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Introduction

At first glance, Boyle’s (1991) paper looked sim-
ple and straightforward, and should not have gen-
erated the debate that it has between Dr. Boyle
and us. The author addresses the following prob-
lem: is it better to use the original measurements,
or log-transformed data, when one wants to es-
timate the mean of water acidity and organic con-
tent? It seemed to us, at first, that answers to this
question could be found in any basic textbook of
statistics and so, perhaps, a paper on the subject
was not even warranted. It turns out, however,
that while part of the answer is found indeed in
most textbooks of statistics, another part is found
almost nowhere — and in particular NOT in
Dr. Boyle’s paper — because of the very nature of
the data subjected to analysis. So, we felt that it
was appropriate to expound on the underlying
statistical assumptions and procedures of the
computations presented by Dr. Boyle, and on
their effects on the very answer that he offers to
this palaeolimnologically important question.
Our comments are not specifically directed
at Dr. Boyle’s work; this has been but a good
opportunity to make these results known to the
community of ecologists who often have to esti-
mate parameters for variables measured over sur-
faces, or forming time series. We will discuss in
particular: (1) the choice of the best normalizing
transformation, and the generality (or lack) of the
answer presented by Dr. Boyle; and (2) the cor-

rect estimation of the confidence interval of a
mean when the data are autocorrelated.

Choice of the best normalizing transformation

A chi-square test, such as used by Boyle, is not
the best method to test for normality, since it does
not take into account the ordered nature of
the data. With small sample sizes, the validity of
the chi-square test is questionable; it is in any
case less powerful than a Kolmogorov-Smirnov
or a Shapiro-Wilk test for any sample size when
the distribution under study is continuous and
completely specified (David & Johnson, 1948;
Massey, 1951; Stephens, 1974). The original
Kolmogorov-Smirnov (K-S) test of normality,
however, should not be used when the mean and
variance are estimated from the very data that
are subjected to testing. The original K-S table
assumes that the mean and variance are known
a priori. Using it when the mean and variance are
estimated from the data leads to conservative re-
sults in the sense that too many distributions are
found to be normal, because the effective proba-
bility of a type I error (declaring the distribution
not normal when it actually is) is overestimated
in the table. The danger with such a conservative
test is its lack of power, that is characterized by
failing to reject the null hypothesis when it should
be rejected; remember that in this case, H,, states
that the population distribution is normal. Lillie-
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fors (1967) has proposed a table of corrected val-
ues, that takes into account the estimation of un-
known parameters from the sample. Boyle,
however, does not tell us whether he used that
corrected table, or not. Among the commonly
used statistical packages, SPSS, for instance,
does not make that correction, while SAS does.
Finally, the W statistic proposed by Shapiro &
Wilk (1965) for testing normality has good power
properties against a wide range of alternative
distributions, when the data are independent
from one another and represent a random sam-
ple (Royston, 1982). For sample sizes up to 2000,
SAS Version 6 computes the W statistic. For
larger sample sizes, the K-S statistic is linearly
interpolated within the range of simulated critical
values given by Stephens (1974); see the SAS
Institute Inc. (1985) manual. Both of these tests
of normality, the K-S as well as the W statistics,
suffer from a lack of robustness against autocor-
relation in the sample data (Dutilleul & Legendre,
submitted). With autocorrelated data, we recom-
mend to carry out the tests of normality after
prewhitening, i.e., after adjusting for autocorre-
lation, instead of using the raw data; procedures
for detecting and modeling temporal autocorre-
lation are given in Box & Jenkins (1976).

In our view, a major problem in Boyle’s meth-
odological section is that the author is not look-
ing for the best normalizing transformation of the
data; he simply compares the original metric to
the log transformation. What if some other trans-
formation turned out to be more adequate? Ac-
tually, there are reasons to believe — and we pro-
vide examples below — that with some data sets
for the same type of variables (acidity, organic
carbon content), some other transformations may
well be more appropriate: for instance, data from
a survey covering a wide diversity of lakes, or time
series obtained at another time scale. There are
standard methods for finding the best normaliz-
ing transformation for a data set, and these are
described in basic statistics texts.

If people rely so heavily on the log transforma-
tion, it is because it is widely available in com-
puter packages, not because it is necessarily the
best — except for biological variables (species

abundances), where there are reasons in the eco-
logical theory to believe that the process of popu-
lation growth is exponential in some cases. For
physical and chemical variables, the best normal-
izing transformation depends on the variable
under study and on the sampling scale. For in-
stance, in a study involving one of us (Legendre
& Troussellier, 1988), variables POC (particulate
organic carbon) and DOC (dissolved organic car-
bon) were not normal after log transformation,
but requested transformations by the exponents
—0.0918 and -3.78401 respectively, using the
Box-Cox method (below). The best normalizing
transformation may also depend on the spatial
scale (a single lake, or several lakes in the same
region, or else lakes covering several geological
regions) or the temporal scale (a few years, or
geological times) of the study.

Here are a few more examples. The James Bay
area in northwestern Québec (about 54°N) is
climatically and geologically somewhat similar to
the region of Norway where Boyle’s data come
from. Schetagne & Roy (1985) report on pH data
collected in reservoirs and rivers. Some of these
data are reanalyzed here for normality and for the
best normalizing transformation. No attempt was
made to select data that fitted our argument. First,
the data were back-transformed to the H™* scale,
noted 10P". From the back-transformed data, the
best normalizing transformation was found using
the Box-Cox method (Box & Cox, 1964; see also
Sokal & Rohlf, 1981); the method allows to em-
pirically determine the most appropriate expo-
nent A for the transformation y’ = (y* - 1)/4 when
A#0, while the log transformation is used when
A=0; the method works quite well for unimodal
data distributions. At each step, the data were
tested for normality using the Kolmogorov-
Smirnov test, including the Lilliefors correction
described above. The results are reported in Ta-
ble 1.

Notice for instance that while the Eastmain-
Opinaca confluent pH data nicely fit a normal
distribution (p>0.20), such is not the case with
the Delorme or the Eastmain station data for
instance (p<0.05). Comparing the pH scale to
the H* concentration scale (noted 10°™), pH is
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Table 1. Tests of normality for five pH data sets, collected between June 1980 and November 1981 (L stations) and belween
February 1981 and October 1982 (R stations); data from Schetagne & Roy (1985). The best result (closer to normality) is iden-

tified by a star (*).

Reservoir (L) Number of  Range of pH LorH Box-Cox A Box-Cox-transf.
or river (R) slation samples pH values K-S prob. K-S prob. for 10PH K-8 prob.
Caniapiscau (L)' 18 5.7-6.4 0.10>p%>0.05  0.01>p -0.091 0.10> p°>0.05*
Delorme (L)* 20 5.6-6.5 0.05>p>0.01 0.15>p>0.10 0.402 p>0.20%
Vermeulle (L) 19 5.4-6.5 0.10>p>0.05 p>0.20% 0.440 0.10>p>0.05
Eastmain-Opinaca (R)* 27 5.9-7.2 p>0.20 0.01>p 0.170 p>>0.20%
Eastmain (R)? 26 3.7-7.0 0.01>p 0.01>>p -0.239 0.05>p>0.01*

! Multi-modal pH distribution, relatively flat.
* pH distribution skewed to the left.

3

* Well-balanced pH distribution.

5

6

better — in the sense that the distribution is closer
to normality — in three instances, while the 10P"
scale is better in two instances. Notice also that
in all instances, it is possible to find a better trans-
formation than the pH scale.

Our conclusion is that Boyle’s statement, to the
effect that the pH scale (i.e., log) is the very best
scale for acidity data in all cases, is an overgen-
eralization. Each particular frequency distribution
should be studied on its merits, the result depend-
ing to a large extent on the sampling scale.

Correct estimation of the confidence interval of a
mean for autocorrelated data

One of the problems often encountered with eco-
logical data is that they are almost always auto-
correlated (Legendre, 1991). We give an illustra-
tion in Fig. 1 for pH data collected in Lake
Myvatn (Sweden) and published by Olafsson
(1979); the significant and positive autocorrela-
tions at the first distance classes are characteristic
of a first-order autoregressive process. There is a
large body of statistical literature, dealing with
time series and spatial analysis, where explana-
tions of the autocorrelation phenomenon can be
found; see for instance Box & Jenkins (1976),
Cliff & Ord (1981), or Legendre & Fortin (1989).
In presence of positive autocorrelation — as it is

Two modes present; this is why Box-Cox does not find a better normalization than the 10" scale.

Several modes in the pH distribution; somewhat skewed to the right.
For the Caniapiscau data, the probability after Box-Cox transformation is closer to 109, than in the pH metric.

the case in Fig. 1 and certainly also in Boyle’s
data, see below — the confidence intervals of
parameters, such as the mean, that one can com-
pute using the ordinary formulas is too narrow.
The reason for this is that non-independent data
do not provide one full degree of freedom each,
so that the value n used in the formula is too large.
Correcting n, as well as the estimate of the vari-
ance, is not dealt with yet in introductory text-
books of statistics because it is no simple task
(Dutilleul & Legendre, 1991). A basic reference in
the geostatistical literature is Isaaks & Srivastava
(1989); in time series analysis, see Anderson
(1971). In the meantime, approximate confidence
intervals can probably be computed using ad hoc
methods such as the Jackknife procedure, but
even these alternatives have problems of their
own.

We do not agree when Boyle writes ‘Given that
the effect of the autocorrelation, even where
present, is so small that the results of this work
are not affected, and that classical statistical
methods are simpler and more robust than the
other more complex methods (de Gruijter & ter
Braak, 1990), the use of conventional standard
deviations is justified’. First, the reference to the
de Gruijter & ter Braak’s paper is unjustified be-
cause taken out of its own context. Secondly,
Dr. Boyle announces an underestimation of the
variance that he estimates to be close to 1%, (we
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Fig. I. Moran’s I correlogram computed for pH data collected in Lake Myjvatn (Sweden) and published by Olafsson (1979). Open

squares, nonsignificant autocorrelation; dark squares, significant autocorrelation at level o= 0.05.
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Fig. 2. Estimation of the population variance ¢* of a first-order autoregressive process (AR(1)) with parameter p. Evolution of
the bias of the classical sample variance §7 in relation to the number of observations for parameter values ¢ = 10, and p=0.4
(circles) and p=0.52 (squares), values presented by Boyle as first-order autocorrelation coefficients obtained with his data.



don’t know the basis of this estimation). How-
ever, it is the square root of the variance, (i.e., the
standard deviation), and not the variance itself,
which is used for computing confidence limits,
that are used in turn to estimate the width of the
confidence interval. The amount of underestima-
tion of the width of the confidence interval is
actually not that announced by Boyle. In conclu-
sion, it should be obvious at this point that since
the confidence intervals computed by Boyle are
too narrow, then the estimated number of sam-
ples necessary to obtain a predetermined preci-
sion is affected. This factor is hard to compute
because the bias due to autocorrelation in the
estimation of the standard deviation is not the
square root of the bias for the estimated variance
(see below); this bias is not at all negligible. The
effect of temporal autocorrelation on the classical
sample variance is investigated below to deter-
mine whether the formula in Boyle’s Results sec-
tion can be directly applied to estimate the con-
fidence interval and, conversely, to determine the
minimum number of samples for a given level of
precision.

Variations of pH along time can be modeled as
a first-order autoregressive process, called AR(1),
and characterized by an autocorrelation pattern
as illustrated in Fig. 1. In such a process, for a
given population variance ¢© and an autocorrela-
tion structure with parameter p, the expected value
of the classical sample variance S? of a data se-
ries varies with the number of observations n. It
can be computed as follows under the normal
model N, (m, ¢ L, )ywithm=m(l,..., 1), where
m is the overall mean parameter and X, the cor-
relation matrix among observations along time:

]

Bl B oalygs M
e {1 (- 1) tr(Azf‘)}

==

where tr denotes the trace operator in matrix al-
gebra and A is a (n X n) matrix of ones (Dutilleul
& Legendre, 1991). The validity of the above ex-
pression does not require normality of the popu-
lation distribution.

To give an illustration, if we set the first-
order autocorrelation coefficient p to 0.4 and to
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0.52 (values presented by Boyle), and the popu-
lation variance ¢ to 10, the bias, measured by
[E(S*) - ¢*] and computed for various n values
(10, 25, 50, 75, 100, 150, 200), is as plotted in
Fig. 2. Since Boyle’s n values go from 6 to 221,
they fall quite in the range covered by our results.
For p=0.40, using 25 (50, 100) data points,
the bias value is equal to -0.5185 (—-0.2630,
—0.1324), or 5.2%, (2.6%, 1.3%). For p=0.52
the problem is more serious: using 25 (50, 100)
data points, the bias value is —0.8275 (-0.4237,
-0.2143), or 8.3% (4.2%, 2.1%). In both cases,
the bias tends to vanish for high sample sizes.

Unfortunately, Boyle does not present his data
(sampling dates and observed pH values) in
such a way that we could have used them for
further computations. In order to justify his pro-
cedure, he presents first-order autocorrelation co-
efficients. He claims that most of his data are not
significantly autocorrelated, although the only two
autocorrelation values reported are p=0.52 and
0.40, which do not look negligible to us. The only
alternative would be to work out a correction
formula for his estimated variance, given the
amount of first-order autocorrelation present in
his series. Assuming for instance that pH varia-
tions along time are modeled as an AR(1) pro-
cess, let p and X =X, respectively denote the
estimation of parameter p and of the correlation
matrix E,; variance ¢” may then be correctly es-
timated by

(x - E 1”)’ Efj— : (x - 'i: ]'H)

where x denotes the time series of pH variations,
X the sample mean, 1,, an (n x 1) vector of ones,
and the transpose operator in matrix algebra (CIliff
& Ord, 1981; Dutilleul & Legendre, 1991). If the
temporal pattern of the pH variations depends on
a higher number of parameters, a vector of para-
meters p may be substituted for the scalar pa-
rameter p and the procedure remains unchanged.

Boyle unwarrantedly uses z instead of ¢ as the
reference distribution when computing his confi-
dence intervals. With a small number of cases, the
difference is important; in the example that he
describes (4 observations), the ¢ value for a 95%,
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Fig. 3. Width of the confidence interval at level &= 0.05, as a [unction of the number of observations. The graph shows the width
calculated as recommended by Boyle (open squares) and with the appropriate corrections (dark squares), when pI varies along
time as an AR(1) process with population variance 6° = 1, for two values of parameter p: (a) p= 0.5 and (b) p=0.9,



confidence level (3 degrees of freedom) is 3.182
instead of 1.960, and it would take 60 observa-
tions for ¢ to reach the value 2.000 that Boyle uses
with 4 observations. So, with 4 observations, the
confidence interval computed by Boyle would be
too narrow by a factor of 1.6, assuming that his
estimation of the variance was valid.

Using now the correction formula given above
for estimating the variance in the presence of first-
order autocorrelation, the following correction
factors can be computed: for n = 100, r = 1.984 for
a=35Y%,, compared to z=1.96; this is not a large
difference, but for n =25, r=2.060, which is al-
ready a more important one. Figure 3 illustrates
the differences observed between confidence
interval widths calculated using the classical sam-
ple variance as recommended by Boyle, and con-
fidence interval widths computed using the ap-
propriate corrections for pH varying along time
as an AR(1) process, for two values of parame-
ter p. Figure 3a (¢* = 1, p=0.5) shows that when
only two consecutive observations are used to
compute the mean, the width of the 95% confi-
dence interval is actually 9.2 times larger than
estimated by Boyle (its value is 17.97 instead of
1.96 — notice that the scale of this graph is log-
arithmic). It takes at least 50 observations for
Boyle’s calculations to approximate correctly the
width of the confidence interval. In the same way
in Fig. 3b (67 = 1, p=0.9), with two observations
only, the 95% confidence interval as calculated
by Boyle would be 20.5 times too small.

Conclusion

The problem of correctly estimating the true mean
of a time series of observations is not a simple
one. Data normalization must be done with care,
and no general recipe can be found that applies
to all pH data series — or, for that matter, to any
other variable of limnological interest. It depends
on the type of variable and on the sampling scale
(temporal or spatial), among other factors; each
case has to be subjected anew to the search of the
best normalizing transformation. Then, when es-
timating the confidence interval of the mean
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from a few observations only, the autocorrelation
properties of the series must imperatively be taken
into account. If they are not, the width of the
confidence interval can be grossly underesti-
mated.
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