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Proposed by Maurice G. Kendall and Bernard Babington Smith, Kendall’s coefficient of concordance (W) is 
a measure of the agreement among several (m) quantitative or semiquantitative variables that are assessing 
a set of n objects of interest. In the social sciences, the variables are often people, called judges, assessing 
different subjects or situations. In community ecology, they may be species whose abundances are used 
to assess habitat quality at study sites. In taxonomy, they may be characteristics measured over different 
species, biological populations, or individuals. 

There is a close relationship between Milton Friedman’s two-way analysis of variance without replication 
by ranks and Kendall’s coefficient of concordance. They address hypotheses concerning the same data 

table, and they use the same χ2 statistic for testing. They differ only in the formulation of their respective 
null hypothesis. Consider Table 1, which contains illustrative data. In Friedman’s test, the null hypothesis 
is that there is no real difference among the n objects (sites, rows of Table 1) because they pertain to the 
same statistical population. Under the null hypothesis, they should have received random ranks along the 
various variables, so that their sums of ranks should be approximately equal. Kendall’s test focuses on the 
m variables. If the null hypothesis of Friedman’s test is true, this means that the variables have produced 
rankings of the objects that are independent of one another. This is the null hypothesis of Kendall’s test. 

Table 1 Illustrative Example: Ranked Relative Abundances of Four Soil Mite Species (Variables) at 
10 Sites (Objects) 

Ranks (column-wise) Sum of Ranks 

Species 13 Species 14 Species 15 Species 23 Ri 

Site 4 5 6 3 5 19.0 
Site 9 10 4 8 2 24.0 
Site 14 7 8 5 4 24.0 
Site 22 8 10 9 2 29.0 
Site 31 6 5 7 6 24.0 
Site 34 9 7 10 7 33.0 
Site 45 3 3 2 8 16.0 
Site 53 1.5 2 4 9 16.5 
Site 61 1.5 1 1 2 5.5 
Site 69 4 9 6 10 29.0 

Source: Legendre, P. (2005) Species associations: The Kendall coefficient of concordance revisited. Journal 
of Agricultural, Biological, & Environmental Statistics, 10, 230. Reprinted with permission from the Journal of 
Agricultural, Biological, & Environmental Statistics. Copyright 2005 by the American Statistical Association. 
All rights reserved. 

Notes: The ranks are computed columnwise with ties. Right-hand column: sum of the ranks for each site. 

Computing Kendall’s W 

There are two ways of computing Kendall’s W statistic (first and second forms of Equations 1 and 2); they 

lead to the same result. S or S ′  is computed first from the row-marginal sums of ranks Ri received by the 
objects: 

S =

n

∑
i = 1

(Ri −
¯
R)

2
or S ′ =

n

∑
i = 1

Ri
2 = SSR,
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where S is a sum-of-squares statistic over the row sums of ranks Ri, and 
¯
R is the mean of the Ri values. 

Following that, Kendall’s W statistic can be obtained from either of the following formulas: 

W =
12S

m2(n3 − n) − mT
W =

12S ′ − 3m2n(n + 1)2

m2(n3 − n) − mT
,

where n is the number of objects and m is the number of variables. T is a correction factor for tied ranks: 

T =

g

∑
k = 1

(tk
3 − tk),

in which tk is the number of tied ranks in each (k) of g groups of ties. The sum is computed over all groups of 
ties found in all m variables of the data table. T = 0 when there are no tied values. 

Kendall’s W is an estimate of the variance of the row sums of ranks Ri divided by the maximum possible value 
the variance can take; this occurs when all variables are in total agreement. Hence 0 ≤ W ≤ 1, 1 representing 
perfect concordance. To derive the formulas for W (Equation 2), one has to know that when all variables 
are in perfect agreement, the sum of all sums of ranks in the data table (right-hand column of Table 1) is 
mn(n + 1) / 2 and that the sum of squares of the sums of all ranks is m2n(n+1)(2n+1) / 6 (without ties). 

There is a close relationship between Charles Spearman’s correlation coefficient rS and Kendall’s W statistic: 

W can be directly calculated from the mean (
¯
rS) of the pairwise Spearman correlations rS using the following 

relationship: 

W =
(m − 1)

¯
rS + 1

m
,

where m is the number of variables (judges) among which Spearman correlations are computed. Equation 
4 is strictly true for untied observations only; for tied observations, ties are handled in a bivariate way in 
each Spearman rS coefficient whereas in Kendall’s W the correction for ties is computed in a single equation 
(Equation 3) for all variables. For two variables (judges) only, W is simply a linear transformation of rS: W = 
(rS+1) / 2. In that case, a permutation test of W for two variables is the exact equivalent of a permutation test 
of rS for the same variables. 

The relationship described by Equation 4 clearly limits the domain of application of the coefficient of 
concordance to variables that are all meant to estimate the same general property of the objects: variables 
are considered concordant only if their Spearman correlations are positive. Two variables that give perfectly 
opposite ranks to a set of objects have a Spearman correlation of -1, hence W = 0 for these two variables 
(Equation 4); this is the lower bound of the coefficient of concordance. For two variables only, rS = 0 gives 
W = 0.5. So coefficient W applies well to rankings given by a panel of judges called in to assess overall 
performance in sports or quality of wines or food in restaurants, to rankings obtained from criteria used in 
quality tests of appliances or services by consumer organizations, and so forth. It does not apply, however, 
to variables used in multivariate analysis in which negative as well as positive relationships are informative. 
Jerrold H. Zar, for example, uses wing length, tail length, and bill length of birds to illustrate the use of the 
coefficient of concordance. These data are appropriate for W because they are all indirect measures of a 
common property, the size of the birds. 

In ecological applications, one can use the abundances of various species as indicators of the good or bad 
environmental quality of the study sites. If a group of species is used to produce a global index of the overall 
quality (good or bad) of the environment at the study sites, only the species that are significantly associated 
and positively correlated to one another should be included in the index, because different groups of species 
may be associated to different environmental conditions. 
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Testing the Significance of W 

Friedman’s chi-square statistic is obtained from W by the formula 

χ2 = m(n − 1)W.

This quantity is asymptotically distributed like chi-square with ν = (n − 1) degrees of freedom; it can be used 
to test W for significance. According to Kendall and Babington Smith, this approach is satisfactory only for 
moderately large values of m and n. 

Sidney Siegel and N. John Castellan Jr. recommend the use of a table of critical values for W when n ≤ 7
and m ≤ 20; otherwise, they recommend testing the chi-square statistic (Equation 5) using the chi-square 
distribution. Their table of critical values of W for small n and m is derived from a table of critical values of S 
assembled by Friedman using the z test of Kendall and Babington Smith and reproduced in Kendall’s classic 
monograph, Rank Correlation Methods. Using numerical simulations, Pierre Legendre compared results of 
the classical chi-square test of the chi-square statistic (Equation 5) to the permutation test that Siegel and 
Castellan also recommend for small samples (small n). The simulation results showed that the classical chi-
square test was too conservative for any sample size (n) when the number of variables m was smaller than 
20; the test had rejection rates well below the significance level, so it remained valid. The classical chi-square 
test had a correct level of Type I error (rejecting a null hypothesis that is true) for 20 variables and more. The 
permutation test had a correct rate of Type I error for all values of m and n. The power of the permutation test 
was higher than that of the classical chi-square test because of the differences in rates of Type I error between 
the two tests. The differences in power disappeared asymptotically as the number of variables increased. 

An alternative approach is to compute the following F statistic: 

F = (m − 1)W / (1 − W),

which is asymptotically distributed like F with ν1 = n − 1 − (2 /m) and ν2 = ν1(m − 1) degrees of freedom. 
Kendall and Babington Smith described this approach using a Fisher z transformation of the F statistic, z = 
0.5 loge(F). They recommended it for testing W for moderate values of m and n. Numerical simulations show, 
however, that this F statistic has correct levels of Type I error for any value of n and m. 

In permutation tests of Kendall’s W, the objects are the permutable units under the null hypothesis (the 
objects are sites in Table 1). For the global test of significance, the rank values in all variables are permuted 
at random, independently from variable to variable because the null hypothesis is the independence of 
the rankings produced by all variables. The alternative hypothesis is that at least one of the variables is 
concordant with one, or with some, of the other variables. Actually, for permutation testing, the four statistics 

SSR (Equation 1), W (Equation 2), χ2 (Equation 5), and F (Equation 6) are monotonic to one another since n 
and m, as well as T, are constant within a given permutation test; thus they are equivalent statistics for testing, 
producing the same permutational probabilities. The test is one-tailed because it recognizes only positive 
associations between vectors of ranks. This may be seen if one considers two vectors with exactly opposite 
rankings: They produce a Spearman statistic of 1, hence a value of zero for W (Equation 4). 

Many of the problems subjected to Kendall’s concordance analysis involve fewer than 20 variables. The chi-
square test should be avoided in these cases. The F test (Equation 6), as well as the permutation test, can 
safely be used with all values of m and n. 

Contributions of Individual Variables to Kendall’s Concordance 

The overall permutation test of W suggests a way of testing a posteriori the significance of the contributions of 
individual variables to the overall concordance to determine which of the individual variables are concordant 
with one or several other variables in the group. There is interest in several fields in identifying discordant 
variables or judges. This includes all fields that use panels of judges to assess the overall quality of the 
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objects or subjects under study (sports, law, consumer protection, etc.). In other types of studies, scientists 
are interested in identifying variables that agree in their estimation of a common property of the objects. This is 
the case in environmental studies in which scientists are interested in identifying groups of concordant species 
that are indicators of some property of the environment and can be combined into indices of its quality, in 
particular in situations of pollution or contamination. 

The contribution of individual variables to the W statistic can be assessed by a permutation test proposed 
by Legendre. The null hypothesis is the monotonic independence of the variable subjected to the test, with 
respect to all the other variables in the group under study. The alternative hypothesis is that this variable 
is concordant with other variables in the set under study, having similar rankings of values (one-tailed test). 
The statistic W can be used directly in a posteriori tests. Contrary to the global test, only the variable 
under test is permuted here. If that variable has values that are monotonically independent of the other 
variables, permuting its values at random should have little influence on the W statistic. If, on the contrary, it is 
concordant with one or several other variables, permuting its values at random should break the concordance 
and induce a noticeable decrease on W. 

Two specific partial concordance statistics can also be used in a posteriori tests. The first one is the mean, 
¯
r j

, of the pairwise Spearman correlations between variable j under test and all the other variables. The second 

statistic, Wj, is obtained by applying Equation 4 to 
¯
r j instead of 

¯
r , with m the number of variables in the 

group. These two statistics are shown in Table 2 for the example data; 
¯
r j and Wj are monotonic to each other 

because m is constant in a given permutation test. Within a given a posteriori test, W is also monotonic to Wj

because only the values related to variable j are permuted when testing variable j. These three statistics are 

thus equivalent for a posteriori permutation tests, producing the same permutational probabilities. Like 
¯
r j, Wj 

can take negative values; this is not the case of W. 

Table 2 Results of (a) the Overall and (b) the A Posteriori Tests of Concordance Among the Four 
Species of Table 1; (c) Overall and (d) A Posteriori Tests of Concordance Among Three Species 

(a) Overall test of W statistic, four species. H0: The four species are not concordant with one another. 

Kendall’s W = 0.44160 Permutational p value = .0448* 

F statistic = 2.37252 F distribution p value = .0440* 

Friedman’s chi-square = 15.89771 Chi-square distribution p value = .0690 

(b) A posteriori tests, four species. H0: This species is not concordant with the other three. 

¯
r j Wj p Value Corrected p Decision at α = 5% 

Species 13 0.32657 0.49493 .0766 .1532 Do not reject H0 

Species 14 0.39655 0.54741 .0240 .0720 Do not reject H0 
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Species 15 0.45704 0.59278 .0051 .0204* Reject H0 

Species 23 −0.16813 0.12391 .7070 .7070 Do not reject H0 

(c) Overall test of W statistic, three species. H0: The three species are not concordant with one another. 

Kendall’s W = 0.78273 Permutational p value =:0005* asdetsfaf adfa fa 

F statistic = 7.20497 F distribution p value =:0003* 

Friedman’s chi-square = 21.13360 Chi-square distribution p value =.0121* 

(d) A posteriori tests, three species. H0: This species is not concordant with the other two. 

¯
r j Wj p Value Corrected p Decision at α = 5% 

Species 13 0.69909 0.79939 .0040 .0120* Reject H0 

Species 14 0.59176 0.72784 .0290 .0290* Reject H0 

Species 15 0.73158 0.82105 .0050 .0120* Reject H0 

Source: (a) and (b): Adapted from Legendre, P. (2005). Species associations: The Kendall coefficient of 
concordance revisited. Journal of Agricultural, Biological, and Environmental Statistics, 10, 233. Reprinted 
with permission from the Journal of Agricultural, Biological and Environmental Statistics. Copyright 2005 by 
the American Statistical Association. All rights reserved. 

Notes: 
¯
r j = mean of the Spearman correlations with the other species; Wj = partial concordance per species; 

p value = permutational probability (9,999 random permutations); corrected p = Holm-corrected p value. * = 
Reject H0 at =:05: 

There are advantages to performing a single a posteriori test for variable j instead of (m − 1) tests of the 
Spearman correlation coefficients between variable j and all the other variables: The tests of the (m − 1) 
correlation coefficients would have to be corrected for multiple testing, and they could provide discordant 
information; a single test of the contribution of variable j to the W statistic has greater power and provides 
a single, clearer answer. In order to preserve a correct or approximately correct experimentwise error rate, 
the probabilities of the a posteriori tests computed for all species in a group should be adjusted for multiple 
testing. 

A posteriori tests are useful for identifying the variables that are not concordant with the others, as in the 
examples, but they do not tell us whether there are one or several groups of congruent variables among those 
for which the null hypothesis of independence is rejected. This information can be obtained by computing 
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Spearman correlations among the variables and clustering them into groups of variables that are significantly 
and positively correlated. 

The example data are analyzed in Table 2. The overall permutational test of the W statistic is significant at α = 
5%, but marginally (Table 2a). The cause appears when examining the a posteriori tests in Table 2b: Species 

23 has a negative mean correlation with the three other species in the group (
¯
r j = .168). This indicates that 

Species 23 does not belong in that group. Were we analyzing a large group of variables, we could look at 
the next partition in an agglomerative clustering dendrogram, or the next K-means partition, and proceed to 
the overall and a posteriori tests for the members of these new groups. In the present illustrative example, 
Species 23 clearly differs from the other three species. We can now test Species 13, 14, and 15 as a group. 
Table 2c shows that this group has a highly significant concordance, and all individual species contribute 
significantly to the overall concordance of their group (Table 2d). 

In Table 2a and 2c, the F test results are concordant with the permutation test results, but due to small m and 
n, the chi-square test lacks power. 

Discussion 

The Kendall coefficient of concordance can be used to assess the degree to which a group of variables 
provides a common ranking for a set of objects. It should be used only to obtain a statement about variables 
that are all meant to measure the same general property of the objects. It should not be used to analyze sets 
of variables in which the negative and positive correlations have equal importance for interpretation. When 
the null hypothesis is rejected, one cannot conclude that all variables are concordant with one another, as 
shown in Table 2 (a) and (b); only that at least one variable is concordant with one or some of the others. 

The partial concordance coefficients and a posteriori tests of significance are essential complements of the 
overall test of concordance. In several fields, there is interest in identifying discordant variables; this is the 
case in all fields that use panels of judges to assess the overall quality of the objects under study (e.g., sports, 
law, consumer protection). In other applications, one is interested in using the sum of ranks, or the sum of 
values, provided by several variables or judges, to create an overall indicator of the response of the objects 
under study. It is advisable to look for one or several groups of variables that rank the objects broadly in the 
same way, using clustering, and then carry out a posteriori tests on the putative members of each group. Only 
then can their values or ranks be pooled into an overall index. 

See also Friedman Test; Holm’s Sequential Bonferroni Procedure; Spearman Rank Order Correlation 

Pierre Legendre 
http://dx.doi.org/10.4135/9781071812082.n89 
10.4135/9781071812082.n89 
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