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SUMMARY

(1) Analysis of series, in time or space is a subject of growing interest in ecology, but
the methods hitherto available (correlogram, periodogram, spectral analysis) were
restricted to the analysis of metric (quantitative) data. Many ecological series, however,
are of (or contain) essential variables which are qualitative (categorical), and many
quantitative variables are more efficiently sampled as rank-ordered (ordinal) variables.
There are no numerical methods to analyse series of nonmetric data.

(2) In this paper, the periodogram of Whittaker & Robinson is generalized to
qualitative data series, using information theoretic measures. Algorithms are also
described to partition rank-ordered variables into classes, in order to analyse them using
the contingency periodogram.

(3) The validity of the contingency periodogram is assessed by comparing its results
with those of the periodogram of Schuster, using two series of metric data. Both methods
identify the same periods for a series of artificial data, and also for serial measurements of
the photosynthetic capacity of estuarine phytoplankton, even when these metric data are
reduced to a small number of states prior to contingency periodogram analysis.

(4) The contingency periodogram is also used to analyse a multivariate (multi-species)
phytoplankton series. The multivariate data are reduced to a single multi-state qualitative
variate by clustering the samples. At least one of the periods revealed is surprising, but
can be explained.

INTRODUCTION

The search for rhythms in ecological data series is a subject of interest to a growing
number of ecologists, especially as automatic recording of ecological variables becomes
practicable (e.g. meteorological, behavioural, and even biological data such as chlorophyll
fluorescence in open waters). Such rhythms may be forced by external phenomena, or may
be endogeneous and sometimes phased on external rhythms. Ecological series are recorded
along either time or space axes, or along a run in both time and space, and various
approaches are known to the problem of identifying rhythms in such series. These
approaches are the correlogram and periodogram analyses, and more recently spectral
analysis. All three are restricted to series of metric (quantitative) data: neither qualitative
(categorical) nor rank-ordered (ordinal) data can be analysed by these methods. The
present paper describes a periodogram for the analysis of qualitative data series, its use
being further extended—with some restrictions—to series of rank-ordered data. This new
periodogram is therefore not in competition with the usual methods, as these cannot be
used to analyse series of nonmetric data. We now describe all these methods, in outline.
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966 Rhythms in series of nonmetric data

Spectral analysis is the most powerful tool for the analysis of metric data series. The
variance (or power) spectrum is a partition of the variance of the series as a function of the
observed frequencies (period—!) or wavenumbers (wavelength™!). High spectral densities
are characteristic of rhythms, but the general shape of the spectrum, rather than its
individual values, is generally considered (Kendall & Stuart 1966). When two series are
analysed together, coherency and phase spectra may be computed. Maximum entropy
spectral analysis, originally proposed by Burg (1967, 1975) and still under development,
does not have the constraints of classical spectral analysis as to the characteristics of the
data series (Ables 1974). The use of this new spectral technique has still to be assessed in
ecology, while the classical method is more familiar to ecologists (Platt & Denman 1975).

Correlogram analysis is a generalized parametric correlation analysis, which measures
the linear correlation between the successive terms of the series. Rhythms in the series
correspond to the lags for which characteristic autocorrelation values are computed.
Similarly, cross or lag correlation may be computed between two different series, in order
to identify the lags between their rhythms. Nonparametric correlations (Kendall 1948) are
designed to handle rank-ordered data, and they also prove useful in analysing metric
variables which are not linearly related. In all cases, the data must exhibit a monotonic
relationship (continuously increasing or decreasing relative to each other). No correlo-
gram is based on nonparametric correlations, as its theoretical bases have not been
developed yet. On the other hand, Fortier & Legendre (1979) have computed
cross-correlation between ecological rank-ordered data using Kendall’s rank correlation
(7).

Another approach to series analysis is the periodogram method. Two types of
periodograms are known. One is the periodogram of Schuster (1898) which results from
an harmonic analysis of the data series into a Fourier series. It can be applied only to
metric variables as it involves the least-squares fit of harmonic sines and cosines to the
data. Amplitudes are computed from the regression coefficients for each harmonic, and
they are plotted as a function of the corresponding harmonic periods (Figs 5(b) and 7(b)):
the interpretation is directly in terms of periods. The computation of critical values is
described by Anderson (1971, p. 110 et seq.).

The other periodogram is that of Whittaker & Robinson (1924). Its use in ecology was
reviewed by Enright (1965). In this periodogram, for each period (7) of interest to the
ecologist, the series is divided into subseries of length 7. These subseries are then
assembled in a Buys—Ballot table, where each row of the table is one of the subseries, and
where values corresponding to the same point of the period are in the same column. If the
period considered corresponds to a rhythm of the series both the peaks and the troughs
are in the same column. This results in a large difference between the highest and the
lowest column averages. This difference, computed for the various possible periods T (on a
new Buys—Ballot table for each period), is plotted in a periodogram as a function of the
periods. This type of periodogram was devised for metric data, and it can be applied only
to series with a single stable period (Enright 1965).

In ecological series, many essential variables are qualitative, and many quantitative
variables are much more efficiently sampled as rank-ordered variables. Examples of
qualitative ecological data which are often serially sampled are the dominant species, the
biological association, the presence or absence of a species or of some substance above or
below a critical threshold concentration, the type of substrate, and so on. Cyclical
variables such as the direction of the wind or of a current, coded into nonordered states,
are other examples of qualitative serial data encountered in ecology. Quantitative
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information, on the other hand, may often be sampled efficiently as importance or
abundance scores; samples can also be rapidly enumerated in the laboratory as coded
abundance scores (see for instance Frontier (1969, 1973)). Thus, the cost of data
collection may be reduced, or the intensity of sampling may be increased for a given cost.
The contingency periodogram described in the present paper is a generalization of the
periodogram of Whittaker & Robinson (1924). It uses information theoretic measures
for the analysis of qualitative—and eventually rank-ordered—ecological data series.

THE CONTINGENCY PERIODOGRAM

The contingency periodogram was first proposed by Legendre & Legendre (1979). It is
based on a contingency table, introduced to ecology by Colwell (1974), where the columns
are as in the Buys—Ballot table described above, and the rows are the various states of the
variable under study (Table 2). Qualitative (non-ordered, categorical) variables are already
divided into non-ordered states. On the other hand, rank-ordered (ordinal) variables must
be divided into states before using them in contingency table analysis, and solutions to this
problem are given in the next section. Values in the contingency table are the number of
observations in a given state of the variable (row) made at one point of the period
considered (column). When computing a periodogram, such a table must be constructed
for each possible period.

A fictitious example of a 3-states non-ordered variable is presented in Table 1. The length
of the series is N = 16 and the observational window, that is the range between the smallest
and the largest detectable period (T) of the periodogram, is 2 < T< 16/2.

For all periods between 2 and 8, data are recorded in a Buys—Ballot contingency table
as described above. The table of the fictitious series, for 7= 5, is given in Table 2. The
value in row 2 and column 3 is the number of observations with state 2 recorded at the 3rd
point of the period T = 5. These points are 3, 5 + 3 =8 and 5 + 8 = 13. In this case, as
can be seen from Table 1, all these observations belong to state 2, so the value in row 2 and
column 3 of Table 2 is 3.

TABLE 1 Fictitious example: a series of sixteen observations of a variable which
may be in one of three states. The particular state is shown by X.

States 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Total

3 X X X X X 5
2 X X X X X 5
1 X X X X X X 6

TABLE 2. Contingency table of observations for the fictitious example in Table 1,
for the period 7= 5.

Observation axis (X)

States 1 3 4 5 Total
3 0 0 0 3 2 5
2 1 0 3 0 1 S
1 3 3 0 0 0 6
Total 4 3 3 3 3 16



968 Rhythms in series of nonmetric data

The amount of uncertainty (H: entropy) as to the states (S), which is accounted for by a
given period 7, is the common entropy, which is defined as the information of the
intersection* between S and X (the observation axis):

HESNX)=H(S)+ HX) — H(SX)

where H (S) is the uncertainty of the states, H(X) is the uncertainty of the observation
axis, and H(SX) is the entropy of the whole contingency table. H values are computed
following Shannon (1948):

S N, N,
HES)=—-) —log—
(S) ;N g
T
HX)=— —Llog—-2
(X) ; e
s T
Ni. N..
H(SX)=— —L log —
;;N N

where N;; are values of the contingency table in row i and column j, N; (or N,) are the
totals of rows i (or columns j), and s is the number of states. If logarithms are base 2, H is
measured in bits, while with natural logarithms the unit is the nat (as in Figs 1, 5, and 7).
According to Kullback (1959, p. 158), if the row (states) and column (X) classifications
are independent, the quantity 2 N[ H(S) + H(X) — H(SX)] is asymptotically distributed as
x? with (s — 1)(T — 1) degrees of freedom, when natural logarithms have been used in the
computation of H. Therefore the hypothesis H(S N X) = 0 cannot be rejected when:

H(S) + HX) — H(SX) < /2N

where x? is the value of y? at the preselected probability level with (s — 1) (T — 1) degrees
of freedom. However, it is not possible to test the significance of each single value
computed in the periodogram because these tests would not be independent, the chance of
one or more periodogram values exceeding their critical value being then greater than the
probability level. Therefore this test can only be used to reject those values of H(S N X)
which are definitely too small to be significantly different from zero. On the other hand,
periodogram values exceeding their critical value are not necessarily significantly different
from zero, but their ecological implications may be considered.

Finally, if it is sought to plot the contingency periodogram on a 0—1 scale, the ordinate
axis may be divided by H(S), which is a constant through all the periods of a given
periodogram. The value thus plotted—H(S M X)/H(S), which is the fraction of the
uncertainty as to the states being accounted for by X—is computed in the SPSs computer
package (Nie et al. 1975) as the ‘asymmetrical uncertainty coefficient’.

For the fictitious example, when T'= 5 (Table 2), the various quantities computed are
the following:

H(S) H(X) H(SX)
log, 1-095 1-602 1-862
log, 1-579 2311 2-686

Using natural logarithms, H(S N X) = 0-835, for T'= 5. The same quantity, computed for
all the periods from T = 2 to T = 8, is plotted in the periodogram of Fig. 1. All the

* The intersection, N, of S and X consists of the co-occurrence of observations in both S and X (as in
Table 2).
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F1G. 1. Contingency periodogram of a fictitious data series (Tables 1 and 2). Broken line:
critical values at the 0-05 probability level. The variable H(S N X), a measure of entropy, and
the unit nat are explained in the text.

H(S N X) values except that for T = 5, are too small to be significantly different from zero
at the 0-05 probability level: the series exhibits a single period T = 5.

THE USE OF RANK-ORDERED VARIABLES

Unlike qualitative (categorical) data, where the various states of the variable are not
ordered, rank-ordered (ordinal) observations can be grouped into ordered states.
Analysing series of rank-ordered data with the contingency periodogram, which does not
take into account the ordering of the states, may therefore result in less certain
identification of the rhythms than might be achieved. Kedem (1980) has proposed a
method for reducing quantitative (and eventually rank-ordered) data to a binary form, and
he has shown that if the series is stationary and of sufficient length (500-1000
observations), it is possible to estimate, from the binary series, the spectral density of the
original data series. The method proposed hereafter is different in that the coding is very
often in more than two states (limited by an optimality criterion) and in that it is applicable
to much shorter series. The contingency periodogram may then prove useful to ecologists
collecting information as abundance scores—with the restriction that rhythms present in
the series may not emerge from this suboptimal analysis. In practice, examples (next
section) show that the contingency periodogram is reliable and efficient in analysing series
of rank-ordered data.

Rank-ordered variables must be divided into states in order to make them amenable to
contingency periodogram analysis. This is no problem when there are biological or
ecological criteria indicating where to partition the variable into states, and also how many
states are required for a meaningful analysis of the variable. When this a priori knowledge
is not available, the variable may be objectively partitioned into states according to some
pre-established criteria. Such a method is now described. As in any series analysis, the data
series must be stationary (the mean and variance must be stable) and detrended (long-term
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drift must be removed) prior to the numerical treatment. This subject has been reviewed at
length by many authors, among them Kendall & Stuart (1966), Anderson (1971) and
Legendre & Legendre (1979), and will not be discussed here.

It might be conceived that the best partitioning of a rank-ordered variable is when an
equal number of data points falls into each state. This approach, however, does not take
into account the structure of the data set in terms of tied ranks, and it does not give any
indication as to the number of states. To obviate these problems, an optimum partitioning
of a rank-ordered variable into states is here achieved (1) by minimizing the total
within-states variability, (2) and maximizing the average information per state.

Criterion 1. The total within-states variability may be assessed by adding together the
sums of squares of the differences from the mean rank for each state:

i [ > (rank — Ea.'ﬁ-l—()’]

i=1 | within state {

where rank is the mean rank within state i. This is equal to:

N S 1 2

> rank?— Z —[ 3 rank] .

_k=1 i=1 Vi within state i
(A similar measure of rank variability is used by Kendall (1948) in the generalized
equation of correlation coefficients.) For all the possible partitions of the data set into
states, the quantity >¥_, rank? is a constant. Thus, minimizing the total within-states
variability is achieved by maximizing the sum of the s squared sums of ranks, each divided
by its number of observations, therefore by maximizing the quantity

s 1 2
— >  rank|,
=1 N, i | withinstatei

abbreviated hereafter as 2. (2.2 ranks/N,).

Criterion 2. According to the previous section, the amount of information per state is
given by:

where N, is the number of observations in state i, N is the total number of observations,
and s is the number of states.

Ideally, the search for the partition optimizing the two criteria involves trying in turn all
possible partitions of the data set in two states, then all the partitions in three states, and so
forth until the information per state reaches a maximum and starts to decline. It will be
seen that, as the number of ranks of the variable increases, this procedure rapidly becomes
too tedious even for modern computers, so that the following approximate stepwise
procedure may be worth using instead (see also the numerical example below):

(1) The first partition, in two states, is found by trying in turn all the possible partitions
of the rank-ordered variable, and choosing the one which minimizes the total within-states
variability (criterion 1 above).

(2) Keeping the first division fixed, a second one is found by the same trial method, in
order to find the best partition in three states.
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2 4 6 8 10 12 14 16
Serial observation axis (X)

Fi1G. 2. Series of a fictitious rank-ordered variable (Tables 1 and 3). Dashed lines correspond to
the chosen 3-state limits. See text for further explanation.

TABLE 3. Fictitious example: N = 16 ranked observations of an ordered variable.

Rank 1 2 3 4 5 6 7 8 9 10
No. of observations 1 4 1 2 3 1 1 1 1 1

(3) The following partitions are achieved in the same way, always keeping fixed the
divisions found in the previous steps.

(4) At each step, the amount of information per state is computed for the best partition,
and the partitioning procedure stops when H(S)/s is maximum (criterion 2 above). Of
course, this criterion may be waived if the ecologist prefers to choose himself the number
of states s.

The usefulness of this stepwise procedure may be demonstrated by comparing the
number of operations required by the two methods. With the relatively short series of 200
observations analysed at the beginning of the next section, the division into three states by
the stepwise procedure involved the comparison of 594 different partitions. This included
testing the best partition into four states against the chosen partition into three states. With
the exact procedure, 1 313 599 partitions into two, three and four states would have to be
compared, which would increase the amount of computing 2000-fold.

A fictitious rank-ordered data series, with N = 16, is shown in Fig. 2. The rank-ordered
variable corresponding to the series is summarized in Table 3; it has ten rank-ordered
states, with some tied observations. It will be used to illustrate the stepwise partitioning
procedure. There are nine possible partitions of this rank-ordered variable into two states.
For example, the partition between ranks 4 and 5 would result in:

Ranks > ranks N, 2.2 ranks/N;
1-4 1+ @x2)+3+02x4)=20 8 20%/8 =50
5-10 Bx5+6+7+8+9+10=155 8 55%2/8 =378-1

and the total . (2.2 ranks/N;) would be 50 + 378-1 = 428-1. The partition into two states,
causing the largest reduction of the within-states variability, is that between 5 and 6, with
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2.(2? ranks/N,) = 431-4. The associated amount of entropy per state, if base 2 logarithms
are used, is:

H(S)/s = —3[$log $ + & log 1 = 0-448 bit/state.

Keeping this first division fixed, all the possible partitions in three states are tried. The
best new division, with the previous division between ranks 5 and 6, falls between ranks 3
and 4. This partition results in:

Ranks 2. ranks N, 2?ranks/N,
1-3 1+ x2)+3=12 6 12%/6 =24
45 (x4 +(3x5=23 5 23/5=1058

6-10 6+7+8+9+10=40 5 40%/5=320

2. (22 ranks/N,) = 449-8 and its amount of entropy per state is 0-526 bit/state.

The best partition into four states, considering the two previous divisions, results from a
new division between ranks 7 and 8, or between 8 and 9, with 2. (3.2 ranks/N,) = 457-3.
The entropy per state is 0-471 bit/state, which is less than that for the best partition into
three states. It is thus concluded that the optimum stepwise partition of this rank-ordered
variable is into three states: state 1 goes from rank 1 to 3, state 2 from rank 4 to 5, and
state 3 from rank 6 to 10. The exact procedure results in the same first division, but it
positions the second division between ranks 6 and 7. When equally plausible partitions
(such as into 4 states above) occur during the stepwise procedure, they can be tried in turn,
the final choice being that partition which has the maximum entropy per state. On the
other hand, when there are several equally plausible partitions at the end of the procedure,
a predetermined decision rule may be used.

After partitioning the data set into three states of respectively 6, S and 5 observations,
the series of transformed rank-ordered data may then be subjected to contingency
periodogram analysis. The fictitious rank-ordered variable was defined to fit the data in
Table 1; the corresponding possible series of Fig. 2 would then have the periodogram
shown in Fig. 1.

In the next section, a comparison will be made between the contingency periodogram
and the periodogram of Schuster (1898), the latter being valid only for metric variables. If
a metric variable is to be analysed with the contingency periodogram then it must be
partitioned into discrete states. The partitioning procedure already described may be used,
because a metric variable is also rank-ordered. The variable is first plotted as a function of
ranks, as in Fig. 3 which is equivalent to Table 4; computations are then the same as for
rank-ordered variables. Also, the actual values of variable ¥ may be used instead of their
rank, so that the total within-states variance is minimized when

s 1 2
J— Z Y
Z N,' [withln statei

i=1
is maximized. In order to prevent undue effects of the measurement scale on the values of
within-state variance, the variable to be partitioned may be normalized or linearized
relative to the ecological phenomenon of interest.

In the example of Table 4, the metric variable Y was so defined as to correspond to the
rank-ordered variable above. The quantities computed during the partitioning of this
variable into classes are shown in Table 5.

Thus this stepwise partitioning procedure makes it possible, for the ecologist who so
desires, to analyse with the contingency periodogram all types of data, even those not
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Variable Y

Rank

F1G. 3. Rank diagram of fictitious metric variable Y (Table 4). Broken lines correspond to the
boundaries between states.

TABLE 4. Fictitious example: N = 16 ranked observations of a metric variable.

Value 1.5 3 4.5 6 7-5 9 10:5 12 13-5 15
No. of observations 1 4 1 2 3 1 1 1 1 1

TABLE 5. Stepwise partition of fictitious metric varible Y, from Table 4.

Number of H(S)/s
states Successive state limits 2 (2*Y/N) (bit/state)

2 Between 7-5 and 9 970-6 0-448

3 Between 4-5 and 6 1012-1 0-526

Between 10-5 and 12

4 Between 12 and 13-5

1028-9 0-471
already divided into states and when there is no a priori knowledge as to the best places to
make the partitions.

EXAMPLES AND DISCUSSION

In order to assess the value of the contingency periodogram, tests on three data sets are
described. The first is an artificial set of quantitative data, of known properties. The second
set is of well-understood quantitative field data. These two sets allow comparison of the
contingency periodogram with Schuster’s periodogram. The prime interest of the
contingency periodogram is the analysis of qualitative and also eventually of rank-ordered
variables, however, and the third data set is of this kind. It is of field data from a
situation where the ecology is not well understood.

For the first test, an artificial series of N = 200 data was generated by adding together a
sine of period T = 9, another sine of period 7' = 15 with an amplitude equal to half that of
the previous one, and a noise component with an amplitude half that of the two sines.
These three components and the resulting series are shown in Fig. 4. This artificial metric
variable was partitioned into states, using the stepwise procedure described in the previous
section: the resulting state limits are drawn on Fig. 4. The artificial series was then
analysed into a Schuster periodogram (original data), and into a contingency periodogram
(partitioned data). The results of both analyses are recorded in Fig. 5, where it is evident
that periods 7= 9 and T = 15 (and their harmonics on the contingency periodogram) are
identified on both periodograms. Critical values should be used only to identify which
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FIG. 4. Artificial data series generated by adding together (a) a sine of period T = 9, (b) another
sine of period T = 15, and (c) a noise component. The resulting series (d) is shown with the
boundaries between the three states (broken lines) computed from the stepwise partitioning
procedure.

periodogram values are too small to be significantly different from zero, as the
periodogram values exceeding their critical value are not necessarily significantly different
from zero.

The identification of both periods, despite the large noise component, demonstrates the
robustness of the contingency periodogram to departures from smooth oscillation. Even
the complete obliteration of a full period, for instance by allocating all the data points
between 32 and 41 (T'=9) to state 2, changes only slightly the value of H(S N X) (for
period T = 9) in the periodogram (from 0-358 to 0-349 nat). These are indications of the
potential usefulness of the method with perturbed series, as are sometimes encountered in
field ecology.

For the second test we use a series of N = 126 data from samples taken in the St
Lawrence Estuary in mid-June 1976 (Fig. 6). These data are measurements of the
photosynthetic capacity of natural phytoplankton, sampled hourly at 1 m depth and
incubated under a saturating light flux of 375 uE m~2s~! (Fréchette & Legendre, in press).
Two periods, 7= 11-5-12-0 h and T = 24 h, are identified (Fig. 7) on both contingency
(partitioned data) and Schuster’s (original metric data) periodograms. These periods, when
found at a sampling station located upstream in the Estuary, were interpreted by Demers
& Legendre (1979) as a circadian endogenous rhythm in the photosynthetic activity,
combined with a tidal pattern.
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Fi1G. 5. (a) Contingency periodogram and (b) Schuster periodogram of the data series in Fig.
4(d). Dashed line shows the critical values at the 0-05 probability level. The variable H(S N X), a
measure of entropy, and the unit nat, are explained in the text.
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Fi1G. 6. Photosynthetic capacity of natural phytoplankton in the St Lawrence Estuary, N.
America. The boundaries between the three states computed from the stepwise partitioning
procedure are shown by broken lines.



976 Rhythms in series of nonmetric data

03t

H (SNX) (nat)
o
n

15

Variance (%)

T T T

0] 10 20 30

~ Period (h) )
FiG. 7. (a) Contingency periodogram and (b) Schuster periodogram of the data series in Fig. 6.
Broken line shows the critical values at the 0-05 probability level. The variable H(S N X), a
measure of entropy, and the unit nat, are explained in the text.

Ecological data series often consist of counts of many different species, which are
usually analysed for rhythms by either pooling all the species to get a single variate (total
counts), or alternatively by considering each species separately. Another approach, which
we use as our third example, makes it possible to analyse the multivariate series as such.
The multi-species data are first reduced to a single multi-state qualitative variate by
clustering the samples (every data point of the series is then allocated to one of the clusters,
each cluster being one of the states of the synthetic qualitative variate). Then the
contingency periodogram is computed on the resulting multi-state qualitative data series.

A series of 175 phytoplankton samples were taken at 1-h intervals at a depth of 1 m, at
an anchor station in the St Lawrence Estuary in July 1975. The density of each
species was recorded and total density is analysed by Lafleur, Legendre & Cardinal
(1979). They divided the series into two parts, corresponding respectively to the neap tide
and the spring tide; only the neap tide (first 80 h) are considered here. The data (Fig. 8)
were in the form of six functional taxonomic groups (1) Thalassiosira pacifica Gran &
Angst, (2) Cyclotella striata (Kutz.) Grun., (3) other centric diatoms, (4) pennate diatoms,
(5) Chlorophyceae, and (6) Chrysophyceae. The index of association (Whittaker 1952)
was computed between the samples and the resulting matrix was clustered using Lance &
Williams® (1966, 1967) flexible strategy with § = —0-25. The allocation of the eighty
samples to the five clusters (states) thus computed is shown in Fig. 8. A period T'= 3 is
identified on the contingency periodogram (Fig. 9), with 9 harmonics (up to T = 29). This
is rather surprising, as the total cell density show a periodicity of about 10—12 h, while the
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FI1G. 8. Phytoplankton density (six taxonomic groups labelled 1-6, see text) from the St
Lawrence Estuary, N. America. The allocation of each sample of the series to one of five
clusters is indicated under the abscissa (five different symbols). Results of Lafleur, Legendre &
Cardinal (1979).
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FIG. 9. Contingency periodogram of the data in Fig. 8. Broken line shows the critical values at
the 0-05 probability level. The variable H(S N X), a measure of entropy, and the unit nat, are

explained in the text.

physical environment (water temperature) oscillates with a periodicity of about 6 h. The
6-h period is explained by Lafleur, Legendre & Cardinal (1979) in terms of an internal
wave generated at a sub-surface sill close to the sampling station. At this same station,
Fortier et al. (1978) found evidence of a 190 min oscillation in both the total cell density
and physical variables during neap tide in August 1975. The observed 3-h periodicity in
the relative abundance of phytoplankton taxa therefore appears as an indication of rapidly
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oscillating surface water. Along horizontal gradients, the relative abundance of the taxa
changes probably more rapidly than does the total density of cells, which make the taxa a
better indicator of subtle horizontal oscillations of the water masses.

Thus the contingency periodogram makes it possible to efficiently analyse rhythms
within series of qualitative or rank-ordered data, or series of multivariate data reduced to
qualitative multi-state data. By using the partitioning algorithm, rank-ordered data are
reduced to a small number of states prior to contingency periodogram analysis: these same
data may therefore be sampled directly with much lower precision, with consequent
savings of work. Nonmetric variables (qualitative, and also rank-ordered) are commonly
recorded in field ecology: using the contingency periodogram these previously neglected
variables, as well as multi-species data, may now be analysed just as quantitative variables
have been for so long.

A. Vaudor has written an efficient, transportable program, in the PASCAL language.
This program first partitions the variable into classes (if needed) and then computes the
contingency periodogram. Listings are available, free of charge, from the third author.
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