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Abstract

The Mantel test is widely used to test the linear or monotonic independence of the elements

in two distance matrices. It is one of the few appropriate tests when the hypothesis under

study can only be formulated in terms of distances; this is often the case with genetic data. In

particular, the Mantel test has been widely used to test for spatial relationship between

genetic data and spatial layout of the sampling locations. We describe the domain of applica-

tion of the Mantel test and derived forms. Formula development demonstrates that the sum-

of-squares (SS) partitioned in Mantel tests and regression on distance matrices differs from

the SS partitioned in linear correlation, regression and canonical analysis. Numerical simula-

tions show that in tests of significance of the relationship between simple variables and mul-

tivariate data tables, the power of linear correlation, regression and canonical analysis is far

greater than that of the Mantel test and derived forms, meaning that the former methods are

much more likely than the latter to detect a relationship when one is present in the data.

Examples of difference in power are given for the detection of spatial gradients. Furthermore,

the Mantel test does not correctly estimate the proportion of the original data variation

explained by spatial structures. The Mantel test should not be used as a general method for

the investigation of linear relationships or spatial structures in univariate or multivariate data.

Its use should be restricted to tests of hypotheses that can only be formulated in terms of

distances.
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Introduction

Brought to the attention of evolutionists, systematists and

geneticists by Sokal (1979), the Mantel test (Mantel 1967;

Mantel & Valand 1970) allows linear or monotonic com-

parisons between the elements of two distance matrices.

The Mantel statistic is usually tested by permutation

although it can also be tested using an asymptotic normal

approximation when the number of observations, n, is

large. The space-time clustering procedure of Mantel

(1967) was originally designed to relate a matrix of

spatial distances and a matrix of temporal distances in a

generalized regression approach. Since Mantel & Valand

(1970), the procedure, known as the Mantel test in the

biological and environmental sciences, includes any anal-

ysis relating two distance matrices or, more generally,

two resemblance or proximity matrices.

Sokal (1979) pioneered the use of Mantel test by com-

paring phenetic distances among local populations to

geographic distances expressed in various ways. An

equivalent test is the quadratic assignment procedure

(QAP) developed by psychometricians (Hubert & Schultz

1976). Clarke (1988, 1993) developed a form of Mantel test

called the ANalysis Of SIMilarities (ANOSIM) computed

on ranked distances, which is widely used in marine
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biology. Smouse et al. (1986) proposed to compute partial

correlations on distance matrices as the basis for partial

Mantel tests. They used that method to test alternative

hypotheses about the factors (geographic and linguistic

distances) responsible for genetic variation among the

Yanomama Indians of lowland South America. Because

of the ease of representation of spatial relationships by a

distance matrix, Legendre & Troussellier (1988) used the

partial Mantel test (described in Appendix S4) to control

for the effect of spatial distances in ecological studies.

Since then, Mantel tests have been used in various fields

of biology: morphology (van Schaik et al. 2003), behav-

iour (Cheverud 1989), ecology (Leduc et al. 1992; Fortin &

Gurevitch 2001; MacDougall-Shackleton & MacDougall-

Shackleton 2001; Wright & Wilkinson 2001) and phyloge-

netics (van Buskirk 1997). In a micro-evolutionary study,

Le Boulengé et al. (1996) used partial Mantel tests to test

alternative hypotheses about the cause of morphological

variation among local muskrat populations in a river

catchment: straight-line distances, swimming distances

along the river network and ‘decisions’ distances along

the network. In population genetics, Mantel tests have

been used to determine whether local populations that

are geographically close are either genetically or phyloge-

netically similar (e.g., Lloyd 2003). This question can be

reformulated as follows: is the spatial genetic variation

spatially organized? If so, what are the significant spatial

patterns and at what scale(s) are they found?

In landscape genetics recently, several studies used

Mantel tests to include landscape features in the analysis

of genetic variation in a spatially explicit way (Vignieri

2005; Cushman et al. 2006; Wang et al. 2008). The tested

hypotheses may include physical or biotic environ-

mental conditions, or else species-dependent processes

such as seed dispersal limitation. The latter processes

are more likely to affect neutral genes than non-neutral

loci that are differentially selected by environmental

conditions.

The objective of this study is to evaluate the perfor-

mance of the Mantel test in spatial population genetic

and landscape genetic analysis in comparison with alter-

native statistical approaches (correlation, canonical anal-

ysis) not based on distances. In spatial population

genetics, landscape genetics and spatial community ecol-

ogy, statistical analyses are often undertaken to ‘explain’

(in the statistical sense) the spatial variation of a response

variable (y, univariate) or data table (Y, multivariate).

Several processes can generate spatial genetic structures

(Fig. 1), and several regression and distance-based meth-

ods can be used to relate these structures to landscape

and environmental conditions. In this study, we will

show that the Mantel test is not equivalent to either a cor-

relation or regression analysis in the univariate case, or a

canonical analysis in the multivariate case. We will also

show that there is a great difference in power between

these alternative tests, and that for spatial analysis, more

powerful alternatives are available, unless the hypothesis

to be tested strictly concerns distances. Moreover, Mantel

tests underestimate the coefficient of determination esti-

mating the variation explained by the spatial structure.

Mantel test and derived forms

The statistic used by Mantel (1967) was the cross-product

of the distances in the two matrices under analysis. Now-

adays, most if not all computer programs offer a Mantel

correlation statistic rM, which is the cross-product

between the standardized distances divided by (d ) 1),

where d is the number of distances in the upper-triangu-

lar portion of each matrix when the statistic is computed

from symmetric matrices. This transformation has no

effect on the probability obtained by permutation tests,

and rM is conveniently bounded between )1 and +1.

Equations for the Mantel statistic will be given further

down after the presentation of the sum-of-squares (SS)

statistics. In the rare cases where rM is computed over

asymmetric matrices, d is the total number of distances in

each matrix, except the diagonal elements, which trivially

take the value 0.

In its most simple form in spatial analysis of genetic

data, the Mantel test is used to compare a matrix of geo-

graphic distances to a matrix representing relevant dis-

similarities among the same objects computed from

another data table (phylogenetic, genetic, environmen-

tal, etc.). Derived forms include the partial Mantel test

carried out using partial correlation statistics computed

on distances (Smouse et al. 1986), the Mantel correlo-

gram (Oden & Sokal 1986; Sokal 1986), multiple regres-

sion on distance matrices (Hubert & Golledge 1981; tests

of significance described in Legendre et al. 1994), as well

as the test of congruence among several distance matri-

ces (CADM, Legendre & Lapointe 2004). A few years

ago, a controversy arose in the literature about the

validity of the permutation procedure used in partial

Mantel tests. The issue is summarized in Box 1. A

description of the various permutation methods pro-

posed for partial Mantel tests is given in Appendix S4,

together with recommendations about the use of three

of these procedures.

When the spatial structure of gene frequencies or

genetic diversity (Fig. 1a) at the sampling locations is of

interest per se, more powerful methods of analysis have

been developed for modelling gradients or other forms of

broad-scale spatial structures created in univariate or

multivariate data as a response to forcing environmental

variables (induced spatial dependence), as well as finer-

scaled patterns corresponding to autocorrelation gener-

ated in response variables by dynamic processes (Diniz
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et al. 2009; Guillot et al. 2009). These methods involve

transforming the geographic coordinates of the sites into

derived geographic functions (Fig. 1b): polynomial of the

geographic coordinates (leading to polynomial canonical

trend-surface analysis, Legendre 1990), Moran’s eigen-

vector maps (mentioned in Table 1, specifically called

PCNM or MEM spatial eigenfunctions analysis: Borcard

& Legendre 2002; Borcard et al. 2004; Dray et al. 2006) or

asymmetric eigenvector maps (AEM: Blanchet et al.

2008). These analyses are carried out by using the derived

geographic functions as explanatory variables in multiple

regression, canonical analysis or variation partitioning

among environmental and spatial components (Borcard

et al. 1992; Borcard & Legendre 1994). Moran’s eigenvec-

tor maps can also be used in multiscale ordination (Wag-

ner 2004). In landscape genetic studies, landscape

features between sampling locations are often of interest;

they can be incorporated in the analysis as resistance or

Box 1 Controversy about the validity of the partial Mantel test

Two articles appeared in the journal Evolution in 2001–2002 about the use of partial Mantel tests in micro-evolutionary studies: Raufaste

& Rousset (2001) and Castellano & Balletto (2002). These articles ignored previously published work in which the properties of different

forms of partial Mantel tests, with or without spatial autocorrelation, had been spelled out. The first article raised a valid point about a

situation requiring a particular permutation procedure, but it left readers with the impression that the partial Mantel test is, in general,

an inadequate testing procedure, which is not the case. The second article tried to rehabilitate the partial Mantel test, but advocated an

inappropriate testing procedure. Comments presented in Appendix S3 attempt to clarify some of the underlying concepts. Appendix S4

gives recommendations about appropriate testing procedures for partial Mantel tests. This issue is addressed here because there is still

some confusion among users about the validity of the permutation test used in partial Mantel tests.

Genetic measures

Spatial data Multiscale analysisSpatial distance data

Spatial regression

Multivariate ordination

Distance-based
methods

Genetic distances +

Variable typeGenetic data

Gene frequencies

Genetic diversity

Molecular markers

AFLP Data

Fst/Nei

He, allelic richness,
proportion of polymorphic bands

Gst/φst

Band differences

Coefficient

Coefficient,
quantitative

Coefficient

Quantitative

x-y coordinates

x-y coordinates
+ resistance map

Euclidean distances

Resistance/cost
distances

Trend-surface analysis

Moran’s eigenvector maps

Multiscale ordination

Processes MethodsData analysed

Genetic values +
x-y coordinates or
derived geographic
functions (see
multiscale analysis)

Euclidean distances
or

Resistance distances

Genetic drift, gene flow

Adaptive gradient

IBD, dispersal

IBD, dispersal, gene flow

IB Barrier, IB Resistance,
gene flow

Mantel test

Partial Mantel test

Distance-based RDA

(a)

(b)

(c)

Fig. 1 Spatial genetic analyses. Selection of the appropriate statistical methods depending on data types and derived measures of (a)

genetic and (b) spatial distances. (c) Methods of analysis according to the process under study. (a) Genetic data can be either adaptive or

neutral genes depending on the markers used from which are derived either distance data (based on various coefficients: Fst, Nei) or

quantities (number of alleles, band differences). (b) Spatial data can be only x-y coordinates leading to either (as indicated be dashed

arrows) Euclidean distances or multiscale analysis (see text for brief description of these methods). Then (c), the selection of methods

depends on whether the genetic data being used are (i) quantitative values variables (quantities such as number of alleles, proportion of

polymorphic bands or band length differences), in which case-specific processes can be studied using spatial regression (SAR, CAR,

autologistic, GWR, etc.), multiscale analysis (methods listed in section b: polynomial, Moran’s eigenvector maps, multiscale ordination)

and ⁄ or multivariate ordination methods (PCA, RDA, CCA); or (ii) they are in the form of genetic distances, in which case distance-based

methods should be used to test spatial population and landscape genetics questions. Boxes, which contain lists of methods that can be

used or processes to be tested, indicate that any of the methods or of the processes within them could be used or tested. IB ... : isolation

by ...; IBD: isolation by distance.
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cost values and assembled in resistance ⁄ cost distances

that are used instead of Euclidean geographic distances

(Fig. 1b).

Specialized statistical packages used by evolutionary

biologists offer Mantel test modules, distance-based RDA

and multiscale analysis to help answer these questions

(e.g., Genepop: Raymond & Rousset 1995; Arlequin:

Excoffier et al. 2005; GENALEX: Peakall & Smouse 2006;

NTSYSpc: Rohlf 2009; in the R language: ade4: Dray et al.

2007; vegan: Oksanen et al. 2010; ape: Paradis et al. 2009;

ncf: Bjørnstad 2009).

Statistical aspects

Equivalence of rectangular data and distance matrices
for sum-of-squares statistic

Whether the data form a vector y or a rectangular data

table Y about objects (individuals or local populations),

the total variance of the data can be computed. For a sin-

gle variable y measured about n objects, the SS can be

computed as SS(y) =
P

i¼1:n ðyi � �yÞ2 or, after computing

a Euclidean distance matrix D = [D(yi, yh)] = [Dih] among

the values of y, SS(y) =
P

i6¼h Dðyi; yhÞ2
� �

=n, which can be

written in the more compact form
P

i6¼h D2
ih

� �
=n. Only

the Dih values in the upper-triangular portion of D are

used in this formula. The equivalence of the two formu-

las can easily be checked using any set of numerical

values.

In the multivariate case, where matrix Y contains p

variables, the formula for the SS computed from the raw

data is:

SSðYÞ ¼
X

j¼1:p

X
i¼1:n
ðyij � �yjÞ2 ð1Þ

The formula computed from Euclidean distances is as

above:

SSðYÞ ¼
X

i6¼h
D2

ih

� �
=n ð2Þ

Note that the division is by the number of objects n,

not by the number of distances involved in the calcula-

tion. The values from eqns 1 and 2 for SS(Y) are equal

(Appendix S1; Legendre & Legendre 1998, Eqs. 8.5 and

8.6). The ordinary unbiased estimate of the total variance

in the data is obtained by dividing SS(y) or SS(Y) by

(n ) 1). The equality of eqns 1 and 2 only holds for

Euclidean distances. If the distance matrix has been com-

puted using another formula than the Euclidean distance

function, the SS obtained from eqn 2 is no longer equal to

the SS of the original data (eqn 1). Equation 2 can be used

in least-squares algorithms that compute statistics in the

distance world, e.g. for K-means partitioning of objects

based upon a question-specific distance matrix.

Null hypotheses

A test of statistical significance involves three main com-

ponents: a null hypothesis, a test statistic and a reference

distribution under the null hypothesis to assess the sig-

nificance of the statistic with respect to that hypothesis.

The null hypothesis (H0) in a test of the correlation coeffi-

cient states that the correlation (linear or monotonic)

between the variables in the reference population is zero

(q = 0); the formulation of H0 in terms of a linear or

Table 1 Representation of environmental and spatial data to test different types of hypotheses. ‘Factor’ is a generic term for multistate

qualitative (or categorical) variables. Distance matrices D (right column) can easily be computed from rectangular data tables (left

column). One can also go from a D matrix to a rectangular data table by principal coordinate analysis (metric, or classical,

multidimensional scaling).

Linear models Mantel test and derived forms

Landscape genetics hypothesis: response data

are related to environmental variables or experimental factors

Environmental variables D matrix computed from the

(quantitative, binary, or factor) environmental variables

Experimental (ANOVA) factor Design matrix D describing the factor

Spatial population genetic: response data are related to ‘space’

Geographic regions (factor) Design matrix D representing regions

Geographic coordinates (quantitative) D matrix of Euclidean geographic distances

or log of geographic distances

Polynomial of geographic coordinates D matrix from polynomial of geographic coordinates

Moran’s eigenvector maps (spatial eigenfunctions)

computed from connection diagrams (e.g., Delaunay

triangulation) or geographic coordinates

Design matrix D containing connecting links

between neighbouring sites. The links may be

binary (absence of link = 0, presence = 1) or

weighted by any appropriate form of distance

on a map (Euclidean, or least-cost, or along practicable paths)
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monotonic relationship determines the choice of a linear

or rank correlation coefficient as the test statistic. In sim-

ple or multiple linear regression, the null hypothesis

states that the explanatory variables used in the analysis

explain no more of the response variable’s variation than

would random variables with the same distributions. The

test statistic is the F statistic derived from the coefficient

of determination (R2 statistic) of the regression. For multi-

variate response data, the same type of null hypothesis

can be tested using canonical redundancy analysis

(RDA); the same R2 and F statistics as in linear regression

are used for testing.

Users of the Mantel test often overlook the fact that

the test assumes a linear relationship between the dis-

tances in the two D matrices under study. The null

hypothesis of the Mantel test states that the distance

matrices are unrelated in some specified way (linear rela-

tionship). This assumption can be relaxed to that of a

monotonic relationship by using the Spearman instead of

the Pearson correlation to compute rM, as suggested by

Mantel (1967) and Dietz (1983). Distances can also be

transformed using logs or other simple functions, but

more complex forms of nonlinearity cannot easily be han-

dled by the Mantel test. Splines and other nonlinear

smoothing methods can, however, be used on distance–

distance or distance-similarity dispersion diagrams to fit

a curve to the plot, helping the eye see the shape of the

relationship (e.g., Figs 2 and 3 in ‘Spatial gradients’ sec-

tion on spatial gradients). A relationship which is linear

for the raw data may become nonlinear when using dis-

tance matrices, as will be shown in the ‘Spatial gradients’

section. The Mantel statistic can be tested by an appropri-

ate form of permutation (the ‘matrix permutation’ briefly

described in the ‘Bivariate case’ section) or, if n is large,

transformed into a statistic called t by Mantel (1967) and

tested with reference to the standard normal distribution.

Correspondence between data, question and method of
analysis

Before using a statistical model or a testing method to

interpret observational or experimental data, the follow-

ing questions must be carefully examined and answered:

1 Is the chosen statistic appropriate to the data and to the

hypothesis to be tested (Fig. 1, Table 1)? We will show

in ‘Different sum-of-squares statistics’ that the statis-

tics computed in correlation and Mantel analysis are

fundamentally different. Correlation statistics (linear

or monotonic) are appropriate to test a hypothesis of

correlation between variables. Mantel statistics (linear

or monotonic) are appropriate to test hypotheses that

only concern and can only be formulated in terms of

distances.

2 Does the method have a correct type I error rate? Simu-

lation studies can be used to assess the rate of type I

error of statistical methods in situations where there is

no effect (q = 0 in correlation analysis) corresponding

to the tested hypothesis.

3 Given the data, is the method the most powerful

among those available? Here again, simulation studies

can be used to compare the power of statistical meth-

ods in situations where there is an effect corresponding

to the tested hypothesis (q „ 0 in correlation analysis).

To test different types of hypotheses in spatial popula-

tion genetics (spatial data) and landscape genetics (spa-

tial and environmental data) about the underlying

processes affecting genetic spatial structures (Fig. 1),

Table 1 shows how environmental and spatial data can

be represented in linear models and in distance-based

Mantel tests.

Different sum-of-squares statistics

When rectangular tables of raw data are transformed into

distance matrices, a Mantel test between the two distance

matrices is not equivalent to a test of the simple correla-

tion between two vectors (for two rectangular tables of

size n · 1) or the canonical correlation between two mul-

tivariate data tables: the null hypotheses (‘Null hypothe-

ses’ section) and the test statistics differ. Let us now focus

on the test statistics.

Consider two variables y and x. The formula for the

Pearson correlation coefficient between the variables yc

and xc centred on their respective means is:

ry;x ¼
P

i¼1:n ðyic � xicÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i¼1:n ðy2

icÞ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i¼1:n ðx2
icÞ

q ¼ yc
0xcffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SSðycÞ
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

SSðxcÞ
p ð3Þ

In the framework of the linear regression of y on x, the

coefficient of determination R2
yjx

is the SS of the fitted val-

ues (SS of vector ŷ) divided by the total sum-of-squares

of y (SS(y) at the beginning of section ‘Equivalence of

rectangular data and distance matrices for sum-of-

squares statistic’):

R2
yjx ¼

SSðŷÞ
SSðyÞ ð4Þ

so that the bivariate correlation coefficient is:

ry;x¼ ðsignÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
SSðŷÞ
SSðyÞ

s
ð5Þ

where (sign) is the sign of the covariance between y and

x. Equations 3 and 5 produce the same result for r. In the

multivariate case, canonical redundancy analysis (RDA)

of a matrix Y by X produces an R2 statistic constructed in

the same way:
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R2
YjX ¼

SSðŶÞ
SSðYÞ ð6Þ

The important point here is that in the univariate and

multivariate cases, the sum-of-squares in the denomina-

tor of R2 are SS(y) and SS(Y), respectively. This is the SS

that is partitioned by the regression or RDA into a SS of

fitted values SSðŷÞ or SSðŶÞ and a residual sum-of-

squares SS(yres) or SS(Yres).

Consider now two distance matrices, DY and DX, com-

puted from vectors y and x or data tables Y and X. For

the present demonstration, assume that the Euclidean

distance function has been used to compute the dis-

tances, as in eqn 2. String out the upper-diagonal portions

of the two distance matrices as long vectors dY and dX,

each of length n(n ) 1) ⁄ 2. The Mantel correlation, rM, is

the correlation coefficient computed from these two vec-

tors, as shown in Legendre & Legendre (1998, Fig. 10.19)

and other textbooks. It is also the square root of the coeffi-

cient of determination R2
M of the linear regression of dY

on dX:

R2
M ¼ R2

dYjdX ¼
SSðd̂YÞ
SSðdYÞ

ð7Þ

so that

rM ¼ ðsignÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSðd̂YÞ
SSðdYÞ

s
ð8Þ

where (sign) is the sign of the covariance between dY and

dX. Again, we have the SS of the vector of distances dY in

the denominator of the R2 equation. What is that value?

We can compute it as:

SS(dYÞ ¼
X

i6¼h
ðDihY � �DYÞ2 ¼

X
i6¼h
ðDihYÞ2 �

P
i6¼h DihY

� �2

nðn� 1Þ=2

ð9Þ

This formula is written using Dih values to make it com-

parable to eqn 2. For symmetric distance matrices, only

the Dih values in the upper-triangular portion of D are

used. The main point here is that SS(dY) in eqn 9 is not

equal to, is not a simple function of, and cannot be

reduced to SS(Y) in eqn 2.

To summarize, the sum-of-squares SS(Y) (eqns 1 or 2)

and SS(dY) (eqn 9) are different statistics. As a conse-

quence, the coefficients of determination constructed

with SS(Y) or SS(dY) in the denominator (R2
yjx for two

variables or R2
YjX for two matrices analysed by RDA on

the one hand, and R2
dYjdX for two distance matrices analy-

sed by the Mantel test on the other), and the correspond-

ing coefficients of correlation (Pearson r for two

variables, Mantel rM for two distance matrices), are also

different statistics: they do not measure the same rela-

tionship.

Consider the numbers 1–10 for example. Their total

sum-of-squares, SS(y), is 82.5 (eqn 1). Now compute a

Euclidean distance matrix D among these 10 numbers:

the sum-of-squares SS(dY) from eqn 9 is 220. So R2, the

coefficient of determination or the square of the Pearson

correlation between two vectors, which represents a frac-

tion of eqn 1, cannot be equal to R2
M, the square of the

Mantel correlation between the derived distance matri-

ces, which is a fraction of eqn 9.

The two families of statistical methods will also

diverge, perhaps more, when the raw data tables are

transformed into distance matrices D using non-Euclid-

ean distance functions that are specific to the field of

application, such as genetic or ecological distances. It

should now be clear that testing the relationship between

two variables and rectangular data tables is not equiva-

lent to testing the relationship between distance matrices

derived from them.

Empiricists who frown upon theoretical justifications

should be interested in the fact that the values of R2
M of a

Mantel test or a regression on distance matrices are

always much lower than those of the R2 of a (multiple)

regression or canonical analysis computed on the raw

data (when it is possible to do so), as will be seen in the

simulation results reported in section the ‘Bivariate case’.

This was one of the results reported by Dutilleul et al.

(2000, Table 2) who worked out the relationships

between the theoretical correlation between two simple

variables and the expected value of the Mantel statistic

for distance matrices computed from these two variables,

under the assumption of normality. So, R2
M cannot be

used as a measure of explained variance for the original

data.

Summary of findings – The Pearson correlation r and

Mantel rM statistics are based on different sums-of-

squares that are not equal, are not a simple function of,

and cannot be reduced to each other. The Pearson corre-

lation is a statistic describing the linear relationship

between the variables (monotonic relationship in the case

of the Spearman correlation), whereas the Mantel statistic

based on the Pearson formula describes the linear rela-

tionship between distances (or a monotonic relationship

if the Spearman formula is used).

Bivariate case

Monte Carlo simulations allow researchers to compare

statistical methods in situations where they know the

exact relationship between the variables. No doubt exists

as to which, of H0 or H1, is true in each particular simu-

lated data set (Milligan 1996). Legendre (2000) simulated

bivariate data to compare the power of the Pearson corre-
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lation and Mantel tests in situations where the correlation

coefficient between two simple variables was appropri-

ate. We completed and expanded these simulations here.

Two vectors of random normal deviates, y and x, each of

length n = {10, 30, 50, 100}, were generated and corre-

lated by a predetermined population value

q(y,x) = {)0.5, 0, 0.5}. H0 was true when q = 0 and false

when q(y,x) = )0.5 or 0.5. One-tailed tests (parametric

and permutational using 999 random permutations) of

Pearson’s r correlation coefficient were conducted in both

the lower and upper tails; only the test in the tail corre-

sponding to the sign of q made sense in each case because

we wanted to assess the power of the tests to detect the

imposed population correlation. Note that a permutation

test using Pearson’s r as the test statistic, as was carried

out here, is strictly equivalent to a test based on the

pivotal t-statistic derived from r; this is because t is a

strictly monotonic function of r for any constant value of

n (Legendre & Legendre 1998, Section 1.2.2). The two vec-

tors were transformed to distance matrices Dy and Dx,

and a permutational Mantel test was run using 999 ran-

dom permutations of the objects identifying the rows and

columns in one of the distance matrices; this form of per-

mutation is called ‘matrix permutations’ in Legendre

(2000). As in the case of Pearson’s r, one-tailed tests were

conducted in both the lower and upper tails. Power was

the rejection rate of H0 at the 5% significance level after

10,000 independent simulations.

The simulation results (Table 2) lead to the following

observations:

1 To be valid, a test of significance should have a rate of

rejection of the null hypothesis not larger than the sig-

nificance level a, for any value of a, when H0 is true

(Edgington 1995). The results in Table 2 (first 4 lines,

q = 0) show that, for data with normal error, the para-

metric and permutation tests of the Pearson correlation

coefficient had correct levels of type I error, with rejec-

tion rates near the significance level a = 0.05. This was

also the case for the permutational Mantel test. Similar

results had been found by Legendre (2000, Fig. 1a–b).

The additional information provided in Table 2 is that

the means of the Pearson correlations and Mantel sta-

tistics were both near 0. However, Dutilleul et al. (2000)

described a few cases where the values of the Mantel

statistics are negative, whereas the Pearson correlation

is strictly 0; their Table 4 also shows cases, for real

bivariate data, where the signs of the Mantel statistics

varied but were unrelated to the signs of the Pearson

correlations.

2 In the simulations where the data vectors were posi-

tively correlated (q = 0.5), the parametric and permu-

tational tests of the Pearson correlation in the upper

tail always had greater power (the rejection rate of H0

was higher) than the Mantel test. The difference in

power between the test of Pearson’s r and the Mantel

test is because of the fact that the two tests use differ-

ent statistics, as explained in the section ‘Different

sum-of-squares statistics’.

3 In the simulations where the data vectors were nega-

tively correlated (q = )0.5), the tests of Pearson’s r that

made sense were those conducted in the lower tail

because we wanted to estimate the power of the test to

detect a negative correlation. The test in the lower tail

showed power that increased with n, as expected.

Tests conducted in the upper tail seldom detected a

Table 2 Comparison of power of the tests of the Pearson correlation (parametric and permutation tests) and the simple Mantel test

(permutation test) in simulations where the correlation coefficient between two simple variables was appropriate. n is the number of

objects in each simulation; q(y,x) is the population correlation value imposed to the two data vectors. Power is the rejection rate of H0 at

the 5% significance level after 10000 independent simulations. ‘t-test of r’ = parametric test of the t-statistic associated with Pearson’s r;

‘perm. test r’ = permutational test of r; ‘lower tail’ and ‘upper tail’ refer to the opposite tails in one-tailed tests.

n q(y,x)

Mean of

Pearson r

Power of

t-test of r

lower tail

Power of

t-test of r

upper tail

Power of

perm. test

r lower tail

Power of

perm. test

r upper tail

Mean of

Mantel r

Power of

Mantel test

lower tail

Power of

Mantel test

upper tail

10 0 )0.0022 0.0447 0.0495 0.0476 0.0497 )0.0029 0.0498 0.0469

30 0 0.0013 0.0497 0.0491 0.0487 0.0485 )0.0008 0.0503 0.0489

50 0 0.0001 0.0508 0.0504 0.0507 0.0505 )0.0006 0.0503 0.0516

100 0 )0.0003 0.0515 0.0480 0.0522 0.0485 0.0002 0.0518 0.0517

10 0.5 0.4772 0.0011 0.4554 0.0010 0.4529 0.1907 0.0145 0.2792

30 0.5 0.4935 0.0000 0.8976 0.0000 0.8963 0.2142 0.0021 0.6283

50 0.5 0.4949 0.0000 0.9833 0.0000 0.9834 0.2164 0.0003 0.8071

100 0.5 0.4967 0.0000 0.9999 0.0000 0.9999 0.2194 0.0001 0.9679

10 )0.5 )0.4814 0.4591 0.0019 0.4568 0.0016 0.1971 0.0128 0.2828

30 )0.5 )0.4926 0.8995 0.0000 0.8982 0.0000 0.2133 0.0013 0.6279

50 )0.5 )0.4954 0.9855 0.0000 0.9854 0.0000 0.2181 0.0003 0.8039

100 )0.5 )0.4991 1.0000 0.0000 1.0000 0.0000 0.2217 0.0000 0.9691
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significant correlation (and this only happened with

n = 10), also as expected.

4 An interesting point here is that the mean of the Man-

tel statistics was positive for data vectors generated

with q = )0.5. Because Euclidean (i.e. ‘unsigned’) dis-

tances had been used, the Mantel test only detected

positive relationships between distances despite the

fact that the original data vectors were negatively cor-

related. Even in that case, one expects the distances in

the two matrices to increase together if any effect at all

is detected. Mantel tests in the lower tail nearly never

detected a significant relationship. Note that the para-

metric and permutational tests of the Pearson correla-

tion in the lower tail always had greater power than

the Mantel test in the upper tail.

5 The mean of the Pearson correlations was always close

to the imposed population mean q. The small differ-

ence when n = 10 is because of the distributions of sim-

ulated correlations, which is highly skewed to the left

when n is small and q > 0, and to the right when n is

small and q < 0. The mean of the Mantel statistics was

always much smaller than |q|, a phenomenon that

was noted and explained by Dutilleul et al. (2000) for

the bivariate normal case.

Summary of findings – Users of the Mantel test should

be aware of three facts when they are analysing data and

testing a bivariate correlation hypothesis: (i) the test of

the Pearson correlation has much greater power than the

Mantel test to detect a linear relationship between data

vectors; this means that the test of Pearson’s r is more

likely than the Mantel test to detect a relationship when it

is present in the data. (ii) When the correlation between

the two original vectors is negative, the Mantel test can-

not detect its sign: it finds a positive relationship in the

world of distances. Using a Mantel two-tailed test to

detect a relationship among distances whatever its sign is

not a good solution either because two-tailed tests have

less power than one-tailed tests. (iii) The value of the

Mantel statistic is always much smaller than the popula-

tion correlation, so it cannot be used as an estimate of that

correlation.

Spatial gradients

Spatial gradients can arise in genetic data as a result of

several types of processes. They can appear, for example,

during secondary contact between distant and temporar-

ily isolated populations that have diverged, or as a

response of non-neutral alleles to environmental gradi-

ents. Spatial gradients can also result from processes such

as sequential colonization events. For example, the colo-

nization of the world by humans has led to a pattern

where genetic distance between the ancestral and descen-

dant populations increases with geographical distance

(Ramachandran et al. 2005). Spatial patterns can therefore

be observed in the heterozygosity, which decreases as the

distance from the ancestral population increases

(Prugnolle et al. 2005; Ramachandran et al. 2005; Foll &

Gaggiotti 2006). Other gradients that mimic those
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Fig. 2 One hundred points forming a linear gradient in a single geographic dimension (transect X), (a,b) with a small amount of noise,

(c,d) with more noise. (a,c) One-dimensional maps of the gradients, with regression lines; X is the geographic axis, z the response vari-

able. (b,d) Scatter plots of the distances in the response variable D(z) compared to the geographic distances D(X), with a smoother func-

tion (‘supersmoother’). r is the Pearson correlation coefficient, rM the Mantel statistic.
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generated by selection may arise through allele surfing

(Edmonds et al. 2004). All these processes can also be

strongly influenced by genetic drift.

Some other types of genetic processes are expected to

produce autocorrelation in the genetic data, but not gra-

dients per se: genetic drift, gene flow, dispersal, isolation

by distance, isolation by resistance (McRae 2006), etc.

(Fig. 1c). Autocorrelation can be studied through univari-

ate correlograms and multivariate Mantel correlograms,

or modelled by regression or canonical analysis using

Moran’s eigenvector maps (spatial eigenfunction analy-

sis: Introduction, penultimate paragraph) or multiscale

ordination (Wagner 2004) (Fig. 1b).

Using a simple example, we will now show that in

population genetic studies of adaptive genes along spa-

tial gradients, a significant correlation between vectors

and matrices of raw data does not guarantee that a signif-

icant correlation will be identified by the Mantel test in

the corresponding distance matrices. We simulated a var-

iable z forming a linear gradient in one or two geographic

dimensions, with random normal error e = N(0,1), using

the equation z = f(X,Y) + ke; X and Y are the geographic

coordinates of the points. The amount of error, k, will

vary from 1 to 10.

In Fig. 2, the simulated structure is a linear gradient

along a transect (100 points). In Fig. 3, we simulated a

gradient running diagonally across the map. The equa-

tions used for generating the response variable z are

shown on, or on the side of the maps. These simulations

will illustrate the fact that (i) the amount of error affects

the power of the Mantel test more than it does the test of

the correlation coefficient in this simple form of trend-

surface analysis, and (ii) the Mantel test is more likely to

identify the gradient along a transect than on a map.

The basic amount of error was k = 1 in Figs 2a,b and

3a,b; in other words, a local innovation was generated by

adding a random normal deviate N(0,1) to the gradient

value at each point, creating values with a standard devi-

ation near 3 along 10 points of the gradient in the two

spatial structures. In the case of the transect, the Mantel

test (Fig. 2b) successfully identified the gradient. So we

created a more difficult problem in Fig. 2c,d where the

noise parameter k was 10. There is more dispersion

around the smoother line in Fig. 2d than in Fig. 2b, but

the gradient remains mostly linear, as shown by the

smoother line, and the Mantel test still identifies it suc-

cessfully.

A gradient with low noise (k = 1) running diagonally

across the map was easily detected by regression on the

X and Y geographic coordinates (trend-surface analysis,

Fig. 3a: �R2 = r = 0.92) and by the Mantel test (Fig. 3b:

rM = 0.49). Increasing the amount of noise to k = 2, the

relationship between distance matrices D lost monotonic-

ity and became more difficult to detect (Fig. 3d:

rM = 0.30), although it was easily detected by regression

(Fig. 3c: �R2 = r = 0.76). The power of the Mantel test
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Fig. 3 One hundred points forming a linear gradient running diagonally across a surface (X,Y), (a,b) with a small amount of noise,

(c,d) with more noise. (a,c) Bubble plot maps of the gradients: X and Y are the geographic coordinate axes, z the response variable; the

size of the circles is proportional to the value of z. (b,d) Scatter plots of the distances in the response variable D(z) compared to the

geographic distances D(X,Y), with a smoother function (‘supersmoother’).
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was affected by the loss of monotonicity of the distance

relationship as k increased. Figure 4 reports the results of

the tests carried out by trend-surface analysis and by the

Mantel test, for k varying from 1 to 10. Trend-surface

analysis (circles) produced a significant equation for all

values of k in the graph, whereas the Mantel test lost sig-

nificance, for an a-level of 0.05, from k = 6 and on. The

one-tailed test of R2 would be equivalent to a two-tailed

test of r in the simple linear regression case (e.g. a tran-

sect). Because a one-tailed test has more power than a

two-tailed test, the comparison in Fig. 4 should have

given advantage to the one-tailed Mantel test had the two

tests had equivalent power for detecting the gradient in

the data.

Summary of findings – These simulated examples

show that the power of the Mantel test is lower than that

of trend-surface analysis for the detection of noisy spatial

gradients. Because of its omnidirectional nature, the

Mantel test is not ideal for the detection of directional

spatial structures on two-dimensional maps, although it

behaves well along transects for testing hypotheses for-

mulated in terms of distances.

Multivariate, spatially structured data

Appendix S2 summarizes the results, published else-

where (Legendre et al. 2005), of numerical simulations

conducted to empirically compare the power of canonical

redundancy analysis (RDA) and Mantel tests to detect

environmental signature and autocorrelated spatial

structures in multivariate response data. Autocorrelation

is the hypothesized outcome of many spatial processes in

population genetic data. This is one of the types of ques-

tion addressed in landscape genetics where researchers

are trying to understand genetic variation in terms of

neutral genetic processes and selective responses to envi-

ronmental conditions.

Summary of findings – (i) Permutation tests used in

the analysis of rectangular data tables by regression or

canonical analysis, or in the analysis of distance matrices

by Mantel tests, all have correct levels of type I error; so

they are all statistically valid. For regression analysis, this

has been shown by a number of authors including

Anderson & Legendre (1999); for canonical redundancy

analysis, by Legendre et al. (2005); for Mantel tests, by

Legendre (2000) and Legendre et al. (2005). (ii) For the

detection of multivariate species-environment relation-

ships, linear analysis by RDA has far greater power than

methods based on distance matrices. This means that

when a relationship is present in data, one is much more

likely to detect it by RDA than by Mantel test or regres-

sion on distance matrices. The differences in power

reported in Table A2.1 (Appendix S2) between RDA and

Mantel test results are in line with the differences found

in the section ‘Bivariate case’ between Pearson r and

Mantel rM (Table 2). (iii) For autocorrelated data, each

method (RDA and Mantel) had variants that did better

than using the X and Y coordinates only, but RDA always

outperformed the distance-based Mantel tests. The differ-

ences in power reported in Table A2.1 between RDA and

Mantel test results are in line with the differences shown

in Fig. 4 (univariate response data) between the R2 statis-

tic of trend-surface equations and Mantel rM. (iv) These

conclusions should apply to all types of response data.

The allele frequency and other types of frequency data

analysed in the frameworks of spatial population genet-

ics and landscape genetics are of the same type as the

species abundances that served as the reference for the

simulations reported in Table A2.1.

Other statistical aspects

A major handicap of the raw data approach (i.e., the anal-

ysis of rectangular data tables) has been lifted in recent

years for the linear analysis of multivariate frequency

data, such as allele frequencies and community composi-

tion data: Legendre & Gallagher (2001) have shown how

to transform community composition data in such a way

that distances that are of interest in genetics and commu-

nity ecology (e.g., the chord, chi-square and Hellinger

distances) are preserved in the analysis. These simple

transformations of the frequency data make them suit-

able for linear analyses such as PCA, RDA and K-means

partitioning. The first step of these transformations is to

standardize by row (in different ways, depending on the

transformation), thus removing from the analysis the dif-
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ferences in row sums, which correspond to the total num-

ber of individuals per site included in the genetic analy-

sis, or the total productivity of the sites in community

ecology. The chord distance has a long history of applica-

tion in genetic analysis. The Hellinger distance is the

chord distance computed on square-root-transformed

frequencies.

Our simulation results (Table 2, Figs 2–4, Appendix

S2) have shown that the Pearson r and Mantel rM statis-

tics are quite different in values. For that reason, the

Mantel R2
M statistics that serve as the basis for variation

partitioning based on distances are not equal to the R2

statistics from linear regression or canonical analysis that

serves as the basis for linear variation partitioning. So the

fractions of variation obtained by variation partitioning

in the distance world are incorrect when they pretend to

represent fractions of the original data variation. Their

exact meaning has never been explained by the propo-

nents of that method.

Another way of looking at this problem is the follow-

ing: the square of the Mantel r statistic may be called an

R2, but it is not a coefficient of determination as known in

linear models (regression, canonical analysis), and it can-

not be interpreted as the proportion of the response vari-

ables’ (Y) variance explained by X, but only as a measure

of fit of a linear model to the paired sets of distances. The

distances used to compute SS(dY) and the fitted values

used to compute SSðd̂YÞ are not independent of one

another within each set, as they are in a linear regression

R2.

A Mantel test only produces an r statistic and a P-

value. Canonical analysis produces results that are much

richer: biplots are produced, and the contribution of each

response and explanatory variable is computed and can

be examined in biplots. This is another reason to prefer

canonical analysis to analyse the variation of multivariate

response variables such as allele frequencies.

Another drawback is that an adjusted R2 (R2
adj) cannot

be computed from Mantel statistics: no equation has been

proposed and demonstrated to produce an unbiased

adjusted R2 (R2
Madj) in Mantel-type regression. An

adjusted R2 is required to obtain unbiased estimates of

the fractions in variation partitioning (Peres-Neto et al.

2006). Those who insist on interpreting the square of the

Mantel rM as a coefficient of determination are left with,

at best, a biased estimate.

Additivity is a nice property of linear variation parti-

tioning: an identical total amount of explained variation

of Y is obtained, whether all explanatory variables are

put in a single table X or they are divided into any num-

ber of tables. The effects of the explanatory variables are

thus additive. This is not the case in partitioning on dis-

tances: different total amounts of explained variation for

the response D(Y) are obtained if one includes all explan-

atory variables in a single distance matrix D(X) or if sepa-

rate distance matrices are computed for the groups of

explanatory variables D(X1), D(X2), ..., D(Xk) (Legendre

et al. 2008). Likewise, transforming Y and X into distance

matrices DY and DX and carrying out a Mantel test does

not produce a test equivalent to that of multiple regres-

sion or canonical analysis, as we saw earlier on theoreti-

cal bases and in the simulation results of sections

‘Bivariate case’, ‘Spatial gradients’ and ‘Multivariate spa-

tially structured data’. Furthermore, if X is divided into

various subsets X1, X2, …, Xk, and each of these explana-

tory subsets is transformed into a distance matrix DX1
,

DX2
, …, DXk

, a Mantel test of DY against DX is not equiva-

lent to, and does not produce the same result as, a test of

the statistic of a multiple regression of DY on the set of

distance matrices DX1
, DX2

, …, DXk
. The latter method

should only be used when the hypothesis to be tested

clearly involves a subdivision of the explanatory vari-

ables into precise subsets. Until all these statistical points

have been cleared, variation partitioning should not be

performed on distance matrices.

Discussion

In this study, we are concerned with the power of the

Mantel test in situations where the primary question or

hypothesis involves relationships between raw data. We

are warning population geneticists that in these cases,

statistical analyses based on distances lead to a large loss

of statistical power; power is the ability of a statistical

method to detect an effect when one is present in the

data. We have shown the loss of power in studies of rela-

tionships between variables and rectangular data tables,

which are turned into distance matrices, with special

emphasis on the situation where one of the data tables

represents spatial relationships among the study sites. In

situations where the question or hypothesis is clearly for-

mulated in terms of the raw data (vectors or rectangular

data tables), Mantel tests should not be used. Legendre

et al. (2005, pp. 438–439) give several examples of such

misuses in the community ecology literature.

In spatial population genetics and landscape genetics,

many research questions involve distance relationships.

For example, the effect of landscape structure on move-

ment, mating and gene flow among individuals or popu-

lations is usually studied by making predictions about

relationships between matrices of genetic distance and

landscape cost and testing these predictions by Mantel

tests, whereas adaptive variation along environment gra-

dients is studied using regression and canonical analysis

of raw data tables. These statistical methods seem to be

interchangeable (Table 1) because of the easiness with

which a distance matrix can be computed from a raw

data table, or the opposite – going from a distance matrix
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to a rectangular data table – using principal coordinate

analysis. The following questions will have to be

addressed by future research and articles:

1 Consider the isolation by distance hypothesis for

example: it makes predictions about relationships

between genetic and geographic distance, and these

predictions can be tested using Mantel tests or regres-

sion on distance matrices. It also predicts that autocor-

relation should be present in the genetic response data;

this prediction can be tested using univariate or multi-

variate correlogram analysis, or by regression or

canonical analysis using Moran’s eigenvector maps

(spatial eigenfunction analysis).

2 Predictions of relationships between distance matrices

can be tested using Mantel tests, but the same relation-

ships could also be tested by canonical analysis after

transforming the distance matrices into rectangular

matrices through principal coordinate analysis; this is

called distance-based (db) canonical analysis (db-RDA,

db-CCA: Legendre & Anderson 1999; example of

application to genetic distance data: Geffen et al. 2004)

(Fig. 1c). For questions formulated in terms of dis-

tances, which statistical method has the highest power

remains to be determined. This question should be

examined by numerical simulations carried out by

working groups of population geneticists.

Scientists should use multiple regression (for a single

response variable) or canonical redundancy analysis

(RDA) when investigating response-environment rela-

tionships or spatial structures, unless the hypothesis to

be tested is strictly formulated in terms of distances (or

involves the variance of the distances). The reasons are

the following: (i) the null hypothesis of the Mantel test

involves distances, whereas those of correlation analysis,

regression analysis and RDA involve the original vari-

ables (rectangular data tables); and (ii) correlation analy-

sis and RDA lead to higher R2 statistics and offer a

more powerful test than Mantel analysis in tests of

hypothesis involving relationships among the original

variables.

The second point is supported by the results of simu-

lations reported in this study. The section ‘Bivariate

case’ showed that for testing a bivariate correlation

hypothesis, e.g. between a response and an environmen-

tal variable, the test of the Pearson correlation has much

greater power than the Mantel test to detect a linear

relationship between data vectors; this means that the

test of Pearson’s r is more likely than the Mantel test to

detect a relationship when it is present in the data.

Using examples, we showed in the section ‘Spatial gra-

dients’ that the power of the Mantel test is lower than

that of trend-surface analysis for the detection of noisy

spatial gradients. In the section ‘Multivariate spatially

structured data’ and Appendix S2, we reported the

results of extensive simulations showing that for the

detection of species-environment relationships or spatial

structures in the multivariate response data (e.g. several

species, several alleles), linear analysis by RDA has far

greater power than methods based on distance matrices.

This means that when relationships of these types are

present in the response data, one is much more likely to

detect them by RDA than by Mantel test or regression

on distance matrices. These empirical findings are not

surprising given the fact that the SS involved in the

denominator of the Pearson correlation (or partitioned

by multiple regression or RDA), and that of the Mantel

test and derived forms (such as linear regression on dis-

tance matrices), are not equal, are not a simple functions

of, and cannot be reduced to each other (section ‘Differ-

ent sum-of-squares statistics’).

The domain of application of the methods of compari-

son based on distance matrices (Mantel test, QAP, partial

Mantel test, ANOSIM, multiple regression on distance

matrices) is the set of {evolutionary, genetic, ecological,

etc.} questions that are originally formulated in terms of

distances. Testing the distance predictions of a hypothe-

sis of isolation by distance in genetics is one of these

questions. Isolation by distance also predicts the presence

of spatial autocorrelation in the response data, however,

and that prediction should best be tested using other

methods, including univariate or multivariate correlo-

gram analysis, regression or canonical analysis using spa-

tial eigenfunctions.
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