2000), with highly

skewed data, the normal-theory t-test had again inflated type I
error rates; for very small sample sizes (no20) and in the
absence of extreme values, permutation of the values of y was
not affected by non-normal error whereas the two methods of
permutation of residuals had slightly inflated type I error rates.
With normal error, when extreme values were present in the
covariable, permutation of the values of y had inflated type I
error rates whereas the tests by permutation of residuals were
not adversely affected. In combinations involving highly
skewed data and extreme values, the two methods of
permutation of residuals were less affected than the normal-
theory t-test or the permutation of the values of y.

Practical aspects: Permutation of the values of y and permuta-
tion of the residuals of the full regression model are appropriate to
test the significance of partial regression coefficients because all
coefficients can be tested using a single series of permutations. In
permutation of the residuals of the full regression model, the
permuted elements are the residuals of the regression of y on X, as
mentioned above. A program shortcut, described by Anderson and
Legendre (1999), is to regress these permuted residuals directly on
X to obtain the vector of regression coefficients b* under
permutation and the associated t�J statistics. In the programs
mentioned at the end of the Discussion, permutation of the values
of y is used when there is a single predictor, because permutation of
residuals is only potentially useful in the presence of extreme values
in a covariable. With two predictors or more, the user is offered the
choice between permutation of the values of y (method 1) or
permutation of the residuals of the full regression model (method 2)
for the tests of the partial regression coefficients. The permutational
test of R2 is always done by permutation of the values of y. The
programs also compute the parametric (normal-theory) tests of
significance. Likewise, in the simulations described in the next
section, only the permutation of the values of y will be used with a
single predictor (m ¼ 1); in that case, the test of the regression
coefficient is equivalent to the test of the coefficient of determination
(R2). Both types of permutation tests will be used in tests of partial
regression coefficients when m ¼ 2.

5. Numerical simulations: methods

Simulations were performed to check the type I error and
power of the permutational test of significance of the regression

coefficients in regression through the origin. A program was
written in FORTRAN77 to carry out the simulations. Data were
generated according to two different models:

� Regression model I, which is assumed for the parametric tests of
significance in regression through the origin, requires that the
predictors have fixed values. Data were generated that
followed this model by selecting fixed values of one (x1) or
two predictors (x1 and x2). Replicate values of the response
variable y were generated using the model yi ¼ b0+b1xi1+
b2xi2+ei where the errors ei were drawn at random from one of
three distributions, described below. Rejection rates in one-
tailed (upper and lower tails) and two-tailed tests were
obtained. Permutation tests were carried out using permuta-
tion of the values of y and permutation of the residuals.
� Regression model II, also called the correlation model (Fig. 4),

assumes that the predictors as well as the response are random
variables. It was important to do the simulation study for
regression model II data because independent contrast data
belong to that type: error is present in the explanatory as well
as the response variables. These data do not strictly verify the
conditions of application of the parametric tests of
significance. For two predictors and a response variable,
three vectors z1, z2, and z3, of length n, were created by
random draw from one of the error distributions described
below and written to a matrix Z of size (n�3). The
deterministic components of the model consisted of three
correlation coefficients r(z1z2), r(z1z3), and r(z2z3), written
into a correlation matrix R, which reflected the desired
amounts of correlation structuring the statistical population
from which the simulated points were drawn. Matrix R was
decomposed using Cholesky factorization, R ¼ L0L, where L is a
(3�3) upper triangular matrix. Matrix W containing the
correlated vectors was obtained by computing W ¼ ZL. Its
columns were called y, x1 and x2 in view of the regression. The
rationale for this transformation is the following: if the column
vectors forming Z are drawn at random from distributions with
mean 0 and variance 1, then [1/(n�1)]Z0Z ¼ I (expected value
of a correlation matrix among random normal deviates) and
the covariance between the columns of W reflect the original
correlations assigned to matrix R. This statement is
demonstrated as follows using the elements mentioned
above (Legendre, 2000):

½1=ðn� 1Þ�W0W ¼ ½1=ðn� 1Þ�L0Z0ZL ¼ L0IL ¼ L0L ¼ R (7)

For both data generation models, error values ei were drawn
at random from three types of distributions:
� Standard normal distribution with m ¼ 0 and s2

¼ 1.
� Exponential deviates: 3� 106 deviates, enough to carry out

10,000 repeated simulations with three variables and 100
observations, were obtained from a standard exponential
distribution with m ¼ 1 and s2

¼ 1. They were standardized
to mean 0 and standard deviation 1.
� Cubed exponential deviates, i.e., standard exponential deviates

to the power 3: this distribution was used to examine the
behavior of the different types of tests in the presence of highly
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Fig. 4. Correlation model for generation of data.
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skewed data, as in the simulations reported by Manly (1997,
pp. 163–166), Anderson and Legendre (1999), and Legendre
(2000). The 3�106 cubed exponential deviates actually had a
mean near 6 and a standard deviation near 26. They were
standardized to mean 0 and standard deviation 1, and stored in
a file before being used in the simulations.

There were 10,000 repeated simulations for each situation; they
allowed us to calculate the rejection rate of the null hypothesis for
different significance levels a, as well as the 95% confidence
interval of the rejection rate. For permutation testing, 999 random
permutations were done. Simulation results were reported for the
coefficient of determination (R2) and the regression coefficient of
the first explanatory variable (x1).

5.1. Type I error

Type I error occurs when the null hypothesis is rejected while
the data conform to H0. To be valid, a test of significance should
have a rate of rejection of the null hypothesis no larger than the
nominal (a) significance level of the test when H0 is true
(Edgington, 1995).

It is not easy to generate random data that conform to the null
hypothesis of regression through the origin. In multiple regres-
sion, data of that sort are easily produced by generating a
response variable y that is linearly independent of the explanatory
variables X; how to generate such data was described, for
instance, by Manly (1997) and Anderson and Legendre (1999).
Regression through the origin may, however, produce a significant
slope for such data unless the values of y are centered on the
abscissa. Data conforming to the null hypothesis were obtained by
setting the parameters of the models as follows:

� For regression model I data: b0, b1, and b2 were set to 0.
Simulations with a single explanatory variable were carried
out using n ¼ {10, 20,y, 80, 90}. Simulations with two
explanatory variables were done using n ¼ {25, 50, 75, 100}.
In these simulations, the explanatory variables had fixed
values of {�1.0, �0.5, 0.0, 0.5, 1.0}; hence n had to be multiples
of 5 for m ¼ 1, or multiples of 25 for m ¼ 2. Error was normal,
exponential, or cubed exponential.
� For regression model II data: r(z1z2), r(z1z3), and r(z2z3) were

set to 0. Simulations with one and two explanatory variables
were carried out using n ¼ {10, 20,y, 90, 100}.

The rate of rejection of the null hypothesis, after 10,000
repeated simulations, was calculated for tests carried out using
significance levels a ¼ {0.01, 0.02, 0.03, 0.04, 0.05}.

5.2. Effect of an extreme value in x2

Because previous studies had shown that permutation of the
residuals was more appropriate than permutation of the values of
y for tests of the regression coefficients in the presence of extreme
values in the covariable, we had to verify if that conclusion held in
the case of regression through the origin. Following Anderson and
Legendre (1999), extreme values in the covariable x2 were
generated as follows: the first (n�1) values of x2 were drawn at
random from a uniform distribution on the interval (0, 3) and the
nth value was set equal to 55. These simulations represented
random variables in which the error in X is null or, at any rate,
much smaller than the error in y.

Simulations with two explanatory variables were carried out
for model I data only, for n ¼ {5, 10, 25, 50, 100}. Using the model
yi ¼ b0+b1xi1+b2xi2+ei, data conforming to the null hypothesis for

b1 were obtained by setting all parameters b of the model to 0, or
by setting b1 ¼ 0 and b2 ¼ {5, 10, 15, 20} to allow for an effect of
the covariable containing the outlier on y. Error was either normal
or cubed exponential. The simulations were done without and
with collinearity among the explanatory variables. Collinearity
was introduced by computing x0i1 ¼ xi1 þ xi2.

5.3. Power

A test of significance should be able to reject the null
hypothesis in most instances when H0 is false. The ability to
reject H0 in these circumstances is referred to as the power of a
test. In the present simulation study, power is defined as the rate
of rejection of the null hypothesis when H0 is false by construct.
Power was studied using the same type of simulations as
described above, except that this time the alternative hypothesis
(H1) was made to be true. Two types of simulations were done:

� For regression model I data: b0 and b2 were set to 0 whereas b1

was set to 0.5; the regression coefficient of explanatory
variable x1 was studied. This value of b1 was selected because
it produced rates of rejection of the null hypothesis that were
higher than 0 and smaller than 1 in all simulations. Simula-
tions with a single explanatory variable were carried out with
n ¼ {10, 25, 50, 100}, whereas simulations involving two
explanatory variables were done using n ¼ {25, 50, 75, 100}.
The explanatory variables had fixed values of {�1.0, �0.5, 0.0,
0.5, 1.0}; hence n had to be multiples of 5 (for m ¼ 1) or 25 (for
m ¼ 2). Error was either normal or cubed exponential.
� For regression model II data: The correlations were set in such a

way that the partial correlation r(z1z2.z3) always had the same
value; r(z1z2.z3) ¼ 0.2 was chosen as an adequate value for
reporting the results. r(z1z3) was set to 0 in order to have no
effect of x2 on y, and the collinearity r(z2z3) was set to {0.0, 0.1,
0.5, 0.9}. The value of r(z1z2) allowing us to keep r(z1z2.z3)
constant is found using the following equation:

rðz1z2Þ ¼ rðz1z2:z3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� rðz2z3Þ

2
q

(8)

This equation gives the following pairs of values for
r(z1z2.z3) ¼ 0.2: r(z2z3) ¼ 0.0, r(z1z2) ¼ 0.20000; r(z2z3) ¼
0.1, r(z1z2) ¼ 0.19900; r(z2z3) ¼ 0.5, r(z1z2) ¼ 0.17321;
r(z2z3) ¼ 0.9, r(z1z2) ¼ 0.08718. Simulations with one and
two explanatory variable were carried out using n ¼ {10, 50,
100}. Error was either normal or cubed exponential. We
checked that the values r(z1z2) ¼ 0.0, r(z1z3) ¼ 0.0,
0.0Zr(z2z3)Z1.0 did produce realizations of the null hypoth-
esis, as expected, in regression through the origin.

Additional simulations for power involved data generated
without structure, as in the type I error study. An effect was
produced by moving the centroid away from the origin. The
centroid was located at coordinates (2, 2) or (10, 10). For normal
error (N(0, 1)), regression through the origin should find the slope
of the regression line significant. These simulations go beyond the
data configurations expected for independent contrast data. They
were carried out to eliminate a procedure which is inadequate in
more general cases of regression through the origin; see the last
paragraph of the section ‘‘Numerical simulations: results’’.

The rate of rejection of the null hypothesis, after 10,000
repeated simulations, was calculated for tests at significance
levels a ¼ {0.01, 0.02, 0.03, 0.04, 0.05}. Only the results for
a ¼ 0.05 will be reported in detail.
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6. Numerical simulations: results

We will examine the behavior, under simulations, of the
method described in the ‘‘Permutation test: double-permutation
procedure’’ section. Table 3 summarizes the results. Using normal
data, these results show first that the two permutation tests work
correctly: the F-test of the coefficient of determination and the
t-test of individual regression coefficients both have correct levels
of type I error, and the same power as the parametric form. A test
has correct type I error if the rejection rate is approximately equal
to the significance level of the test.

6.1. Type I error

With normal error, the parametric and permutation tests had
the same behavior (Fig. 5) and were thus equivalent. This was true
for data generated under the regression model I (Fig. 5a and c) or II
(correlation model: Fig. 5b and d).

With highly asymmetric error (cubed exponential deviates),
the permutation tests behaved better than the parametric forms
in both the global test of R2 and the t-test of a regression
coefficient. To be valid, a test of significance should have a rate of
rejection of the null hypothesis no larger than the nominal a
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Table 3
Simulation results.

m F-test of R2 t-test of regression coefficient

Testing procedure ) Parametric Permute y Parametric Permute y Permute res

Type I error (summary of 132�104 simulations)

Normal error (model I or II data) 1 OK all n OK all n OK all n OK all n

Exp error

Model I data 1 n410 n440 n410 n440

Model II data 1 n410 n410 n410 n410

Exp3 error

Model I data 1 Rateoa OK all n Rateoa OK all n

Model II data 1 Invalida n410b Invalida n410b

Normal error (model I or II) Fig. 5 2 OK all n OK all n OK all n OK all n OK all n

Exp error

Model I data 2 OK all n n410c OK all n OK all n OK all n

Model II data 2 n440 n420 n430 n410 n410

Exp3 error

Model I data Fig. 6a and c 2 Rateoa OK all n Rateoa OK all n OK all nd

Model II data Fig. 6b and d 2 Invalid n440 Invalide n420 n440

Type I error with outlier in covariable (summary of 200�104 simulations)

Normal error (model I data)

No effect of covariable on y 2 OK all n OK all n OK all n OK all n OK all nf

Effect of covariable on y 2 (g) (g) OK all n Invalid OK all nf

Exp3 error (model I data)

No effect of covariable on y 2 n425h n410i n45j n45j n45j

Effect of covariable on y 2 (g) (g) n45j n45j n45j

Power (summary of 82�104 simulations)

Normal error (model I or II data) 1 P(param) ¼ P(permy) P(param) ¼ P(permy)

Exp3 error

Model I data 1 P(param) o P(permy)k P(param) o P(permy)k

Model II data 1 P(param) ¼ P(permy) P(param) ¼ P(permy)

Normal error (model I or II) Fig. 7a and c 2 P(param) ¼ P(permy) P(param) ¼ P(permy) ¼ P(perres)

Ex3 error

Model I data Fig. 7b and d 2 P(param) o P(permy) P(param) o P(permy) ¼ P(perres)

Model II data 2 Invalidl validm Invalidl P(permy)n
¼ P(perres)n

‘‘m’’ ¼ number of explanatory variables. ‘‘Parametric’’: parametric F or t-test. ‘‘Permute y’’: test by permutation of the values of y. ‘‘Permute res’’: test by permutation of the

residuals. ‘‘OK all n’’: the test has correct type I error for all sample sizes (n) investigated in the simulations. ‘‘n410’’: the test has correct type I error for n410. ‘‘rateoa’’:

the test is valid but too conservative. ‘‘invalid’’: the test has inflated type I error for all n and is thus invalid. Blank: no simulation was done. In the power section,

‘‘P(param)’’: power of the parametric test; ‘‘P(permy)’’: power of the test by permutation of y; ‘‘P(perres)’’: power of the test by permutation of the residuals.
a Test valid for nZ50 at a ¼ 5%; test invalid for all n at a ¼ 4–1%.
b Test at a ¼ 5% valid for n410; at a ¼ 4%, 3% for n420; at a ¼ 2%, 1% for n440.
c For the test of R2, the rejection rate is slightly 4a (all a-levels) for n ¼ 25; rate slightly 4a (a ¼ 5%, 4%) for n ¼ 50.
d Test valid but slightly conservative for n ¼ 25.
e Test valid for nZ50 at a ¼ 5% only. Test always invalid for the other values of a.
f Rejection rate slightly larger than a for n ¼ 5.
g H0 is false in these simulations because there is an effect of the covariable on y. Hence the type I error rate of the F-test cannot be estimated.
h Testing at a ¼ 5%: rejection rate 4 a for n ¼ 5, 10, 25; rateoa (test valid) for n ¼ 50, 100. Testing at a ¼ 4% or 3%: rejection rateoa (test valid) for n ¼ 100. Test always

invalid when testing at a ¼ 2% or 1%.
i Testing at a ¼ 5% or 4%: rejection rate 4 a for n ¼ 5, 10; rateoa (test valid) for n ¼ 25, 50, 100. Testing at a ¼ 3%, 2%, 1%: rejection rate 4 a for n ¼ 5, 10, 25; rateoa

(test valid) for n ¼ 50, 100.
j Testing at a ¼ 5% or 4%: rejection rateoa (test valid) for nZ10. Testing at a ¼ 3% or 2%: rejection rateoa (test valid) for nZ25. Testing at a ¼ 1%: rejection rateoa (test

valid) for nZ50.
k The confidence intervals of the rejection rates overlapped partly for n ¼ 10 and 25, but not for n ¼ 50 and 100 where the power of the permutation test was clearly

greater.
l There was no point in examining power of the parametric test and comparing it to that of the permutation test since the parametric test is invalid; see section on type I

error.
m The permutation test of R2 is valid for n440; see section on type I error.
n Power of the test by permutation of the values of y is greater than the power of the test by permutation of the residuals for n ¼ 10 only.
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significance level of the test when H0 is true (Edgington, 1995).
With regression model I data, the parametric tests were too
conservative (Fig. 6a and c), the rate of rejection of the null
hypothesis being systematically far too low. Tests that are too
conservative are not invalid, but conservatism will affect the
power of the parametric tests. With regression model II data
(correlation model: Fig. 6b and d), the parametric tests were
invalid. Thus parametric tests should be avoided with this type of
data.

With highly asymmetric data, the rejection rates for para-
metric and permutational one-tailed t-tests of individual regres-
sion coefficients in the upper tail (results not shown) were too
high, making these tests invalid; tests in the lower tail almost
never rejected the null hypothesis. So, with highly asymmetric
data, one should avoid one-tailed tests.

Additional simulations for type I error were performed, in
which the mean value of the explanatory variables was 10 instead
of 0: (a) when the error was normal, all forms of tests had correct
type I error; (b) with a single explanatory variables and highly
asymmetric error, all forms of tests of the coefficient of
determination (R2) were far too conservative, having rejection

rates close to 0. Note that a conservative test is still a valid test.
The conservative type I error will simply translate in reduced
power when an effect is present in the data. The t-tests
of the regression coefficients had the same behavior as the tests
of R2 since the two tests are equivalent; and (c) with two
explanatory variables and highly asymmetric error, the permuta-
tion test of the coefficient of determination (R2) was too
conservative, but not as strongly as the parametric F-test; hence
the permutation test will have higher power than the parametric
test when an effect is present in the data. For the t-test of a
regression coefficient, both forms of permutational tests had
correct type I error whereas the parametric t-test had error rates
well below a. Again, this will translate in the permutation tests
having higher power to detect an effect when present in the data.

6.2. Type I error: effect of extreme values in the covariable

For symmetric model I data (normal error), permutation of the
values of y was invalid when there was an effect of the covariable
(x2) on y. The test by permutation of the residuals generally
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Fig. 5. Mean and 95% confidence intervals of the empirical rates of type I error of the F-test of the coefficient of determination (R2) and the two-tailed t-test of the first

regression coefficient, for different significance levels (a ¼ 5%, 4%, 3%, 2%, and 1%, materialized by horizontal lines), with increasing sample sizes (n). There were two

explanatory variables in these simulations. Left: data generated under the regression model I. Right: data generated under the regression model II (correlation model). The

population parameters for the simulations were chosen in such a way that H0 was true; the error terms were random standard normal deviates. Open symbols: parametric

test; black symbols: test by permutation of the values of y; black symbols are often hidden by the corresponding open symbols. Overlapping confidence intervals are drawn

as their union for clarity.
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performed well, but it never outperformed the parametric t-test
which always had correct type I error. When the error was
strongly asymmetric, all tests were too conservative and, thus,

remained valid. No form of test did better than the other forms.
Nearly identical results were obtained with or without collinearity
between the two explanatory variables.
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random standardized cubed exponential deviates. In (d) the black dots and their confidence intervals have been moved sideways for clarity.
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Permutation of the residuals had been found by Anderson and
Legendre (1999) to be useful for testing a regression coefficient
when there were extreme values in one of the covariables; for
normal error, the parametric t-test and the test by permutation of
the residuals both had correct type I error in their simulations,
whereas the test by permutation of the values of y had erratic
type I error rates, the rate depending of the value of the
covariable’s parameter; for highly asymmetric data, permutation
of the residuals was the only form of test having correct type I
error. This appears not to be the case in regression through the
origin: for symmetric data (normal error), the parametric t-test
maintained correct type I error. For highly asymmetric data, all
forms of tests were valid but too conservative for nZ25. So there
is no need to resort to permutation of the residuals, in regression
through the origin, in the presence of extreme values in the
covariable.

6.3. Power

With normal error, all forms of test had equal power (Fig. 7a
and c). With cubed exponential error and regression model I data,
the power of the permutation test was higher than that of the

parametric test (Fig. 7b) by the same amount (about 2%) as the
degree by which the parametric test was too conservative in
simulations for type I error (Fig. 6a). With regression model II data
(correlation model), there was no point in examining the power of
the parametric F-test since it was invalid in all cases (Fig. 6b). The
permutation test was valid when n420 to 40, depending on the
severity of asymmetry in the error term.

With cubed exponential error and regression model I data, the
power of the two types of permutation tests was higher than that
of the parametric test (Fig. 7d) by the same amount as the degree
by which the parametric test was too conservative in simulations
for type I error (Fig. 6c). With regression model II data (correlation
model), there was no point in examining the power of the
parametric t-test since it was invalid. The permutation tests were
valid when n410–40, depending on the type of test and the
severity of asymmetry in the error term. For regression model I
data, the advantage found for the two forms of permutation tests
over the parametric t-test, in simulations involving highly skewed
error, was similar to that found by Anderson and Legendre (1999)
in ordinary multiple regression, for data generated in the same
way.

For data with N(0,1) error, when the centroid of the data set
was moved into the first quadrant, the permutation test detected a
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significant regression-through-the-origin slope with the same
power as the parametric test. This was true for models I and II
data as well.

6.4. Alternative strategies for permutation tests

Before we imagined the double-permutation procedure de-
scribed in the ‘‘Permutation test: double-permutation procedure’’
section, we carried out simulations to test the behavior of two
simple permutation strategies: (1) in the first strategy, the data
were not doubled. The values of y were permuted at random with
respect to x and regression through the origin was computed.
Simulations for type I error and power were carried out as
described in the previous section, using normal error. The most
important effect was that, when the centroid of the data set was
moved into the first quadrant, the tests of R2 and the regression
coefficient had no power above the a significance level, whereas
the parametric test correctly detected a significant regression-
through-the-origin slope in all cases. This was true for models I
and II data; (2) in the second strategy, the values of y in the
doubled data set were permuted at random with respect to x and
regression through the origin was recomputed. All simulations
showed greatly inflated type I error rates for the tests of R2 and the
regression coefficient. These two forms of permutation test are
thus incorrect.

7. Example 1, part 2

In the example presented above, we regressed the contrasts
computed from a measure of non-specificity (NSI) of a group of

parasites on the contrasts computed from the maximum size of
their fish host species. The two variables were measured with
error, hence their contrasts are also with error; this is thus a case
of model II regression. Since the data are of the correlation
(or model II) type, we are interested in testing the ‘‘correlation
through the origin’’ between NSI and maximum host size;
we can proceed using regression through the origin since the
test of a simple linear regression coefficient is the same as
that of a coefficient of linear correlation. Desdevises et al. (2002b)
had hypothesized NSI to be lower for animals that use larger
hosts, so the test of significance should be one-tailed in the lower
tail.

Frequency histograms are presented in Fig. 8a and b for the two
independent contrast variables. From casual examination of the
histograms, it is hard to decide what type of error is present in the
data. Indeed, a contrast data set is but one of the many realizations
that could have been obtained by drawing the phylogenetic tree in
different ways, as in Fig. 1; each way of drawing the tree would have
led to a different contrast data set and a different histogram. To
assess the degree of asymmetry, we will: (1) draw frequency
histograms of the doubled data sets (a ‘‘doubled data set’’ has been
defined in the Rationale section as one in which the doubled data
points have reversed signs) and (2) look at the kurtosis of the
distributions: doubled normal contrast data will have kurtosis near
zero whereas doubled asymmetric contrast variables will have
leptokurtic (i.e., pointed) distributions. The skewness parameter is
useless since the frequency distribution of any doubled variable is
symmetric by construct (Fig. 8c and d).

The frequency histograms of the two doubled contrast data
sets (Fig. 8c and d) display some amount of kurtosis, especially the
NSI contrasts, showing that the data are certainly not normal; one
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maximum host size; a normal curve is also shown for comparison.
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may feel safer in using the permutation test. Kurtosis is not
near what would be expected for highly asymmetric data
of the type that were used in the simulations, so that the

parametric test can also be used in that case. The two one-tailed
tests show the relationship to be negative and highly significant
(Table 2).
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outgroup
Didelphis virginiana
Blarina brevicaudata
Sorex araneus
Sorex cinereus
Sorex minutus
Hydrochaeris hydrochaeris
Zapus princeps
Eutamias minimus
Cynomys ludovicianus
Marmota  monax
Spermophilus armatus
Spermophilus franklini
Spermophilus richardsoni
Spermophilus tridecemlineatus
Sciurus carolinensis
Tamiasciurus hudsonicus
Thamomys talpoides
Dipodomys desert
Dipodomys merriami
Dipodomys microps
Dipodomys ordii
Neofiber alleni
Arvicola terrestris
Microtus agrestis
Microtus arvalis
Microtus longicaudatus
Microtus montanus
Microtus pennsylvanicus
Clethrionomys gapperi
Clethrionomys glaereolus
Ochrotomys nuttalli
Neotoma floridana
Peromyscus gossypinus
Peromyscus leucopus
Peromyscus maniculatus
Peromyscus polionotus
Oryzomys palustris
Sigmodon hispidus
Rattu rattus
Apodemus sylvaticus
Ochotona princeps
Oryctolagus cuniculus
Sylvilagus floridanus
Lepus americanus
Lepus californicus
Allouatta caraya
Lynx canadensis
Felis canadensis
Felis concolor
Canis latrans
Canis lupus
Alopex lagopus
Vulpes vulpes
Ursus americanus
Ursus arctos
Spilogale putorius
Mephitis mephitis
Procyon lotor
Bassariscus astutus
Meles meles
Taxidea taxus
Mustela erminea
Martes  americana
Martes pennanti
Equus burchelli
Equus zebra
Sus scrofa
Tayassu tajacu
Lama glama
Antilocapra americana
Giraffa camelopardalis
Alces alces
Cervus elaphus
Cervus axis
Odocoileus hemionus
Odocoileus virginianus
Ovis canadensis
Bison bison

Fig. 9. Phylogenetic trees of the 78 mammal species plus outgroup. From Morand and Poulin (1998).
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8. Example 2

Independent contrasts were computed on the phylogeny
(Fig. 9) of 78 species of mammals. That tree, derived from
various sources, was published by Morand and Poulin (1998). The
response variable y was richness in parasites (i.e., number of
parasite species). The explanatory variables were: x1 ¼ spatial
density of hosts (i.e., number of hosts per hectare) and
x2 ¼ average mass of adult hosts (in kg). These data can be
obtained at URL: http://www.pubs.roysoc.ac.uk. The 61 contrasts
(not shown) were computed using the program CAIC version
2.6.8b (Purvis and Rambaut, 1995). Regression through the origin
was used to determine if richness in parasites is related to and can
be explained by host density and host body mass. Since we expect
larger individuals, as well as those living in denser populations, to
harbor and share more species of parasites (Morand and Poulin,
1998), the hypotheses lead to one-tailed tests of significance.
Notice that the data are of the correlation (or model II) type. So,
we are actually interested in testing the ‘‘partial correlations
through the origin’’ of richness with the two explanatory
variables; we can proceed using regression through the origin
since the test of a partial regression coefficient is the same as that
of a partial correlation coefficient.

The contrasts are more asymmetric than in the previous
example: kurtoses of the doubled data sets are 3.66 for Parasite

richness, 10.04 for Spatial density, and 9.60 for Host mass; they were
1.89 and 0.72 in Example 1. So we feel safer in using permutation
tests. The results of regression through the origin are presented in
Table 4. We first notice the low explanatory power (R2

¼ 0.04529)
and lack of significance of the regression model. Furthermore, the
signs of the regression coefficients are opposite to the predictions
of our hypotheses. Using the one-tailed probabilities provided by
the program (they are computed in the direction of the signs of
the regression coefficients), we can calculate the probabilities
under our stated alternative hypotheses: the proportions of
permuted values t* as large as or larger than the observed
t-statistics are 0.7415 for Spatial density and 0.9413 for Host mass.
Collinearity between the two explanatory variables is low
(r ¼ –0.03189), so there is no point in attempting a backward
elimination of the least significant variable, Host mass, followed by
recomputation of the regression for the remaining variable, Spatial

density. We conclude that our hypotheses are not supported by the
data.

9. Discussion

Independent contrasts are computed under the assumption of
Brownian motion, but in actual data contrasts may not be
normally distributed for a variety of reasons: the physical scale
of measurement may not lead to normally distributed data; the
type of data and/or the method used to reconstruct the tree may
produce biased estimates of the true tree; non-random selection
of taxa may lead to asymmetric distributions. It can often be
difficult to find a transformation that will effectively normalize

the data and prevent extreme contrast values from exerting high
leverage in regression models. In such cases, permutation tests may
be more appropriate than parametric tests to identify significant
relationships between contrast data by regression through the
origin. This permutational procedure can also be applied to the
extension of the independent contrasts method proposed by
Felsenstein (2008) to consider within-species variation.

Examination of the logic underlying regression through the
origin led to the formulation of a permutation test for the
coefficient of determination and individual regression coefficients
in this type of regression. A simulation study was conducted; it
led to the following recommendations about the use of the
parametric and permutation tests in regression through the
origin:

� When the error is normal, the parametric and permutation
tests can be used equally well in all situations: with regression
model I (no error in the predictors) or regression model II data
(error in the predictors; independent contrast data belong to
that category), with any number of explanatory variables, and
with all sample sizes.
� When the error is highly asymmetric and the predictors are

without error (regression model I data), the parametric F-test
of the coefficient of determination and the parametric t-test of
individual regression coefficients are too conservative, having
rejection rates well under the significance level when the null
hypothesis is true, whereas the permutation tests have correct
type I error. As a consequence, both forms of permutation tests
have higher power than the parametric test for detecting an
effect, and should thus be preferred.
� When the error is highly asymmetric and the predictors are

measured with error (regression model II data, e.g., indepen-
dent contrasts), the parametric F-test of the coefficient of
determination and the parametric t-test of individual regres-
sion coefficients are invalid, having inflated type I error rates.
Valid permutational two-tailed tests can be performed,
whereas parametric tests should be avoided. No test is valid
for very small sample sizes (nr10 or 40, depending on the type
of test and the degree of asymmetry of the error).
� In the presence of extreme values in the covariable, permuta-

tion of the values of y had inflated type I error rates for normal
data when the covariable had an effect on y. Permutation of the
residuals had correct type I error in most situations, but it did
not outperform the parametric t-test. For highly asymmetric
error, all tests remained valid but were too conservative. The
best overall solution is thus to use the parametric t-test in the
presence of extreme values.
� Except for extreme values in the covariable, permutation of the

values of y can be used safely in all situations. It always has
correct type I error and the same power as the parametric tests
when the error is normal or moderately asymmetric, and it
outperforms the parametric tests when the error is highly
asymmetric.
� There is no situation where permutation of the residuals

outperformed both the parametric t-test and the test by
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Table 4
Regression through the origin for Example 2, with parametric and permutation tests (9999 permutations of the values of y ¼ parasite richness).

Explanatory variables Regression coefficients (b) t P (permutational)a P (parametric)a

Spatial density �0.00057 �0.61734 0.2585 0.26969

Host mass �0.01835 �1.55731 0.0587 0.06237

R2
¼ 0.04529, P (parametric) ¼ 0.25482, P (permutational) ¼ 0.2402.

a One-tailed tests in the direction of the sign of b.
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permutation of values of y. Since this permutational method
requires more computing time than permutation of the values
of y, it is not necessary to include it in computer programs.

To summarize, the parametric tests or any of the permutation
tests can be used to test the significance of the coefficient of
determination (R2) or individual regression coefficients when the
error is normal. Only the test by permutation of the values of y can
be used when the error is highly asymmetric. The parametric tests
should be used in the presence of extreme values in the
covariables. Asymmetric independent contrast data can be
detected by examining the frequency histograms of doubled data
sets: normal data have kurtosis near 0 whereas asymmetric data
are leptokurtic (kurtosis 40).

Examples were presented where contrasts were highly non-
normal; this was found by examining the kurtoses of the
distributions of double contrast data tables. It is likely that many
actual data sets analyzed by the method of independent contrasts
violate one or several of the distributional assumptions of the
parametric tests used in regression through the origin.

A FORTRAN program (REGRESSION_TEST: source code, compiled
versions for Macintosh and DOS, and program documentation)
and the R-language library ‘lmorigin’ are available from the web
page /http://www.bio.umontreal.ca/legendre/indexEn.htmlS to
carry out multiple linear regression through the origin with
parametric and permutation tests.

Acknowledgments

We are grateful to two anonymous reviewers for useful
comments on the manuscript. This research was supported by
NSERC Grant no. OGP0007738 to P. Legendre.

Appendix A

The computational particularities of regression through the
origin are (Kvålseth, 1985; Neter et al., 1996):

(1) For matrix calculation, matrix X only contains the m

explanatory variables. No column of 1’s is added to X to
estimate the intercept. The number of parameters estimated
during the regression is thus m. Vector b containing the m

partial regression coefficients is estimated in the usual way:
b ¼ [X0X]–1X0y where y is the dependent variable.

(2) The tj-statistic associated with each partial regression coeffi-
cient estimate, bj, is calculated as usual: tj ¼ bj/(standard error
of bj). The tj-statistic is tested for significance with (n�m)
degrees of freedom instead of (n�m–1). Table 2 shows the
calculations for Example 1, which has m ¼ 1 explanatory
variable.

(3) The coefficient of determination is calculated as follows:
R2
¼
P

(fitted values)2/
P

(y2). This formula produces the exact
same value for R2 as ordinary OLS regression on the doubled
data set. An alternative formula for R2 , not used in this paper,
is R2

¼ 1�
P

e2
i =
P
ðyi � ȳÞ2; that formula may produce

negative values for R2 in regression through the origin.
(4) The F-statistic associated with R2 is calculated as F ¼ (R2/m)/

[(1�R2)/(n–m)] and is tested with n1 ¼ m and n2 ¼ (n–m)
degrees of freedom. For m ¼ 1, the value of the F-statistic of
regression through the origin is exactly twice the value of the
F-statistic of ordinary OLS regression on the doubled data set.

(5) The adjusted coefficient of determination is computed using
the formula: R2

adj ¼ 1� ð1� R2
Þðn=ðn�mÞÞ.
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