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Appendices to: 

Legendre P, Fortin MJ (2010) Comparison of the Mantel test and alternative approaches for 
detecting complex multivariate relationships in the spatial analysis of genetic data. Molecular 
Ecology Resources, 10, 831-844.  
 

Appendix 1. Two ways of computing SS(Y) 

 Theorem. Matrix Y contains data about n points in p-dimensional Euclidean space. The 
sum of squares of the data in Y, SS(Y), which is the sum of squares of the distances to the 
centroid for the group of points, is equal to the sum of squared Euclidean distances among the n 
points, in the half-matrix of distances D (with elements Dih), divided by n (Fig. A1.1). In other 
words, 
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 Proof. The data are p-dimensional. The proof is easy to follow in the case p = 1 which will 
be considered first. The left-hand portion of the equation is transformed into a form used for 
quick calculation of the variance. To simplify the proof, the right-hand part is transformed to 
incorporate all distances in the whole square distance matrix D. The sum of squares of all 
distances in D must be divided by 2 to be equal to the right-hand member of expression 1b; the 
distances along the diagonal of D, which are 0, do not contribute anything to the sum. 
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 For the general case where p > 1, one only has to rewrite equations 2 to 5 with an additional 
summation over the p dimensions.  
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 Details about the transformation of the last (rightmost) term in Eq. 3 to the corresponding 

term in Eq. 4: how to go from Res1 = 
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in Eq. 4. 

1. Res1 is the cross-product (scalar product) of two long vectors, each of size k = n2, obtained by 
inflating vector y. These vectors can be written as follows in the R language: 

 x = rep(y, each=1, times=n)  of length k = n2 

 z = rep(y, each=n, times=1)  of length k = n2 

 so that Res1 = 
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 or, in R: Res1 = sum(x * z), or more simply: Res1 = sum(y %*% t(y)) 

 Note that the elements in x and z are the same; only their order differs. 

2. Consider the formula for the covariance of x and z:  
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3. Because these two centred vectors 
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(zi " z ) are orthogonal by construct, their 
cross-product is 0. We obtain: 
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Fig. A1.1  The sum of squares of the distances to the centroid (*) of the group of points (a) is 
equal to the sum of the squared within-group distances divided by n, where n is the number of 
points in the group (b). 
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Appendix 2. Simulations involving multivariate, spatially structured data 

 The simulations reported here were carried out by Legendre et al. (2005) to compare 
modelling methods in the field of community ecology. The response variables were species 
presence-absence or abundance data; they are analogous to the gene frequency data analysed in 
spatial population genetics and landscape genetics. Multivariate response data were generated 
under the following model: 

 Sij = βjkEnvik + SASij + εSij   

where Sij is the value of species j at site i, Envik is the value of environmental variable k at site i, 
βjk transfers the effect of environmental variable k to species j, SASij is the added value given to 
species j by spatial autocorrelation at site i, and εSij is the “innovation” value for species j at site i 
(normal error). In plain language, this model says that the spatial variation of a species is the sum 
of an environmental effect, plus the spatial effect of population processes generating spatial 
autocorrelation (SA) in the abundances of that species. If βjk is 0, there is no effect of the 
environmental variables on the species. This model was translated into a simulation program that 
was first used to study the consequences of spatial structures for the design of ecological field 
surveys (Legendre et al. 2002) and field experiments (Legendre et al. 2004), and then in the 
simulations reported in Legendre et al. (2005) and here. 

 The program was used to generate “surfaces” (i.e., variables mapped in a geographic area) 
having some specified type of spatial structure. The full surface for data generation was a square 
grid containing 100 × 100 = 10000 points; the units of the grid are pixels of arbitrary size. After 
generating values on the whole grid, the program sampled it using a square regular grid design 
with 10 × 10 = 100 points with spacing of 10 units between neighbours. Ten species were 
generated on the surface (data table Y): 5 with spatial autocorrelation and random error only, and 
5 with spatial autocorrelation, random error, and possibly an environmental effect, depending on 
the value of the parameter β. The environmental variables (X) had a deterministic spatial 
structure (a weak gradient), spatial autocorrelation, and random error. The table describing the 
spatial relationships was called W. Details of the simulation method are given in Legendre et al. 
(2005). A simulated data set consisted of three data tables: the species frequencies, the values of 
the environmental variables, and the spatial coordinates of the points on the grid.  

 Because the response data are multivariate (10 species), canonical redundancy analysis 
(RDA) was used for linear modelling; RDA is the multivariate equivalent of multiple regression, 
which can be used to compute linear models for single response variables. Three canonical 
analyses were used: one to obtain the fraction of the species variation (R2) explained by the 
environmental variables (left-hand circle containing fraction [a+b] in Fig. A2.1), a second one for 
the fraction (R2) explained by the spatial data (right-hand circle containing fraction [b+c]), and a 
third one for the fraction (R2) explained by the environmental and spatial data jointly (union of 
the two circles, fraction [a+b+c]). The individual fractions [a], [b], [c], and [d] (residual 
variation) can easily be computed from these preliminary results, an operation called ‘variation 
partitioning’ described by Borcard et al. (1992) and Legendre & Legendre (1998). Peres-Neto et 
al. (2006) have shown that adjusted R2 (

  

! 

Radj
2 ) must be used to obtain unbiased estimates of the 

fractions [a] to [d] in variation partitioning. All these fractions of variation, except [b], can be 
tested for significance by RDA or partial RDA. The results of these tests of significance can be 
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used to assess the type I error rate and the power of different testing methods and types of 
representations of the spatial data. 

 For each data set, three types of representations of the spatial relationships were used as 
explanatory variables W in RDA: (1) the X and Y geographic coordinates of the 100 points 
forming the sampling grid; (2) a polynomial function of order 3 of the X and Y geographic 
coordinates, as in Borcard et al. (1992); and (3) a set of spatial eigenfunctions (PCNM variables, 
which represent a spectral decomposition of the spatial relationships among the sites) computed 
from the X and Y geographic coordinates, as in Borcard & Legendre (2002). The PCNM 
eigenfunctions related to the response variables were selected by a forward selection procedure. 
PCNM variables have been shown to be able to identify spatial autocorrelation as well as other 
types of spatial structures in response data (Borcard & Legendre 2002). All tests of significance 
of the F and partial F statistics were permutational (999 random permutations). 

 The same data set were analysed by regression on distance matrices (Hubert & Golledge 
1981; tests of significance described in Legendre et al. 1994), a generalisation of the Mantel 
analysis which is used by researchers to produce a form of variation partitioning involving R2 
statistics obtained by linear regression analysis on distances (Svenning 1999; Parris & McCarthy 
1999; Duivenvoorden et al. 2002). The tests of fractions [a] and [c] were done by partial Mantel 
tests, a form of analysis that was introduced in population genetics by Smouse et al. (1986). For 
each data set, three types of representations of the spatial relationships were used, as found in the 
literature on Mantel tests and distance-based variation partitioning: (1) a geographic distance 
matrix D(XY) computed from the X and Y geographic coordinates, (2) a distance matrix D(polyn.) 
obtained by computing Euclidean distances from the 3rd-order polynomial of the geographic 
coordinates described in the previous paragraph, and (3) a distance matrix ln(D(XY)) obtained by 
taking the natural logarithm of the values in D(XY). Most users of the Mantel test use D(XY) for 
analysing such data. The first and second analyses are comparable for the two methods: the first 
one uses the X and Y coordinates, raw or in the form of distances, while the second one uses the 
3rd-order polynomial function of X and Y, raw or in the form of distances. For raw autocorrelated 
data, PCNM analysis is likely to account for more variation of the autocorrelated data than the 
two forms of trend-surface analysis, linear and polynomial. For distance matrices, a logarithmic 
relationship to geographic distance has been suggested as the most appropriate form for spatially 
autocorrelated data (Hubbell 2001, Fig. 7.9). One-tailed permutational tests of significance were 
used for the Mantel and partial Mantel tests (999 random permutations) since this is what most 
users of the Mantel test would do. Note that the use of one-tailed tests here created an artificial 
advantage for the Mantel test since the F tests used in RDA have less power than would be 
obtained if a one-tailed test could be used. 

 Type I error and power results from these simulations are reported in Table A2.1, which 
reproduces (with permission) a portion of Table 1 of the Legendre et al. (2005) paper. In section 
1 of the Table, the species data were unrelated to the environmental variables (the parameter β 
was 0 for all species), so that the fractions of variation explained by the environmental variables 
(column [a+b]) reflect the type I error rates of the two methods of analysis and of the various 
representations of the spatial relationships. All rejection rates in that column are close to the 
significance level (α = 0.05) used in all tests. All testing methods were valid since they had 
correct rates of type I error. Column [b+c] contains the rejection rates of the tests of significance 
for the spatial relationships that were present in the species data since they were autocorrelated. 
The rejection rates indicate that while there is variation among the methods of representation of 
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the spatial relationships, the tests based on linear models (‘RDA’ lines) have much higher power 
than the tests based on distance matrices (‘Mantel’ lines).  

 In section 2 of Table A2.1, the species data were forced to be related to the environmental 
variables (parameter β was 0.5 for 5 of the 10 simulated species). The main difference with 
section 1 is to be expected in the rejection rates displayed in column [a+b], which shows how the 
various methods detect the effect of the environmental variables. The results show that the linear 
analysis (‘RDA’ lines) detected the environmental influence on the species in about 97% of the 
simulations, whereas the distance-based analyses (‘Mantel’ lines) detected this effect in only 
about 50% of the cases. 
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Table A2.1  Rates of rejection of the null hypothesis (H0: trace of the fraction is 0) at the α = 
0.05 level after 1000 simulations (excerpt from Table 1 of Legendre et al. 2005). S = species 
abundances; Env = environmental variables; Space = spatial relationships. XY = geographic 
coordinates of the sites. Autocorrelation in the species and environmental variables was 
controlled by a variogram with a range of 15 in a simulation field of size 100 x 100 (arbitrary 
units).  

______________________________________________________________________________ 

 Fractions of variation 
 __________________________________________________________ 

Partitioning [a+b+c] [a+b] [b+c] [a] [c] 
methods ⇓ Env + Space Env Space Env|Space Space|Env 
______________________________________________________________________________ 

1. S unrelated to Env (β = 0), S autocorrelated, Env = N(0,1). [a+b]: type I error. [b+c]: power 

RDA, XY 0.102 0.045 0.191 0.045 0.168 

RDA, polynomial 0.261 0.047 0.344 0.045 0.324 

RDA, PCNM 0.916 0.056 0.992 0.059 0.987 

Mantel, D(XY) 0.106 0.067 0.133 0.066 0.133 

Mantel, D(polyn.) 0.068 0.064 0.082 0.063 0.080 

Mantel, ln(D(XY)) 0.134 0.066 0.222 0.066 0.225 

 
2. S related to Env (β = 0.5), S autocorrelated, Env autocorrelated. [a+b] and [b+c]: power 

RDA, XY 0.963 0.973 0.194 0.964 0.181 

RDA, polynomial 0.944 0.971 0.327 0.950 0.304 

RDA, PCNM 0.999 0.970 0.993 0.954 0.986 

Mantel, D(XY) 0.501 0.487 0.124 0.478 0.121 

Mantel, D(polyn.) 0.386 0.492 0.081 0.488 0.081 

Mantel, ln(D(XY)) 0.529 0.488 0.199 0.481 0.188 

______________________________________________________________________________ 
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Fig. A2.1  Venn diagram representing the partition of the variation of a response matrix Y 
between two sets of explanatory variables X (environmental) and W (spatial). The rectangle 
represents the total variation in Y. Fraction [b] is the portion explained jointly linear models of X 
and W. Adapted from Legendre (1993). 
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Appendix 3 – Controversy about the validity of the partial Mantel test 

 Two papers appeared in Evolution in 2001-2002 about the use of partial Mantel tests in 
micro-evolutionary studies. The first one, by Raufaste & Rousset (2001), raised a valid point 
about the use of partial Mantel tests with general form of permutation to test for the correlation 
between two variables in the presence of spatial autocorrelation due to a special form of isolation 
by distance. The conclusion of that paper left the impression that partial Mantel tests, in general, 
used an inadequate testing procedure. Castellano & Balletto (2002) responded to that paper, using 
simulations based upon a more general model to show that the type I error of the partial Mantel 
test (Manly’s 1991 procedure) was correct. Rousset (2002) questioned the appropriateness of the 
data simulation model used by Castellano & Balletto. The last two papers used inappropriate 
testing procedures, generating more confusion than they shed light. 

 These three papers ignored previously published work in which the properties of different 
forms of partial Mantel tests, with or without spatial autocorrelation, had been analyzed and 
clearly spelled out (Oden & Sokal 1992; Dutilleul et al. 2000; Legendre 2000). These papers, 
published in the statistical literature, were apparently overlooked by the above-mentioned 
authors. Using the findings of these papers, plus some new illustrative examples, we point out 
how partial Mantel statistics should be tested. 

 Raufaste & Rousset (2001) claimed that partial Mantel tests are not adequate in at least 
some situations encountered in micro-evolutionary studies. They used a counter-example to show 
that type I error of the partial Mantel test is inadequate. They positioned N populations of a 
species, at regular intervals, around a circle on a map, and assumed a non-directional migration 
flow between neighbouring populations. The response variable X was the abundance of the 
response species. They introduced an intervening variable Z, the temperature. They wanted to 
know if there was a relationship between X and Z, taking into account the autocorrelation due to 
migration around the circle of sites. 

 The study was concerned with isolation by distance. This is a situation where the null and 
alternative hypotheses are clearly formulated in terms of distances; so, in principle, the Mantel 
test is appropriate. The authors showed that random permutation of the values across the sites is 
an inadequate procedure in this particular case. They did not demonstrate the inadequacy of the 
Mantel test outside that case. Quite to the contrary: in their Conclusion section, they described 
the correct way of carrying out restricted permutations in this particular case (around the circle of 
sites). 

 The present Appendix provides an opportunity to reemphasize that a test of statistical 
significance contains three main components: a null hypothesis, a test statistic, and a reference 
distribution under the null hypothesis to assess the significance of the statistic with respect to the 
null hypothesis. The null hypothesis in a Mantel test is that the distance matrices are unrelated, in 
some way that determines the choice of the test statistic. At least three statistics have been 
proposed: the cross-product of the corresponding distances in the two matrices, a Pearson 
correlation coefficient, and a Spearman correlation coefficient. The statistic can be tested by 
some appropriate form of permutation, or, if the number of observations n is large, transformed 
into a statistic called t by Mantel (1967) and tested using a table of the standard normal 
distribution. Permutations can be done in different ways, depending on the nature of the data. For 
the partial Mantel test, Legendre (2000) studied four ways of permuting the distance matrices. 
For data forming a transect or a loop, as in the Raufaste & Rousset (2001) example, restricting 
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the permutations in such a way that the data are moved as a ring around the loop and repositioned 
at random, as proposed by Raufaste & Rousset (2001) in the last paragraph of their paper, is a 
standard method in data analysis; it has been used for years in the program CANOCO (ter Braak 
1990), for example. 

In a reply to Raufaste & Rousset (2001), Castellano and Balletto (2002) noted that the 
case considered by Raufaste & Rousset (2001) for their simulations was very restrictive. They 
produced a short series of simulations, based upon a more general model, showing that the partial 
Mantel test had a correct rate of type I error. This had already been shown by the more extensive 
simulations of Legendre (2000). The simulations reported by Castellano & Balletto (2002) had 
two pitfalls, however.  

(1) For their simulations, they created two rectangular data matrices Y and X that were both 
related to a third rectangular matrix H. They then computed distance matrices derived from Y, X 
and H and used these matrices in simple and partial Mantel tests. They noted that the null 
hypothesis of the Mantel test is the absence of correlation between the distances in two D 
matrices, but they simulated a correlation between the original data tables. These two 
hypotheses are not equivalent; see next section. So, these authors’ simulation procedure does not 
correspond to the null hypothesis of the Mantel test.  

(2) In their simulations, Castellano & Balletto (2002) used two procedures: Manly’s (1991) 
procedure, which they called “the partial Mantel test”, and the second Smouse et al. (1986) 
testing procedure, called method 3 in Legendre (2000). (2a) Manly’s (1991) procedure for 
permutation of raw data is incorrect because it uses the partial regression coefficient as the test 
statistic, instead of the t-statistic associated with the partial regression or partial correlation 
coefficient. The importance of using, in permutation tests, either the partial correlation 
coefficient, or the t-statistic associated with the partial correlation or partial regression 
coefficient, which are pivotal statistics, is discussed in Anderson and Legendre (1999; section 
2.1) where references are given. Permutation probabilities obtained using a pivotal r- or t-statistic 
differ from results obtained from a non-pivotal (partial) regression coefficient b (which was 
Manly’s 1991 procedure). Only the partial r- or t-statistic, which are pivotal, are expected to 
produce correct type I error in permutation tests in multiple regression. Manly modified his point 
of view and his procedure in the 1997 edition of his book (p. 180). (2b) For the second Smouse et 
al. (1986) testing procedure (Legendre method 3), Castellano & Balletto (2002) found that it had 
slightly inflated type I error rate for n = 20 objects, a fact that had already been shown by 
Legendre (2000) who had produced simulations for n = 5 to 50 and concluded that this method 
should not routinely be used. The inflation of type I error for that method asymptotically 
disappears for large n, so that results published in the past are correct for n ≥ 50, or when H0 was 
not rejected. 

Castellano & Balletto (2002) produced additional simulations indicating that the power of 
the partial Mantel test was affected by correlations between the independent matrices. This 
situation had been studied in more detail by Legendre (2000). In his Figure 2f, Legendre found 
no deviation of rate of type I error from the expected value, in the presence of strong correlation 
between the two independent matrices, for permutation of raw data and permutation of residuals 
of the null model. In his Figure 6, Legendre found no significant differences in power among the 
various permutation procedures available for the partial Mantel test (Legendre method 3 was not 
included in these simulations), for increasing correlation values between the two independent 
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matrices. That Castellano and Balletto found such an effect is probably due to their inappropriate 
simulation protocol and/or use of the inappropriate statistic of Manly (1991). 

Rousset (2002) questioned the appropriateness of the data simulation model used by 
Castellano and Balletto, on different grounds than the argument presented above. Rousset (2002) 
indicates that he also used the incorrect testing procedure of Manly (1991) in the new simulations 
reported in this paper. 

 Abusive uses of the Mantel test and derived forms should be questioned, as we did in the 
main paper, but that questioning should be based on sound statistical arguments. The arguments 
developed by the authors of the three papers published in Evolution did not, in our opinion, offer 
a sound basis for criticizing Mantel tests. A description of the various permutation methods 
proposed for partial Mantel tests is given in Appendix 4, together with recommendations about 
the use of three of these procedures. 
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Appendix 4 – Tests of significance for partial Mantel tests 

 Proposed by Smouse et al. (1986), the partial Mantel test, also called the S-L-S test 
(Smouse-Long-Sokal), is a form of first-order partial correlation analysis involving three 
dissimilarity or distance matrices. It is widely used in such fields as evolution, population 
genetics, ecology, anthropology, psychometry, and sociology. The work of Smouse et al. (1986) 
was illustrated by a study involving matrices of genetic, linguistic, and geographic distances 
among Yanomama tribes in southern Venezuela and northern Brazil, testing a null hypothesis of 
genetic isolation by distance against an alternative hypothesis of influence of the linguistic 
similarity on the genetic similarity among the tribes.  

A simulation study for permutation methods in partial Mantel tests 

 Using simulations, Legendre (2000) investigated the general statistical properties of four 
testing procedures for partial correlations and partial Mantel tests. The findings of that paper, 
which appeared in the statistical literature, seem to have been overlooked by evolutionary 
biologists; see Appendix 3. Thus the main findings are summarized here. Two permutation 
procedures had originally been proposed by Smouse et al. (1986) for the partial Mantel test; they 
are referred to as methods 1 and 3 in the Legendre (2000) paper and below. Method 3 has been 
used by many authors who published partial Mantel test results during the past 23 years because 
it is computationally faster. Methods 2 and 4 were adapted from the literature on canonical 
analysis. These methods had not been thoroughly validated to detect flaws in type I error or to 
compare their power. Legendre & Legendre (1998) had, however, raised questions, in particular 
about method 3, after considering simulation results obtained about this permutation method in 
the framework of multiple regression analysis (Anderson & Legendre 1999; Anderson & 
Robinson 2001). The four permutation methods investigated in the Legendre (2000) study will 
now be described. 

Permutation testing procedures used in the partial Mantel simulation study 

 The permutation methods for partial Mantel tests compared in the Legendre (2000) 
simulation paper were the following: (1) permute the response distance matrix A (application to 
partial Mantel tests: Smouse et al. 1986); (2) permute the residuals of a null regression model 
(application to multiple regression: Freedman & Lane 1983; to canonical analysis: ter Braak 
1990; to partial Mantel tests: Legendre 2000); (3) correlate residualized matrix A (ResA|C) to 
residualized matrix B (ResB|C); permute one of the residualized matrices (application to partial 
Mantel tests: Smouse et al. 1986; to partial regression: Kennedy 1995); (4) permute the residuals 
of a full regression model (application to partial regression and canonical analysis: ter Braak 
1990; to partial Mantel tests: Legendre 2000). 

 In all cases, the reference value of the partial Mantel statistic rM(AB.C), estimating the 
correlation between matrices A and B while controlling for the effect of C, is computed in the 
same way as a first-order partial correlation coefficient:  

 rM(AB.C) = 

! 

r
M
(AB)" r

M
(AC)• r

M
(BC)

1" r
M
(AC)

2
1" r

M
(BC)

2
 (1) 

where rM(AB) is the simple Mantel correlation between matrices A and B. The four testing 
methods are the following. All methods include step 1 which is only described once: 
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1. Compute the three simple Mantel correlations (also called standardized Mantel statistics) 
rM(AB), rM(AC) and rM(BC). Combine these values using Eq. 1, obtaining the reference value of 
the test statistic, rM(AB.C). 

Method 1: permute the response distance matrix A 

2. [This step is void in method 1, which does not involve residuals.] 

3. Permute A at random using matrix permutation (described below), obtaining A*. 

4. Compute rM(A*B) and rM(A*C). Using the value rM(BC) calculated in step 1, compute 
rM(A*B.C) using Eq. 1, obtaining a value 

! 

r
M

*  of the partial correlation statistic under permutation. 

5. Repeat steps 3 and 4 a large number of times to obtain the distribution of 

! 

r
M

*  under 
permutation. Add the reference value rM(AB.C) to that distribution. 

Method 2: permute the residuals of a null regression model 

2. Compute matrix ResA|C containing the residuals of the simple linear regression of the distances 
in A over the distances in C. 

3. Permute ResA|C at random using matrix permutation, obtaining Res*A|C. 

4. Compute rM(Res*A|CB) and rM(Res*A|CC). Using Eq. 1, combine these values with rM(BC) 
computed in step 2, obtaining a value 

! 

r
M

*  of the partial correlation statistic under permutation. 

5. Repeat steps 3 and 4 a large number of times to obtain the distribution of 

! 

r
M

*  under 
permutation. Add the reference value rM(AB.C) to that distribution. 

Method 3: correlate residualized matrix A to residualized matrix B 

2. Compute matrix ResA|C containing the residuals of the simple linear regression of the distances 
in A over the distances in C. Likewise, compute matrix ResB|C containing the residuals of the 
simple linear regression of the distances in B over the distances in C.  

3. Using matrix permutation, permute ResA|C at random to obtain a permuted residual matrix 
Res*A|C. An equivalent method is to permute ResB|C at random instead of ResA|C , obtaining the 
permuted matrix Res*B|C.  

4. Compute the standardized Mantel statistic between Res*A|C and ResB|C , to obtain a value 

! 

r
M

*(AB.C) of the test statistic under permutation. An equivalent method is to compute the Mantel 
statistic between ResA|C and Res*B|C. 

5. Repeat steps 3 and 4 a large number of times to obtain the distribution of 

! 

r
M

*(AB.C) under 
permutation. Add the reference value rM(AB.C) to that distribution. 

Method 4: permute the residuals of a full regression model 

2. Compute matrix ResA|BC containing the residuals of the multiple linear regression of the 
distances in A over the distances in B and C. 

3. Permute ResA|BC at random using matrix permutation, obtaining Res*A|BC. 
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4. Compute rM(Res*A|BCB) and rM(Res*A|BCC). Using Eq. 1, combine these values with rM(BC) 
computed in step 1, obtaining a value 

! 

r
M

*  of the partial correlation test statistic under permutation. 

5. Repeat steps 3 and 4 a large number of times to obtain the distribution of 

! 

r
M

*  under 
permutation. Add the reference value rM(AB.C) to that distribution. 

All methods include step 6 which is only described once: 

6. For a one-tailed test involving the upper tail, calculate the probability as the proportion of 
values 

! 

r
M

*  greater than or equal to rM. In the lower tail, the probability is the proportion of values 

! 

r
M

*  smaller than or equal to rM. 

 In Mantel tests, the objects are the permutable units under the null hypothesis, not the 
individual distances. ‘Matrix permutation’ is an algorithm in which the rows and corresponding 
columns of the matrix are rewritten as if the objects had been permuted in the original rectangular 
data matrix and the distances recomputed. In computer programs, this rewriting step can be 
avoided by indirect addressing of the matrix elements, using a vector of permuted object 
numbers. 

 Computation note – In method 2, in order to obtain the correct reference estimate of the 
partial regression coefficient b2.1, one must use the original matrix A as the dependent variable in 
the regression equation, as described by Anderson & Legendre (1999) in the case of multiple 
regression on data vectors. However, the correct reference estimate of the partial correlation 
coefficient is obtained using either the original matrix A or the residuals of the regression of A on 
C. After permutation of the residuals, the correct estimates of the partial correlation and 
regression coefficients are obtained using either the permuted residuals alone as the dependent 
variable, or the permuted residuals added on to the unpermuted fitted values. 

Recommendations 

 The recommended testing procedures are the following (Table A4.1, which was not 
included in the original publication): (a) In partial Mantel tests, permutation method 2 can always 
be used, except when highly skewed data are combined with small sample size. Skewness of the 
distributions can be assessed by examining ordination diagrams of the distance matrices 
(principal coordinate analysis, Gower 1966). (b) With small sample sizes, one should carefully 
examine the data before partial Mantel analysis. For highly skewed data, permutation of the 
response distance matrix A has correct type I error in the absence of outliers. Outliers can, again, 
be detected in ordination diagrams. When highly skewed data are combined with outliers in 
matrix C (covariable), it is recommended to use permutation of distance matrix A (method 1). (c) 
Permutation method 3 should not be routinely used. (d) In general, one should avoid using partial 
Mantel studies when n < 20. Reasonable values are n ≥ 40 for multinormal data and n ≥ 50 for 
highly skewed data. As in all tests of significance, the power of partial Mantel tests increases 
with the value of n. 

 These recommendations are based on simulations carried out by Legendre (2000) to 
measure the type I error and power of these permutation methods, using normal and non-normal 
data, without and with outlier; an outlier was generated by introducing a high value, 50, in the 
vector representing the covariable before computing matrix C. For each situation, 10000 
simulations were run (100 000 when n = 5); 999 permutations were generated for each test. The 
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simulations used unrestricted, random, equally-likely (EL) permutations of the data. In some 
cases, restricted permutations are in order (Manly 1997). Sokal et al. (1987) used restricted 
permutations in Mantel tests. The method of restricted permutations is routinely used in some 
computer programs, e.g., CANOCO (ter Braak & Smilauer 2002), to control for the sampling 
design (e.g., transect or regular grid of points in space) or the effect of blocking in field 
experiments. A non-equally-likely “phylogenetic permutation” (PP) procedure has been 
described by Lapointe & Garland (2001) to correct for inflated type I error when analysing 
phylogenetically nonindependent observations using conventional statistical methods. This 
method could be incorporated into Mantel testing procedures. 

What is wrong with permutation method 3? 

 As mentioned above, permutation method 3 has been used by many authors who published 
partial Mantel test results during the past 23 years because it is computationally faster. Smouse et 
al. (1986) showed that, after residualizing vector dA on dC and vector dB on dC , correlating 
residualized dA to residualized dB produces a correct estimate of the partial correlation coefficient 
r(dAdB.dC)1. Kennedy (1995) presented this method as a simpler way of computing the 
permutation of residuals of a reduced model (method 2) in multiple linear regression. He 
demonstrated mathematically that, under permutation, method 3 produces the same estimate of a 
partial regression coefficient (b) as method 2.  

 What can go wrong, then, when using this permutation method to test the significance of a 
partial correlation or regression coefficient, or a partial Mantel statistic? Under permutation, the 
estimate of the partial regression coefficient is indeed the same in methods 2 and 3, but the 
corresponding t statistics and the partial correlation coefficients, which are pivotal statistics, are 
affected differently.  

 This is illustrated using three simple vectors x1, x2 and x3 as an example (Table A4.2) 
instead of distance matrices. Data were generated according to the correlation model, where 
correlations are imposed onto vectors of random data: the three vectors x1, x2 and x3 contain 
random deviates N(0,1), n = 50; r(x1x2) = 0.0, r(x1x3) = 0.5, r(x2x3) = 0.5. A permutation 

  

! 

x
1

* was 
selected where r(

  

! 

x
1

*x3) was fairly large; the value was r(
  

! 

x
1

*x3) = 0.29318. When r(
  

! 

x
1

*x3) is small, 
the difference between methods is hard to detect. Table A4.2 illustrates the following points: 

• For the original data, the same (correct) estimates of r(x1x2.x3), b2 and t are obtained using 
methods 2 and 3. 

• For permuted data, method 3 obtains the same estimate of b2 as method 2. This has been shown 
by Kennedy (1995) on theoretical grounds. 

• For permuted data, methods 2 and 3 do not produce the same estimates of the statistics 
r(x1x2.x3) and t. r or t can both be used in permutation tests because they are both pivotal. 

 Anderson & Robinson (2001) showed that although the difference between methods 2 and 
3 disappears asymptotically, r2 for method 3 is consistently smaller than or equal to r2 for method 
2 under permutation, so that the observed values r2 appear more extreme more often for method 3 

                                                
1 For symmetric matrices A, B and C, vectors dA , dB and dC contain the upper-diagonal portions 
of distance matrices A, B and C strung out as long vectors. 
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than for method 2 when compared to the permuted values, resulting in probabilities which are too 
small, and thus inflating the rate of type I error. 

 Another way to look at the problem is to say that method 3 explicitly removes the effect of 
x3 by initial regressions of x1 and x2 on x3. The relationship between x3 and each of the 
residualized variables is (wrongly) assumed to remain zero during the permutations. This would 
only be strictly correct for infinite n. Method 2 (permute residuals of a null model), on the 
contrary, recognizes that a small non-zero correlation may appear between permuted residualized 
x1 and residualized x3, due to the finite sample size, and it takes it into account.  

 So, method 3 is not an appropriate substitute for method 2 for tests of significance of partial 
correlation or regression coefficients through a pivotal statistic t or r2. And, since method 3 has 
an inflated rate of type I error in partial correlation and partial regression analysis (Legendre 
2000), as well as in partial Mantel tests, it should not be used. Anderson & Robinson (2001) have 
shown, however, that the inflation of type I error asymptotically disappears for large n, so that 
results published in the past using method 3 for large sample sizes (n ≥ 50), or when H0 was not 
rejected, are correct. 
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Table A4.1  Recommended testing procedures (√) in partial Mantel studies. The permutation 
methods are: (1) permute the response distance matrix A, (2) permute the residuals of a null 
regression model, (4) permute the residuals of a full regression model. Permutation method (3), 
correlate residualized matrix A to residualized matrix B, should not be used routinely because it 
has an inflated rate of type I error for n < 50. 

_________________________________________________________________________ 

 n Error distribution Outlier      Permutation methods      

  in the data present in C 1 2 4 

_________________________________________________________________________ 

 ≥40 normal no √ √ √ 

 <40 normal no √ √ 

 ≥30 normal yes  √ √ 

 <30 normal yes  √ 

 ≥20 highly skewed no √ √ √ 

 <20 highly skewed no √ 

 ≥50 highly skewed yes √* √ √ 

 <50 highly skewed yes √* 

_________________________________________________________________________ 

* One-tailed tests using permutation of the response distance matrix A are too conservative in 
this situation. Two-tailed tests using permutation of the response distance matrix A have inflated 
type I error when n < 50, but less so than the other testing methods. To alleviate the problem, use 
a conservative significance level. 
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Table A4.2  Results of permutation methods 2 and 3 for a permutation, selected for illustration, 
obtained from three simple random normal vectors x1, x2 and x3 with correlations r(x1x2) = 0.0, 
r(x1x3) = 0.5, and r(x2x3) = 0.5; n = 50. 

_________________________________________________________________________ 

Method 2: Permute residuals of reduced model 

_______________________________ 
 r x2 x3 
_______________________________ 
 x2 1 0.56825 
 x3 0.56825 1 
 Res(x1|x3) –0.29424 0 
 Res*(x1|x3) 0.28701 0.29318 
_______________________________ 

 

Original data:  r(Res(x1|x3) x2.x3) =  –0.35759 b2 = –0.39494 t = –2.62506 

Permutation:  r(Res*(x1|x3) x2.x3) = 0.15305 b2 = 0.16161 t = 1.06177 

 

Method 3: Correlate residualized x1 to residualized x2 ; permute residualized x1 

_____________________ 
 r Res(x2|x3) 
_____________________ 
 Res(x1|x3) –0.35759 
 Res*(x1|x3) 0.14633 
_____________________ 

 

Original data: r(Res(x1|x3) Res(x2|x3)) =  –0.35759 b2 = –0.39494 t = –2.62506 

Permutation: r(Res*(x1|x3) Res(x2|x3)) = 0.14633 b2 = 0.16161 t = 1.01407 

_________________________________________________________________________ 

 


