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Abstract

The Mantel test is widely used to test the linear or monotonic independence of the elements
in two distance matrices. It is one of the few appropriate tests when the hypothesis under
study can only be formulated in terms of distances; this is often the case with genetic data. In
particular, the Mantel test has been widely used to test for spatial relationship between
genetic data and spatial layout of the sampling locations. We describe the domain of applica-
tion of the Mantel test and derived forms. Formula development demonstrates that the sum-
of-squares (SS) partitioned in Mantel tests and regression on distance matrices differs from
the SS partitioned in linear correlation, regression and canonical analysis. Numerical simula-
tions show that in tests of significance of the relationship between simple variables and mul-
tivariate data tables, the power of linear correlation, regression and canonical analysis is far
greater than that of the Mantel test and derived forms, meaning that the former methods are
much more likely than the latter to detect a relationship when one is present in the data.
Examples of difference in power are given for the detection of spatial gradients. Furthermore,
the Mantel test does not correctly estimate the proportion of the original data variation
explained by spatial structures. The Mantel test should not be used as a general method for
the investigation of linear relationships or spatial structures in univariate or multivariate data.
Its use should be restricted to tests of hypotheses that can only be formulated in terms of
distances.
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Introduction spatial distances and a matrix of temporal distances in a
generalized regression approach. Since Mantel & Valand
(1970), the procedure, known as the Mantel test in the

biological and environmental sciences, includes any anal-

Brought to the attention of evolutionists, systematists and
geneticists by Sokal (1979), the Mantel test (Mantel 1967;

Mantel & Valand 1970) allows linear or monotonic com- . . . .
ysis relating two distance matrices or, more generally,

two resemblance or proximity matrices.
Sokal (1979) pioneered the use of Mantel test by com-

parisons between the elements of two distance matrices.
The Mantel statistic is usually tested by permutation

although it can also be tested using an asymptotic normal . L .
paring phenetic distances among local populations to

approximation when the number of observations, 7, is . . .
geographic distances expressed in various ways. An

large. The space-time clustering procedure of Mantel ; . . .
equivalent test is the quadratic assignment procedure

(QAP) developed by psychometricians (Hubert & Schultz
1976). Clarke (1988, 1993) developed a form of Mantel test

(1967) was originally designed to relate a matrix of
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called the ANalysis Of SIMilarities (ANOSIM) computed
on ranked distances, which is widely used in marine
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biology. Smouse et al. (1986) proposed to compute partial
correlations on distance matrices as the basis for partial
Mantel tests. They used that method to test alternative
hypotheses about the factors (geographic and linguistic
distances) responsible for genetic variation among the
Yanomama Indians of lowland South America. Because
of the ease of representation of spatial relationships by a
distance matrix, Legendre & Troussellier (1988) used the
partial Mantel test (described in Appendix S4) to control
for the effect of spatial distances in ecological studies.
Since then, Mantel tests have been used in various fields
of biology: morphology (van Schaik et al. 2003), behav-
iour (Cheverud 1989), ecology (Leduc et al. 1992; Fortin &
Gurevitch 2001; MacDougall-Shackleton & MacDougall-
Shackleton 2001; Wright & Wilkinson 2001) and phyloge-
netics (van Buskirk 1997). In a micro-evolutionary study,
Le Boulengé et al. (1996) used partial Mantel tests to test
alternative hypotheses about the cause of morphological
variation among local muskrat populations in a river
catchment: straight-line distances, swimming distances
along the river network and ‘decisions’ distances along
the network. In population genetics, Mantel tests have
been used to determine whether local populations that
are geographically close are either genetically or phyloge-
netically similar (e.g., Lloyd 2003). This question can be
reformulated as follows: is the spatial genetic variation
spatially organized? If so, what are the significant spatial
patterns and at what scale(s) are they found?

In landscape genetics recently, several studies used
Mantel tests to include landscape features in the analysis
of genetic variation in a spatially explicit way (Vignieri
2005; Cushman et al. 2006; Wang et al. 2008). The tested
hypotheses may include physical or biotic environ-
mental conditions, or else species-dependent processes
such as seed dispersal limitation. The latter processes
are more likely to affect neutral genes than non-neutral
loci that are differentially selected by environmental
conditions.

The objective of this study is to evaluate the perfor-
mance of the Mantel test in spatial population genetic
and landscape genetic analysis in comparison with alter-
native statistical approaches (correlation, canonical anal-
ysis) not based on distances. In spatial population
genetics, landscape genetics and spatial community ecol-
ogy, statistical analyses are often undertaken to ‘explain’
(in the statistical sense) the spatial variation of a response
variable (y, univariate) or data table (Y, multivariate).
Several processes can generate spatial genetic structures
(Fig. 1), and several regression and distance-based meth-
ods can be used to relate these structures to landscape
and environmental conditions. In this study, we will
show that the Mantel test is not equivalent to either a cor-
relation or regression analysis in the univariate case, or a
canonical analysis in the multivariate case. We will also

show that there is a great difference in power between
these alternative tests, and that for spatial analysis, more
powerful alternatives are available, unless the hypothesis
to be tested strictly concerns distances. Moreover, Mantel
tests underestimate the coefficient of determination esti-
mating the variation explained by the spatial structure.

Mantel test and derived forms

The statistic used by Mantel (1967) was the cross-product
of the distances in the two matrices under analysis. Now-
adays, most if not all computer programs offer a Mantel
correlation statistic ry, which is the cross-product
between the standardized distances divided by (d — 1),
where d is the number of distances in the upper-triangu-
lar portion of each matrix when the statistic is computed
from symmetric matrices. This transformation has no
effect on the probability obtained by permutation tests,
and ry is conveniently bounded between -1 and +1.
Equations for the Mantel statistic will be given further
down after the presentation of the sum-of-squares (SS)
statistics. In the rare cases where ry; is computed over
asymmetric matrices, d is the total number of distances in
each matrix, except the diagonal elements, which trivially
take the value 0.

In its most simple form in spatial analysis of genetic
data, the Mantel test is used to compare a matrix of geo-
graphic distances to a matrix representing relevant dis-
similarities among the same objects computed from
another data table (phylogenetic, genetic, environmen-
tal, etc.). Derived forms include the partial Mantel test
carried out using partial correlation statistics computed
on distances (Smouse et al. 1986), the Mantel correlo-
gram (Oden & Sokal 1986; Sokal 1986), multiple regres-
sion on distance matrices (Hubert & Golledge 1981; tests
of significance described in Legendre et al. 1994), as well
as the test of congruence among several distance matri-
ces (CADM, Legendre & Lapointe 2004). A few years
ago, a controversy arose in the literature about the
validity of the permutation procedure used in partial
Mantel tests. The issue is summarized in Box 1. A
description of the various permutation methods pro-
posed for partial Mantel tests is given in Appendix 54,
together with recommendations about the use of three
of these procedures.

When the spatial structure of gene frequencies or
genetic diversity (Fig. 1a) at the sampling locations is of
interest per se, more powerful methods of analysis have
been developed for modelling gradients or other forms of
broad-scale spatial structures created in univariate or
multivariate data as a response to forcing environmental
variables (induced spatial dependence), as well as finer-
scaled patterns corresponding to autocorrelation gener-
ated in response variables by dynamic processes (Diniz
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(@) Genetic data Genetic measures Variable type
Gene frequencies —»  Fst/Nei —>» Coefficient
Genetic diversity —>»  He, allelic richness, —» Coefficient,

proportion of polymorphic bands quantitative
Molecular markers ———3  Gst/¢st —» Coefficient
AFLP Data —>» Band differences —>» Quantitative

(b) Spatial data Spatial distance data Multiscale analysis
x-y coordinates == | Euclidean distances —— Trend-surface analysis
x-y coordinates 3 Resistance/cost Moran’s eigenvector maps
+ resistance map distances Multiscale ordination

(¢) Data analysed Processes Methods
Genetic \‘/alues + Genetic drift, gene flow > Spatial regression
x-y coordinates or . . Multivariate ordination
derived geographic —> | Adaptive gradient
functions (see L
multiscale analysis) IBD, dispersal Distance-based

methods
Genetic distances + . Mantel test
—— IBD, dispersal, gene flow —p b
Euclidean distances Partial Mantel test
or —3> IB Barrier, IB Resistance, ——> Distance-based RDA
Resistance distances gene flow

Fig. 1 Spatial genetic analyses. Selection of the appropriate statistical methods depending on data types and derived measures of (a)
genetic and (b) spatial distances. (c) Methods of analysis according to the process under study. (a) Genetic data can be either adaptive or
neutral genes depending on the markers used from which are derived either distance data (based on various coefficients: Fst, Nei) or
quantities (number of alleles, band differences). (b) Spatial data can be only x-y coordinates leading to either (as indicated be dashed
arrows) Euclidean distances or multiscale analysis (see text for brief description of these methods). Then (c), the selection of methods
depends on whether the genetic data being used are (i) quantitative values variables (quantities such as number of alleles, proportion of
polymorphic bands or band length differences), in which case-specific processes can be studied using spatial regression (SAR, CAR,
autologistic, GWR, etc.), multiscale analysis (methods listed in section b: polynomial, Moran’s eigenvector maps, multiscale ordination)
and/or multivariate ordination methods (PCA, RDA, CCA); or (ii) they are in the form of genetic distances, in which case distance-based
methods should be used to test spatial population and landscape genetics questions. Boxes, which contain lists of methods that can be
used or processes to be tested, indicate that any of the methods or of the processes within them could be used or tested. IB ... : isolation
by ...; IBD: isolation by distance.

Box 1 Controversy about the validity of the partial Mantel test

Two articles appeared in the journal Evolution in 2001-2002 about the use of partial Mantel tests in micro-evolutionary studies: Raufaste
& Rousset (2001) and Castellano & Balletto (2002). These articles ignored previously published work in which the properties of different
forms of partial Mantel tests, with or without spatial autocorrelation, had been spelled out. The first article raised a valid point about a
situation requiring a particular permutation procedure, but it left readers with the impression that the partial Mantel test is, in general,
an inadequate testing procedure, which is not the case. The second article tried to rehabilitate the partial Mantel test, but advocated an
inappropriate testing procedure. Comments presented in Appendix S3 attempt to clarify some of the underlying concepts. Appendix S4
gives recommendations about appropriate testing procedures for partial Mantel tests. This issue is addressed here because there is still
some confusion among users about the validity of the permutation test used in partial Mantel tests.

et al. 2009; Guillot et al. 2009). These methods involve
transforming the geographic coordinates of the sites into
derived geographic functions (Fig. 1b): polynomial of the
geographic coordinates (leading to polynomial canonical
trend-surface analysis, Legendre 1990), Moran’s eigen-
vector maps (mentioned in Table 1, specifically called
PCNM or MEM spatial eigenfunctions analysis: Borcard
& Legendre 2002; Borcard ef al. 2004; Dray et al. 2006) or
asymmetric eigenvector maps (AEM: Blanchet et al.
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2008). These analyses are carried out by using the derived
geographic functions as explanatory variables in multiple
regression, canonical analysis or variation partitioning
among environmental and spatial components (Borcard
et al. 1992; Borcard & Legendre 1994). Moran’s eigenvec-
tor maps can also be used in multiscale ordination (Wag-
ner 2004). In landscape genetic studies, landscape
features between sampling locations are often of interest;
they can be incorporated in the analysis as resistance or
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Table 1 Representation of environmental and spatial data to test different types of hypotheses. ‘Factor’ is a generic term for multistate
qualitative (or categorical) variables. Distance matrices D (right column) can easily be computed from rectangular data tables (left
column). One can also go from a D matrix to a rectangular data table by principal coordinate analysis (metric, or classical,

multidimensional scaling).

Linear models

Mantel test and derived forms

Landscape genetics hypothesis: response data
are related to environmental variables or experimental factors
Environmental variables
(quantitative, binary, or factor)
Experimental (ANOVA) factor
Spatial population genetic: response data are related to ‘space’
Geographic regions (factor)
Geographic coordinates (quantitative)

Polynomial of geographic coordinates

Moran'’s eigenvector maps (spatial eigenfunctions)
computed from connection diagrams (e.g., Delaunay
triangulation) or geographic coordinates

D matrix computed from the
environmental variables
Design matrix D describing the factor

Design matrix D representing regions
D matrix of Euclidean geographic distances
or log of geographic distances
D matrix from polynomial of geographic coordinates
Design matrix D containing connecting links
between neighbouring sites. The links may be
binary (absence of link = 0, presence = 1) or
weighted by any appropriate form of distance
on a map (Euclidean, or least-cost, or along practicable paths)

cost values and assembled in resistance/cost distances
that are used instead of Euclidean geographic distances
(Fig. 1b).

Specialized statistical packages used by evolutionary
biologists offer Mantel test modules, distance-based RDA
and multiscale analysis to help answer these questions
(e.g., Genepop: Raymond & Rousset 1995; Arlequin:
Excoffier et al. 2005; GENALEX: Peakall & Smouse 2006;
NTSYSpc: Rohlf 2009; in the R language: ade4: Dray et al.
2007; vegan: Oksanen ef al. 2010; ape: Paradis et al. 2009;
ncf: Bjernstad 2009).

Statistical aspects

Equivalence of rectangular data and distance matrices
for sum-of-squares statistic

Whether the data form a vector y or a rectangular data
table Y about objects (individuals or local populations),
the total variance of the data can be computed. For a sin-
gle variable y measured about n objects, the SS can be
computed as SS(y) = 3, (yi — §)* or, after computing
a Euclidean distance matrix D = [D(y;, y,)] = [D;] among
the values of y, SS(y) = (ZI ” D(yi, yh)z /n, which can be
written in the more compact form ith Dl-zh) /n. Only
the Dj, values in the upper-triangular portion of D are
used in this formula. The equivalence of the two formu-
las can easily be checked using any set of numerical
values.

In the multivariate case, where matrix Y contains p
variables, the formula for the SS computed from the raw
data is:

S5(Y) = Z]':UJ Zi:l:n (:‘/ij n y_j)z ©)

The formula computed from Euclidean distances is as
above:

ss(Y) =(3_,,, D4 ) /m @)

Note that the division is by the number of objects 1,
not by the number of distances involved in the calcula-
tion. The values from eqns 1 and 2 for SS(Y) are equal
(Appendix S1; Legendre & Legendre 1998, Egs. 8.5 and
8.6). The ordinary unbiased estimate of the total variance
in the data is obtained by dividing SS(y) or SS(Y) by
(n = 1). The equality of eqns 1 and 2 only holds for
Euclidean distances. If the distance matrix has been com-
puted using another formula than the Euclidean distance
function, the SS obtained from eqn 2 is no longer equal to
the SS of the original data (eqn 1). Equation 2 can be used
in least-squares algorithms that compute statistics in the
distance world, e.g. for K-means partitioning of objects
based upon a question-specific distance matrix.

Null hypotheses

A test of statistical significance involves three main com-
ponents: a null hypothesis, a test statistic and a reference
distribution under the null hypothesis to assess the sig-
nificance of the statistic with respect to that hypothesis.
The null hypothesis (Hy) in a test of the correlation coeffi-
cient states that the correlation (linear or monotonic)
between the variables in the reference population is zero
(p = 0); the formulation of Hj in terms of a linear or
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monotonic relationship determines the choice of a linear
or rank correlation coefficient as the test statistic. In sim-
ple or multiple linear regression, the null hypothesis
states that the explanatory variables used in the analysis
explain no more of the response variable’s variation than
would random variables with the same distributions. The
test statistic is the F statistic derived from the coefficient
of determination (R? statistic) of the regression. For multi-
variate response data, the same type of null hypothesis
can be tested using canonical redundancy analysis
(RDA); the same R? and F statistics as in linear regression
are used for testing.

Users of the Mantel test often overlook the fact that
the test assumes a linear relationship between the dis-
tances in the two D matrices under study. The null
hypothesis of the Mantel test states that the distance
matrices are unrelated in some specified way (linear rela-
tionship). This assumption can be relaxed to that of a
monotonic relationship by using the Spearman instead of
the Pearson correlation to compute ry;, as suggested by
Mantel (1967) and Dietz (1983). Distances can also be
transformed using logs or other simple functions, but
more complex forms of nonlinearity cannot easily be han-
dled by the Mantel test. Splines and other nonlinear
smoothing methods can, however, be used on distance—
distance or distance-similarity dispersion diagrams to fit
a curve to the plot, helping the eye see the shape of the
relationship (e.g., Figs 2 and 3 in ‘Spatial gradients’” sec-
tion on spatial gradients). A relationship which is linear
for the raw data may become nonlinear when using dis-
tance matrices, as will be shown in the ‘Spatial gradients’
section. The Mantel statistic can be tested by an appropri-
ate form of permutation (the ‘matrix permutation’ briefly
described in the ‘Bivariate case’ section) or, if n is large,
transformed into a statistic called t by Mantel (1967) and
tested with reference to the standard normal distribution.

Correspondence between data, question and method of
analysis

Before using a statistical model or a testing method to
interpret observational or experimental data, the follow-
ing questions must be carefully examined and answered:

1 Is the chosen statistic appropriate to the data and to the
hypothesis to be tested (Fig. 1, Table 1)? We will show
in ‘Different sum-of-squares statistics’ that the statis-
tics computed in correlation and Mantel analysis are
fundamentally different. Correlation statistics (linear
or monotonic) are appropriate to test a hypothesis of
correlation between variables. Mantel statistics (linear
or monotonic) are appropriate to test hypotheses that
only concern and can only be formulated in terms of
distances.

© 2010 Blackwell Publishing Ltd
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2 Does the method have a correct type I error rate? Simu-
lation studies can be used to assess the rate of type I
error of statistical methods in situations where there is
no effect (p = 0 in correlation analysis) corresponding
to the tested hypothesis.

3 Given the data, is the method the most powerful
among those available? Here again, simulation studies
can be used to compare the power of statistical meth-
ods in situations where there is an effect corresponding
to the tested hypothesis (p # 0 in correlation analysis).

To test different types of hypotheses in spatial popula-
tion genetics (spatial data) and landscape genetics (spa-
tial and environmental data) about the underlying
processes affecting genetic spatial structures (Fig. 1),
Table 1 shows how environmental and spatial data can
be represented in linear models and in distance-based
Mantel tests.

Different sum-of-squares statistics

When rectangular tables of raw data are transformed into
distance matrices, a Mantel test between the two distance
matrices is not equivalent to a test of the simple correla-
tion between two vectors (for two rectangular tables of
size n x 1) or the canonical correlation between two mul-
tivariate data tables: the null hypotheses (‘Null hypothe-
ses’ section) and the test statistics differ. Let us now focus
on the test statistics.

Consider two variables y and x. The formula for the
Pearson correlation coefficient between the variables y.
and x. centred on their respective means is:

P D it Wie X Xic) _ Ve Xe 3)
: \/Zi:l n (yzzc) \/Zi:l:n (xizc) \/SS(YC) \/SS(XC)

In the framework of the linear regression of y on x, the
coefficient of determination fo is the SS of the fitted val-
ues (SS of vector §) divided by the total sum-of-squares
of y (SS(y) at the beginning of section ‘Equivalence of
rectangular data and distance matrices for sum-of-
squares statistic’):

SS(9)
2 _
Ry\x - SS(y) (4)
so that the bivariate correlation coefficient is:
. SS
rya= (500 o) 6

where (sign) is the sign of the covariance between y and
x. Equations 3 and 5 produce the same result for r. In the
multivariate case, canonical redundancy analysis (RDA)
of a matrix Y by X produces an R statistic constructed in
the same way:
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g
R = e ©

The important point here is that in the univariate and
multivariate cases, the sum-of-squares in the denomina-
tor of R* are SS(y) and SS(Y), respectively. This is the SS
that is partitioned by the regression or RDA into a SS of
fitted values SS(§) or SS(¥) and a residual sum-of-
squares SS(Yres) O SS(Yyes)-

Consider now two distance matrices, Dy and Dy, com-
puted from vectors y and x or data tables Y and X. For
the present demonstration, assume that the Euclidean
distance function has been used to compute the dis-
tances, as in eqn 2. String out the upper-diagonal portions
of the two distance matrices as long vectors dy and dx,
each of length n(n — 1)/2. The Mantel correlation, ry,, is
the correlation coefficient computed from these two vec-
tors, as shown in Legendre & Legendre (1998, Fig. 10.19)
and other textbooks. It is also the square root of the coeffi-
cient of determination R}, of the linear regression of dy
on dy:

a
Ri/[ = R‘ziY\dX = %d:; (7)
so that
= (g 20 ®)

where (sign) is the sign of the covariance between dy and
dx. Again, we have the SS of the vector of distances dy in
the denominator of the R* equation. What is that value?
We can compute it as:

SS(dy) =3 ., (D =Dx)* =3, (D) - n(n—1)/2

)
This formula is written using D, values to make it com-
parable to eqn 2. For symmetric distance matrices, only
the Dj, values in the upper-triangular portion of D are
used. The main point here is that SS(dy) in eqn 9 is not
equal to, is not a simple function of, and cannot be
reduced to SS(Y) in eqn 2.

To summarize, the sum-of-squares SS(Y) (eqns 1 or 2)
and SS(dy) (eqn 9) are different statistics. As a conse-
quence, the coefficients of determination constructed
with SS(Y) or SS(dy) in the denominator (Ri‘X for two
variables or R%{\x for two matrices analysed by RDA on
the one hand, and R%IY\ ax for two distance matrices analy-
sed by the Mantel test on the other), and the correspond-
ing coefficients of correlation (Pearson r for two
variables, Mantel r\; for two distance matrices), are also

5 <Zi;&h DihY)z

different statistics: they do not measure the same rela-
tionship.

Consider the numbers 1-10 for example. Their total
sum-of-squares, SS(y), is 82.5 (eqn 1). Now compute a
Euclidean distance matrix D among these 10 numbers:
the sum-of-squares SS(dy) from eqn 9 is 220. So R?, the
coefficient of determination or the square of the Pearson
correlation between two vectors, which represents a frac-
tion of eqn 1, cannot be equal to R%,, the square of the
Mantel correlation between the derived distance matri-
ces, which is a fraction of eqn 9.

The two families of statistical methods will also
diverge, perhaps more, when the raw data tables are
transformed into distance matrices D using non-Euclid-
ean distance functions that are specific to the field of
application, such as genetic or ecological distances. It
should now be clear that testing the relationship between
two variables and rectangular data tables is not equiva-
lent to testing the relationship between distance matrices
derived from them.

Empiricists who frown upon theoretical justifications
should be interested in the fact that the values of R3; of a
Mantel test or a regression on distance matrices are
always much lower than those of the R* of a (multiple)
regression or canonical analysis computed on the raw
data (when it is possible to do so), as will be seen in the
simulation results reported in section the ‘Bivariate case’.
This was one of the results reported by Dutilleul et al.
(2000, Table 2) who worked out the relationships
between the theoretical correlation between two simple
variables and the expected value of the Mantel statistic
for distance matrices computed from these two variables,
under the assumption of normality. So, R, cannot be
used as a measure of explained variance for the original
data.

Summary of findings — The Pearson correlation r and
Mantel r\ statistics are based on different sums-of-
squares that are not equal, are not a simple function of,
and cannot be reduced to each other. The Pearson corre-
lation is a statistic describing the linear relationship
between the variables (monotonic relationship in the case
of the Spearman correlation), whereas the Mantel statistic
based on the Pearson formula describes the linear rela-
tionship between distances (or a monotonic relationship
if the Spearman formula is used).

Bivariate case

Monte Carlo simulations allow researchers to compare
statistical methods in situations where they know the
exact relationship between the variables. No doubt exists
as to which, of Hy or Hy, is true in each particular simu-
lated data set (Milligan 1996). Legendre (2000) simulated
bivariate data to compare the power of the Pearson corre-
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lation and Mantel tests in situations where the correlation
coefficient between two simple variables was appropri-
ate. We completed and expanded these simulations here.
Two vectors of random normal deviates, y and x, each of
length n = {10, 30, 50, 100}, were generated and corre-
lated by a predetermined population value
p(y,x) = {-0.5, 0, 0.5}. Hy was true when p = 0 and false
when p(y,x) = —0.5 or 0.5. One-tailed tests (parametric
and permutational using 999 random permutations) of
Pearson’s r correlation coefficient were conducted in both
the lower and upper tails; only the test in the tail corre-
sponding to the sign of p made sense in each case because
we wanted to assess the power of the tests to detect the
imposed population correlation. Note that a permutation
test using Pearson’s r as the test statistic, as was carried
out here, is strictly equivalent to a test based on the
pivotal f-statistic derived from r; this is because t is a
strictly monotonic function of r for any constant value of
n (Legendre & Legendre 1998, Section 1.2.2). The two vec-
tors were transformed to distance matrices Dy and D,
and a permutational Mantel test was run using 999 ran-
dom permutations of the objects identifying the rows and
columns in one of the distance matrices; this form of per-
mutation is called ‘matrix permutations’ in Legendre
(2000). As in the case of Pearson’s r, one-tailed tests were
conducted in both the lower and upper tails. Power was
the rejection rate of Hy at the 5% significance level after
10,000 independent simulations.

The simulation results (Table 2) lead to the following
observations:

1 To be valid, a test of significance should have a rate of
rejection of the null hypothesis not larger than the sig-
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nificance level o, for any value of o, when Hy is true
(Edgington 1995). The results in Table 2 (first 4 lines,
p = 0) show that, for data with normal error, the para-
metric and permutation tests of the Pearson correlation
coefficient had correct levels of type I error, with rejec-
tion rates near the significance level a = 0.05. This was
also the case for the permutational Mantel test. Similar
results had been found by Legendre (2000, Fig. 1a-b).
The additional information provided in Table 2 is that
the means of the Pearson correlations and Mantel sta-
tistics were both near 0. However, Dutilleul et al. (2000)
described a few cases where the values of the Mantel
statistics are negative, whereas the Pearson correlation
is strictly 0; their Table 4 also shows cases, for real
bivariate data, where the signs of the Mantel statistics
varied but were unrelated to the signs of the Pearson
correlations.

In the simulations where the data vectors were posi-
tively correlated (p = 0.5), the parametric and permu-
tational tests of the Pearson correlation in the upper
tail always had greater power (the rejection rate of Hy
was higher) than the Mantel test. The difference in
power between the test of Pearson’s r and the Mantel
test is because of the fact that the two tests use differ-
ent statistics, as explained in the section ‘Different
sum-of-squares statistics’.

In the simulations where the data vectors were nega-
tively correlated (p = —0.5), the tests of Pearson’s r that
made sense were those conducted in the lower tail
because we wanted to estimate the power of the test to
detect a negative correlation. The test in the lower tail
showed power that increased with n, as expected.
Tests conducted in the upper tail seldom detected a

Table 2 Comparison of power of the tests of the Pearson correlation (parametric and permutation tests) and the simple Mantel test
(permutation test) in simulations where the correlation coefficient between two simple variables was appropriate. # is the number of
objects in each simulation; p(y,x) is the population correlation value imposed to the two data vectors. Power is the rejection rate of Hy at
the 5% significance level after 10000 independent simulations. ‘t-test of " = parametric test of the t-statistic associated with Pearson’s r;
‘perm. test ¥’ = permutational test of r; ‘lower tail’ and “upper tail’ refer to the opposite tails in one-tailed tests.

Power of Power of Power of Power of Power of Power of
Mean of t-test of r t-test of r perm. test perm. test Mean of Mantel test Mantel test
n ply,x) Pearson r lower tail upper tail r lower tail r upper tail Mantel r lower tail upper tail
10 0 -0.0022 0.0447 0.0495 0.0476 0.0497 -0.0029 0.0498 0.0469
30 0 0.0013 0.0497 0.0491 0.0487 0.0485 -0.0008 0.0503 0.0489
50 0 0.0001 0.0508 0.0504 0.0507 0.0505 -0.0006 0.0503 0.0516
100 0 -0.0003 0.0515 0.0480 0.0522 0.0485 0.0002 0.0518 0.0517
10 0.5 0.4772 0.0011 0.4554 0.0010 0.4529 0.1907 0.0145 0.2792
30 0.5 0.4935 0.0000 0.8976 0.0000 0.8963 0.2142 0.0021 0.6283
50 0.5 0.4949 0.0000 0.9833 0.0000 0.9834 0.2164 0.0003 0.8071
100 0.5 0.4967 0.0000 0.9999 0.0000 0.9999 0.2194 0.0001 0.9679
10 -0.5 -0.4814 0.4591 0.0019 0.4568 0.0016 0.1971 0.0128 0.2828
30 -0.5 -0.4926 0.8995 0.0000 0.8982 0.0000 0.2133 0.0013 0.6279
50 -0.5 -0.4954 0.9855 0.0000 0.9854 0.0000 0.2181 0.0003 0.8039
100 -0.5 -0.4991 1.0000 0.0000 1.0000 0.0000 0.2217 0.0000 0.9691
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significant correlation (and this only happened with
n = 10), also as expected.

4 An interesting point here is that the mean of the Man-
tel statistics was positive for data vectors generated
with p = —0.5. Because Euclidean (i.e. “‘unsigned’) dis-
tances had been used, the Mantel test only detected
positive relationships between distances despite the
fact that the original data vectors were negatively cor-
related. Even in that case, one expects the distances in
the two matrices to increase together if any effect at all
is detected. Mantel tests in the lower tail nearly never
detected a significant relationship. Note that the para-
metric and permutational tests of the Pearson correla-
tion in the lower tail always had greater power than
the Mantel test in the upper tail.

5 The mean of the Pearson correlations was always close
to the imposed population mean p. The small differ-
ence when n = 10 is because of the distributions of sim-
ulated correlations, which is highly skewed to the left
when 7 is small and p > 0, and to the right when 7 is
small and p < 0. The mean of the Mantel statistics was
always much smaller than [pl, a phenomenon that
was noted and explained by Dutilleul et al. (2000) for
the bivariate normal case.

Summary of findings — Users of the Mantel test should
be aware of three facts when they are analysing data and
testing a bivariate correlation hypothesis: (i) the test of
the Pearson correlation has much greater power than the
Mantel test to detect a linear relationship between data
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vectors; this means that the test of Pearson’s r is more
likely than the Mantel test to detect a relationship when it
is present in the data. (ii) When the correlation between
the two original vectors is negative, the Mantel test can-
not detect its sign: it finds a positive relationship in the
world of distances. Using a Mantel two-tailed test to
detect a relationship among distances whatever its sign is
not a good solution either because two-tailed tests have
less power than one-tailed tests. (iii) The value of the
Mantel statistic is always much smaller than the popula-
tion correlation, so it cannot be used as an estimate of that
correlation.

Spatial gradients

Spatial gradients can arise in genetic data as a result of
several types of processes. They can appear, for example,
during secondary contact between distant and temporar-
ily isolated populations that have diverged, or as a
response of non-neutral alleles to environmental gradi-
ents. Spatial gradients can also result from processes such
as sequential colonization events. For example, the colo-
nization of the world by humans has led to a pattern
where genetic distance between the ancestral and descen-
dant populations increases with geographical distance
(Ramachandran et al. 2005). Spatial patterns can therefore
be observed in the heterozygosity, which decreases as the
distance from the ancestral population increases
(Prugnolle et al. 2005; Ramachandran et al. 2005; Foll &
Gaggiotti 2006). Other gradients that mimic those
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Fig. 2 One hundred points forming a linear gradient in a single geographic dimension (transect X), (a,b) with a small amount of noise,
(c,d) with more noise. (a,c) One-dimensional maps of the gradients, with regression lines; X is the geographic axis, z the response vari-
able. (b,d) Scatter plots of the distances in the response variable D(z) compared to the geographic distances D(X), with a smoother func-
tion (‘supersmoother’). r is the Pearson correlation coefficient, ry; the Mantel statistic.
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generated by selection may arise through allele surfing
(Edmonds et al. 2004). All these processes can also be
strongly influenced by genetic drift.

Some other types of genetic processes are expected to
produce autocorrelation in the genetic data, but not gra-
dients per se: genetic drift, gene flow, dispersal, isolation
by distance, isolation by resistance (McRae 2006), etc.
(Fig. 1c). Autocorrelation can be studied through univari-
ate correlograms and multivariate Mantel correlograms,
or modelled by regression or canonical analysis using
Moran'’s eigenvector maps (spatial eigenfunction analy-
sis: Introduction, penultimate paragraph) or multiscale
ordination (Wagner 2004) (Fig. 1b).

Using a simple example, we will now show that in
population genetic studies of adaptive genes along spa-
tial gradients, a significant correlation between vectors
and matrices of raw data does not guarantee that a signif-
icant correlation will be identified by the Mantel test in
the corresponding distance matrices. We simulated a var-
iable z forming a linear gradient in one or two geographic
dimensions, with random normal error € = N(0,1), using
the equation z = f(X,Y) + ke; X and Y are the geographic
coordinates of the points. The amount of error, k, will
vary from 1 to 10.

In Fig. 2, the simulated structure is a linear gradient
along a transect (100 points). In Fig. 3, we simulated a
gradient running diagonally across the map. The equa-
tions used for generating the response variable z are
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shown on, or on the side of the maps. These simulations
will illustrate the fact that (i) the amount of error affects
the power of the Mantel test more than it does the test of
the correlation coefficient in this simple form of trend-
surface analysis, and (ii) the Mantel test is more likely to
identify the gradient along a transect than on a map.

The basic amount of error was k = 1 in Figs 2a,b and
3a,b; in other words, a local innovation was generated by
adding a random normal deviate N(0,1) to the gradient
value at each point, creating values with a standard devi-
ation near 3 along 10 points of the gradient in the two
spatial structures. In the case of the transect, the Mantel
test (Fig. 2b) successfully identified the gradient. So we
created a more difficult problem in Fig. 2c,d where the
noise parameter k was 10. There is more dispersion
around the smoother line in Fig. 2d than in Fig. 2b, but
the gradient remains mostly linear, as shown by the
smoother line, and the Mantel test still identifies it suc-
cessfully.

A gradient with low noise (k = 1) running diagonally
across the map was easily detected by regression on the
X and Y geographic coordinates (trend-surface analysis,
Fig. 3a: VR* = v = 0.92) and by the Mantel test (Fig. 3b:
rm = 0.49). Increasing the amount of noise to k = 2, the
relationship between distance matrices D lost monotonic-
ity and became more difficult to detect (Fig. 3d:
rm = 0.30), although it was easily detected by regression
(Fig. 3c: VR* = r = 0.76). The power of the Mantel test
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Fig. 3 One hundred points forming a linear gradient running diagonally across a surface (X,Y), (a,b) with a small amount of noise,
(c,d) with more noise. (a,c) Bubble plot maps of the gradients: X and Y are the geographic coordinate axes, z the response variable; the
size of the circles is proportional to the value of z. (b,d) Scatter plots of the distances in the response variable D(z) compared to the
geographic distances D(X,Y), with a smoother function (‘supersmoother’).
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was affected by the loss of monotonicity of the distance
relationship as k increased. Figure 4 reports the results of
the tests carried out by trend-surface analysis and by the
Mantel test, for k varying from 1 to 10. Trend-surface
analysis (circles) produced a significant equation for all
values of k in the graph, whereas the Mantel test lost sig-
nificance, for an a-level of 0.05, from k = 6 and on. The
one-tailed test of R* would be equivalent to a two-tailed
test of r in the simple linear regression case (e.g. a tran-
sect). Because a one-tailed test has more power than a
two-tailed test, the comparison in Fig. 4 should have
given advantage to the one-tailed Mantel test had the two
tests had equivalent power for detecting the gradient in
the data.

Summary of findings — These simulated examples
show that the power of the Mantel test is lower than that
of trend-surface analysis for the detection of noisy spatial
gradients. Because of its omnidirectional nature, the
Mantel test is not ideal for the detection of directional
spatial structures on two-dimensional maps, although it
behaves well along transects for testing hypotheses for-
mulated in terms of distances.

Multivariate, spatially structured data

Appendix S2 summarizes the results, published else-
where (Legendre et al. 2005), of numerical simulations
conducted to empirically compare the power of canonical
redundancy analysis (RDA) and Mantel tests to detect
environmental signature and autocorrelated spatial
structures in multivariate response data. Autocorrelation
is the hypothesized outcome of many spatial processes in

1.0 " *>I|<~|< P | " 1 " 1 " 1 P | " 1 " 1 " 1 P |
82 7 —O—«/R_2 from trend-surface analysis [

—[F ry from mantel test

Correlation
(=)
W
1

o 1 2 3 4 5 6 7 8 9 10 11
Amount of error k

Fig. 4 Analysis of surfaces with different amounts of noise k,
generated using the equation z = 0.5X + 0.5Y + ke where ¢ is a
random standard normal deviate. R? is the coefficient of determi-
nation of the trend-surface regression equation; ry is the stan-
dardized Mantel statistic. Closed symbols: statistics significant at
*** P <0.001; **,0.01 2 P > 0.001; *, 0.05 > P > 0.01. Open sym-
bols: P > 0.05. Trend-surface regressions: the one-tailed test of R*
would be equivalent to a two-tailed test of r in the simple linear
regression case. Mantel correlations: one-tailed tests.

population genetic data. This is one of the types of ques-
tion addressed in landscape genetics where researchers
are trying to understand genetic variation in terms of
neutral genetic processes and selective responses to envi-
ronmental conditions.

Summary of findings — (i) Permutation tests used in
the analysis of rectangular data tables by regression or
canonical analysis, or in the analysis of distance matrices
by Mantel tests, all have correct levels of type I error; so
they are all statistically valid. For regression analysis, this
has been shown by a number of authors including
Anderson & Legendre (1999); for canonical redundancy
analysis, by Legendre ef al. (2005); for Mantel tests, by
Legendre (2000) and Legendre et al. (2005). (ii) For the
detection of multivariate species-environment relation-
ships, linear analysis by RDA has far greater power than
methods based on distance matrices. This means that
when a relationship is present in data, one is much more
likely to detect it by RDA than by Mantel test or regres-
sion on distance matrices. The differences in power
reported in Table A2.1 (Appendix S2) between RDA and
Mantel test results are in line with the differences found
in the section ‘Bivariate case’” between Pearson r and
Mantel r\y (Table 2). (iii) For autocorrelated data, each
method (RDA and Mantel) had variants that did better
than using the X and Y coordinates only, but RDA always
outperformed the distance-based Mantel tests. The differ-
ences in power reported in Table A2.1 between RDA and
Mantel test results are in line with the differences shown
in Fig. 4 (univariate response data) between the R statis-
tic of trend-surface equations and Mantel ry. (iv) These
conclusions should apply to all types of response data.
The allele frequency and other types of frequency data
analysed in the frameworks of spatial population genet-
ics and landscape genetics are of the same type as the
species abundances that served as the reference for the
simulations reported in Table A2.1.

Other statistical aspects

A major handicap of the raw data approach (i.e., the anal-
ysis of rectangular data tables) has been lifted in recent
years for the linear analysis of multivariate frequency
data, such as allele frequencies and community composi-
tion data: Legendre & Gallagher (2001) have shown how
to transform community composition data in such a way
that distances that are of interest in genetics and commu-
nity ecology (e.g., the chord, chi-square and Hellinger
distances) are preserved in the analysis. These simple
transformations of the frequency data make them suit-
able for linear analyses such as PCA, RDA and K-means
partitioning. The first step of these transformations is to
standardize by row (in different ways, depending on the
transformation), thus removing from the analysis the dif-

© 2010 Blackwell Publishing Ltd



ferences in row sums, which correspond to the total num-
ber of individuals per site included in the genetic analy-
sis, or the total productivity of the sites in community
ecology. The chord distance has a long history of applica-
tion in genetic analysis. The Hellinger distance is the
chord distance computed on square-root-transformed
frequencies.

Our simulation results (Table 2, Figs 2-4, Appendix
S2) have shown that the Pearson r and Mantel r\; statis-
tics are quite different in values. For that reason, the
Mantel R, statistics that serve as the basis for variation
partitioning based on distances are not equal to the R?
statistics from linear regression or canonical analysis that
serves as the basis for linear variation partitioning. So the
fractions of variation obtained by variation partitioning
in the distance world are incorrect when they pretend to
represent fractions of the original data variation. Their
exact meaning has never been explained by the propo-
nents of that method.

Another way of looking at this problem is the follow-
ing: the square of the Mantel r statistic may be called an
R?, but it is not a coefficient of determination as known in
linear models (regression, canonical analysis), and it can-
not be interpreted as the proportion of the response vari-
ables’ (Y) variance explained by X, but only as a measure
of fit of a linear model to the paired sets of distances. The
distances used to compute SS(dy) and the fitted values
used to compute SS(dy) are not independent of one
another within each set, as they are in a linear regression
R

A Mantel test only produces an r statistic and a P-
value. Canonical analysis produces results that are much
richer: biplots are produced, and the contribution of each
response and explanatory variable is computed and can
be examined in biplots. This is another reason to prefer
canonical analysis to analyse the variation of multivariate
response variables such as allele frequencies.

Another drawback is that an adjusted R* (Ridj) cannot
be computed from Mantel statistics: no equation has been
proposed and demonstrated to produce an unbiased
adjusted R* (Rlz\,[adj) in Mantel-type regression. An
adjusted R? is required to obtain unbiased estimates of
the fractions in variation partitioning (Peres-Neto et al.
2006). Those who insist on interpreting the square of the
Mantel r\ as a coefficient of determination are left with,
at best, a biased estimate.

Additivity is a nice property of linear variation parti-
tioning: an identical total amount of explained variation
of Y is obtained, whether all explanatory variables are
put in a single table X or they are divided into any num-
ber of tables. The effects of the explanatory variables are
thus additive. This is not the case in partitioning on dis-
tances: different total amounts of explained variation for
the response D(Y) are obtained if one includes all explan-
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atory variables in a single distance matrix D(X) or if sepa-
rate distance matrices are computed for the groups of
explanatory variables D(X;), D(Xy), ..., D(X)) (Legendre
et al. 2008). Likewise, transforming Y and X into distance
matrices Dy and Dx and carrying out a Mantel test does
not produce a test equivalent to that of multiple regres-
sion or canonical analysis, as we saw earlier on theoreti-
cal bases and in the simulation results of sections
‘Bivariate case’, ‘Spatial gradients” and ‘Multivariate spa-
tially structured data’. Furthermore, if X is divided into
various subsets Xj, Xy, ..., Xk, and each of these explana-
tory subsets is transformed into a distance matrix Dx,,
Dx,, ..., Dx,, a Mantel test of Dy against Dx is not equiva-
lent to, and does not produce the same result as, a test of
the statistic of a multiple regression of Dy on the set of
distance matrices Dy,, Dx,, ..., Dx,. The latter method
should only be used when the hypothesis to be tested
clearly involves a subdivision of the explanatory vari-
ables into precise subsets. Until all these statistical points
have been cleared, variation partitioning should not be
performed on distance matrices.

Discussion

In this study, we are concerned with the power of the
Mantel test in situations where the primary question or
hypothesis involves relationships between raw data. We
are warning population geneticists that in these cases,
statistical analyses based on distances lead to a large loss
of statistical power; power is the ability of a statistical
method to detect an effect when one is present in the
data. We have shown the loss of power in studies of rela-
tionships between variables and rectangular data tables,
which are turned into distance matrices, with special
emphasis on the situation where one of the data tables
represents spatial relationships among the study sites. In
situations where the question or hypothesis is clearly for-
mulated in terms of the raw data (vectors or rectangular
data tables), Mantel tests should not be used. Legendre
et al. (2005, pp. 438-439) give several examples of such
misuses in the community ecology literature.

In spatial population genetics and landscape genetics,
many research questions involve distance relationships.
For example, the effect of landscape structure on move-
ment, mating and gene flow among individuals or popu-
lations is usually studied by making predictions about
relationships between matrices of genetic distance and
landscape cost and testing these predictions by Mantel
tests, whereas adaptive variation along environment gra-
dients is studied using regression and canonical analysis
of raw data tables. These statistical methods seem to be
interchangeable (Table 1) because of the easiness with
which a distance matrix can be computed from a raw
data table, or the opposite — going from a distance matrix
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to a rectangular data table — using principal coordinate
analysis. The following questions will have to be
addressed by future research and articles:

1 Consider the isolation by distance hypothesis for
example: it makes predictions about relationships
between genetic and geographic distance, and these
predictions can be tested using Mantel tests or regres-
sion on distance matrices. It also predicts that autocor-
relation should be present in the genetic response data;
this prediction can be tested using univariate or multi-
variate correlogram analysis, or by regression or
canonical analysis using Moran’s eigenvector maps
(spatial eigenfunction analysis).

2 Predictions of relationships between distance matrices
can be tested using Mantel tests, but the same relation-
ships could also be tested by canonical analysis after
transforming the distance matrices into rectangular
matrices through principal coordinate analysis; this is
called distance-based (db) canonical analysis (db-RDA,
db-CCA: Legendre & Anderson 1999; example of
application to genetic distance data: Geffen et al. 2004)
(Fig. 1c). For questions formulated in terms of dis-
tances, which statistical method has the highest power
remains to be determined. This question should be
examined by numerical simulations carried out by
working groups of population geneticists.

Scientists should use multiple regression (for a single
response variable) or canonical redundancy analysis
(RDA) when investigating response-environment rela-
tionships or spatial structures, unless the hypothesis to
be tested is strictly formulated in terms of distances (or
involves the variance of the distances). The reasons are
the following: (i) the null hypothesis of the Mantel test
involves distances, whereas those of correlation analysis,
regression analysis and RDA involve the original vari-
ables (rectangular data tables); and (ii) correlation analy-
sis and RDA lead to higher R” statistics and offer a
more powerful test than Mantel analysis in tests of
hypothesis involving relationships among the original
variables.

The second point is supported by the results of simu-
lations reported in this study. The section ‘Bivariate
case’ showed that for testing a bivariate correlation
hypothesis, e.g. between a response and an environmen-
tal variable, the test of the Pearson correlation has much
greater power than the Mantel test to detect a linear
relationship between data vectors; this means that the
test of Pearson’s r is more likely than the Mantel test to
detect a relationship when it is present in the data.
Using examples, we showed in the section ‘Spatial gra-
dients’ that the power of the Mantel test is lower than
that of trend-surface analysis for the detection of noisy

spatial gradients. In the section ‘Multivariate spatially
structured data’ and Appendix S2, we reported the
results of extensive simulations showing that for the
detection of species-environment relationships or spatial
structures in the multivariate response data (e.g. several
species, several alleles), linear analysis by RDA has far
greater power than methods based on distance matrices.
This means that when relationships of these types are
present in the response data, one is much more likely to
detect them by RDA than by Mantel test or regression
on distance matrices. These empirical findings are not
surprising given the fact that the SS involved in the
denominator of the Pearson correlation (or partitioned
by multiple regression or RDA), and that of the Mantel
test and derived forms (such as linear regression on dis-
tance matrices), are not equal, are not a simple functions
of, and cannot be reduced to each other (section ‘Differ-
ent sum-of-squares statistics’).

The domain of application of the methods of compari-
son based on distance matrices (Mantel test, QAP, partial
Mantel test, ANOSIM, multiple regression on distance
matrices) is the set of {evolutionary, genetic, ecological,
etc.} questions that are originally formulated in terms of
distances. Testing the distance predictions of a hypothe-
sis of isolation by distance in genetics is one of these
questions. Isolation by distance also predicts the presence
of spatial autocorrelation in the response data, however,
and that prediction should best be tested using other
methods, including univariate or multivariate correlo-
gram analysis, regression or canonical analysis using spa-
tial eigenfunctions.
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