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Appendix S1 

Replacement, richness difference and nestedness indices 
 
1. Introduction 

 Whittaker (1960, 1972) described the alpha, beta and gamma diversity levels of natural 
communities. Alpha is local diversity, beta is spatial differentiation (or variation in species 
composition among sites), and gamma is regional diversity. Koleff et al. (2003) reviewed 24 beta 
diversity measures for species presence-absence data, reexpressed them in terms of the traditional 
a, b and c values used for the comparison of pairs of sites, and classified them according to 
domains of application. This appendix focuses on some of these indices (Table S1.1) that are now 
used to estimate species replacement and richness difference, and are the subject of heated 
comparisons and discussions in the literature. 

 For species presence-absence data, two sites are compared using a 2×2 contingency table 
crossing the observed communities. The table contains the following frequencies: a = number of 
species present at both sites, b = number of species present at site 1 but not at site 2, and c = 
number of species present at site 2 but not at site 1. The number of species present at neither site, 
d, is also found in the contingency table, but it is not used in the calculation of the indices.  

 The two most widely used dissimilarity coefficients for presence-absence data are the 
Jaccard (1908; DJ = (b+c)/(a+b+c)) and Sørensen (1948; DS = (b+c)/(2a+b+c)) indices. These 
coefficients have different mathematical properties: DJ is a metric whereas DS is a semimetric 
(Legendre & Legendre, 2012). These dissimilarities can be partitioned into two components, the 
portions due to species replacement (Repl indices) and to either richness (RichDiff) or abundance 
difference (AbDiff), or nestedness (Nes); the corresponding concepts are discussed in the 
introduction of the main paper. Different forms of these indices have been proposed and can be 
computed from the values a, b and c. Several papers appeared on the subject during the past 
years: Williams (1996), Lennon et al. (2001), Cardoso et al. (2009), Baselga (2010, 2012, 2013), 
Podani and Schmera (2011), Schmera & Podani (2011) and Carvalho et al. (2012, 2013) and 
Podani et al. (2013); index notations have also diverged among papers.  

 This brief historical account will focus on the contributions and indices that I consider the 
most important for users to understand how these indices are interrelated. The literature review is 
admittedly incomplete. It reflects personal choices from among the abundant literature published 
during the past few years on the subject. 

Early indices 

 A first spatial turnover (or replacement) index was proposed by Williams (1996) who 
called it beta-3, meaning that it was the third modified form of Whittaker’s (1972) famous β 
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diversity index, β = γ/α, where γ is regional richness and α is the mean of the richness at 
individual sites. Williams applied the index to measure species turnover in small neighbourhoods 
of sampling units, e.g. quadrats. Koleff et al. (2003) labelled that index β–3 in their review paper 
on measures of beta diversity. Cardoso et al. (2009) modified the formula for β–3, proposing to 
multiply the value by 2 to make it vary between 0 and 1; this is the current form of the β–3 index 
(Table S1.1). 

 A second replacement index was proposed by Lennon et al. (2001) who called it βsim; 
“sim” refers to palaeontologist G. G. Simpson, although βsim differs from the asymmetric index 
used by Simpson to compare paleontological faunas in his 1943 paper. In similarity form, this 
index was applied by Lennon et al. (2001) to compare the community at a site to its eight first 
neighbours in a regular checkerboard grid of sampling units and compute the mean of these 
comparisons. Baselga (2010) based his first decomposition of DS on βsim (section 2.2). 

 Sections 2 and 3 describe the Repl, RichDiff or AbDiff, and Nes indices available in the 
recent literature for, respectively, species presence-absence and abundance data. The main paper 
shows how these indices can be interpreted and related to ecosystem functioning. Repl, RichDiff, 
AbDiff and Nes are new abbreviations introduced here to make the relationships among the 
indices easier to understand. 

2. Replacement and richness difference indices: presence-absence data 

2.1. Podani family 

 The indices proposed by Podani & Schmera (2011) and Carvalho et al. (2012, 2013), that 
expand upon Williams’ (1996) beta-3 index, are described first. For simplicity, these indices are 
referred to in this appendix as the Podani family. These authors suggested to estimate 
replacement (ReplJ) as 2×min(b,c) and richness difference (RichJ) as |b – c|. These equations are 
justified by the test case illustrated in Fig. 1 of the main paper: three species of site 1 (represented 
by squares with positive-slope stripes, blue in the online version of the paper) are replaced by 
three species of site 2, whereas the richness difference (5 species represented by squares with 
negative-slope stripes, red in the online version, |b – c|) is the remainder of the dissimilarity 
(b + c) between the two sites. Because 2×min(b,c) = (b + c) – |b – c|, the sum of the replacement 
and richness difference values is equal to (b + c), which is the numerator of the Jaccard 
dissimilarity coefficient (DJ, introduction section). Hence, if the replacement and richness 
difference indices are divided by the denominator of the Jaccard dissimilarity, (a + b + c), the 
resulting scaled indices have a minimum value of 0 and a maximum of 1 and they sum to the 
Jaccard dissimilarity. The calculations are broken down into steps in Table S1.2. The resulting 
indices were called relativized species replacement (Rrel) and relativized richness difference by 
Podani & Schmera (2011), and β–3 and βrich by Carvalho et al. (2012, 2013).  

 Podani & Schmera (2011) also defined an index of nestedness: N = a + |b – c| if a > 0 and N 
= 0 if a = 0. N can be scaled to Nrel by division by (a + b + c), which produces values in the range 
[0,1]. They clearly stated that nestedness is not the same as richness difference (|b – c|). 

 Note that (b+c) is also the numerator of the Sørensen dissimilarity coefficient (DS, 
introduction section). Carvalho et al. (2013) indicated that the replacement and richness 
difference indices could be divided by the denominator of the Sørensen dissimilarity, (2a+b+c), 
although they did not find the resulting indices meaningful. Podani & Schmera’s (2011) view was 
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that one meaningful way of making the Repl and RichDiff indices independent of total species 
richness was to divide them by (a+b+c); see sections 5 and 6 (below) for a discussion of 
dependence/independence of species richness. With the (2a+b+c) denominator, the resulting 
standardized ReplS and RichS indices now sum to the Sørensen dissimilarity (Table S1.2). This is 
a second, mathematically valid way of constructing indices. It satisfies Carvalho et al.’s (2013) 
first criterion for an ecologically meaningful way of partitioning beta diversity (Appendix S2).  

 Consider the following binary data example, which contains both a replacement and a 
richness difference component:  

 Species 1 Species 2 Species 3 Species 4 Species 5 
Site 1 1 1 1 0 1 
Site 2 1 1 0 1 0 

 
For these data, a = 2, b = 2 and c = 1; 2×min(b,c) = 2 (i.e. a species of Site 1 replaces a species of 
Site 2 and vice-versa); |b–c| = 1 (i.e. after elimination of the two species involved in replacement, 
say species 3 and 4, species 5 is the only one showing richness difference); (a+b+c) = 5, and 
(2a+b+c) = 7. Hence,  

• the Jaccard-based indices (J) are  

 ReplJ = 2×min(b,c)/(a+b+c) (Rrel in Podani & Schmera 2011, β–3 in Cardoso et al. 2009) (1) 

 RichJ = |b–c|/(a+b+c) (Drel in Podani & Schmera 2011) (2) 

For the example data, ReplJ = 0.4 and RichJ = 0.2; these values sum to DJ = (b+c)/(a+b+c) = 0.6. 

• the Sørensen-based indices (S) are  

 ReplS = 2×min(b,c)/(2a+b+c) (3)  

 RichS = |b–c|/(2a+b+c)  (4) 

For the example data, ReplS = 0.2857 and RichS = 0.1429; these values sum to DS = 
(b + c)/(2a + b + c) = 0.4286 (rounded values). So in each case, Repl and RichDiff add up to D.  

 Construction of indices for presence-absence data in the Podani family is summarized in 
Table S1.2.  

2.2. Baselga family 

 Baselga (2010, 2012) described replacement and nestedness indices for species presence-
absence data, calling the latter the nestedness component of dissimilarity indices. Baselga (2010) 
chose the βsim index of Lennon et al. (2001) to estimate replacement because, according to these 
authors, that index clearly accounts for replacement (spatial turnover) and is only weakly 
correlated to the difference in species richness of the sites (but see section 6). He used βsim in a 
more general way than Lennon et al. (2001) (see Introduction section), computing matrices of 
βsim indices among all pairs of sites with the following formula:  

 ReplBS = βsim = 

€ 

min(b,c)
a +min(b,c)

 (5) 
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(ReplBS in Table S1.3). Because the Sørensen dissimilarity DS accounts for both replacement and 
nestedness, Baselga (2010) proposed to subtract βsim from the Sørensen dissimilarity DS to 
estimate the nestedness-resultant dissimilarity, or amount of dissimilarity derived from the 
nestedness component:  

 NesBS = βnes = DS – βsim = 

€ 

b − c
2a + b + c

×
a

a +min(b,c)
 (6) 

(NesBS in Table S1.3). Baselga (2010) offered the following interpretation for the algebraic form 
of that coefficient, whose meaning is not immediately clear: it is a measure of richness difference, 
|b – c|, divided by the denominator of DS; this part is also the Podani-family index RichS. The 
ratio is then multiplied (scaled) by the Simpson similarity (1 – βsim); if there are no species in 
common (i.e., if a = 0), then βnes is zero. This is a way of incorporating the constraint that 
nestedness is larger than 0 only if a > 0. That constraint is also found, in another algebraic form, 
in Podani & Schmera’s (2011) nestedness index described above. 

 For the example data, ReplBS = 0.3333 and NesBS = 0.0952; these values sum to DS = 
(b+c)/(2a+b+c) = 0.4286 (rounded values). The product extracts the difference in richness caused 
by nestedness from other types of richness differences (Baselga, 2010). Baselga did not consider 
his nestedness index to be a measure of richness difference. 

 Baselga (2012) proposed an alternative pair of indices designed to sum to the Jaccard 
dissimilarity DJ. He called the new turnover index βjtu (ReplBJ in Table S1.3) and the new 
nestedness index βjne (NesBJ in Table S1.3): 

 ReplBJ = βjtu = 

€ 

2min(b,c)
a + 2min(b,c)

 (7) 

 NesBJ = βjne = DJ – βjtu = 

€ 

b − c
a + b + c

×
a

a + 2min(b,c)
 (8) 

For the example data, ReplBJ = 0.5 and NesBJ = 0.1; the sum of these values is DJ = 
(b + c)/(a + b + c) = 0.6.  

Construction of indices for presence-absence data in the Baselga family is summarized in 
Table S1.3. 

3. Replacement and abundance difference indices: quantitative data  

 For presence-absence data, two sites that have the exact same species complement but 
differ in species abundances have replacement and richness difference values of 0 for coefficients 
DS or DJ because b = c = 0. These 0 values are not informative of the quantitative differences that 
exist between the sites. The quantitative forms of the indices, described in this section, provide 
finer, more interpretable results when species abundance data are trustworthy. 

 Podani et al. (2013) and Baselga (2013) described ways of estimating replacement and 
richness difference based on species abundances, related to quantitative dissimilarities that are 
extensions of the Jaccard and Sørensen indices. Consider the following example:  
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 Species 1 Species 2 Species 3 Species 4 Species 5 
Site 1 7 3 5 0 6 
Site 2 2 4 0 3 0 

 
Tamas et al. (2011) proposed the following notation to construct indices based on abundance 
data: A designates the sum of the minimum abundances of the various species, each minimum 
being the abundance at the site where the species is the rarest (this quantity is called W in 
Legendre & Legendre 2012, Chapter 7); B is the sum of abundances at site 1 minus A; and C is 
the sum of abundances at site 2 minus A. The symbols have meanings similar to the lower-case 
letters a, b and c used in the description of presence-absence indices: A is the sum of intersections 
(or the minima) of the abundances of the species at the two sites under comparison, B and C are 
the site-specific abundance complements. For the example data, A = 5, B = 16 and C = 4. 

3.1. Podani family 

 In the context of quantitative community data, computation of the indices is individual-
based instead of species-based. Replacement is easier to compute than to explain. For the site 
with the smallest total abundance (site 2 in the example), consider only the species (#2 and #4) 
that have larger abundances at that site than at site 1. Replacement refers to the fact that the 
individuals (4) that exceed the number of individuals of these species at site 1 are replaced, at site 
1, by the same number (4) of individuals of different species. Replacement is computed as 
min(B,C); this value is multiplied by 2 because the replaced and replacing individuals are both 
counted. Hence, replacement difference is 2×min(B,C), which is 2×4 = 8 for the example; 
computing this index for binary data produces the binary form of replacement, 2×min(b,c) = 2. 

 Abundance difference (abbreviated AbDiff) refers to the individuals that are not involved in 
replacement, that is, for the example, 21 – 4 = 17 individuals at site 1 and 9 – 4 = 5 individuals at 
site 2. The absolute value difference of these two values, 12, is the abundance difference. AbDiff 
can also be computed as the absolute value of the difference between B and C, which is |B – C| = 
12. Again, computing this index for binary data produces the binary form of richness difference, 
|b – c| = 1. 

 What should we choose for denominator? The quantitative dissimilarity index of Ružička 
(1958) is one of the quantitative forms of the Jaccard index. Its formula is  

 

€ 

DR = (B + C) /(A + B + C)  (9a) 

This coefficient can also be written as: 

 

€ 

DR =1− min(y1 j ,y2 j )j=1

p∑ max(y1 j ,y2 j )j=1

p∑$ 
% 
& ' 

( 
)  (9b) 

DR computed for presence-absence data produces the Jaccard dissimilarity. As shown in 
Table S1.2, 2×min(B,C) (replacement) plus |B – C| (abundance difference) is equal to (B + C). 
Note – There are other quantitative dissimilarity functions that correspond to the Jaccard index 
when applied to presence-absence data. Four are listed in Legendre & De Cáceres (2013, 
Table 1). However, none of those has the quantity (B + C) as its numerator, quantity that is the 
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sum of the replacement and abundance difference components; hence the choice of the Ružička 
index for the decomposition proposed by Podani et al. (2013). 

 Now if we apply the denominator of the DR coefficient, (A + B + C) (eq. 9a), to the 
replacement and abundance difference numerators, we obtain ReplR and RichR indices 
(Table S1.2): 

 

€ 

ReplR = 2 ×min(B,C) /(A + B + C) (10) 

 and 

€ 

AbDiffR = B −C /(A + B + C) (11) 

Their sum is DR (Table S1.2). For the example data, ReplR = 0.32 and AbDiffR = 0.48, which sum 
to DR = 0.80. Podani et al. (2013) described ReplR as the relativized abundance replacement 
index, aRrel(jk), and AbDiffR as the relativized abundance difference, aDrel(jk). For the example data, 
ReplR = 0.32 and AbDiffR = 0.48, which sum to DR = 0.80. 

 The quantitative dissimilarity that corresponds to the Sørensen index is the percentage 
difference (D%diff, Odum, 1950), incorrectly referred to by some authors as the Bray-Curtis index; 
see Legendre & De Cáceres (2013), footnote of their Table 1, about that story. The formula of 
that well-known dissimilarity index is  

 

€ 

D%diff = (B + C) /(2A + B + C)  (12a)  

Note that D%diff has the same numerator as DR. The formula can also be written as (Odum, 1950): 

 

€ 

D%diff = y1 j − y2 jj=1

p∑ y1 j + y2 j( )j=1

p∑ = y1 j − y2 jj=1

p∑ (2A + B + C) (12b) 

where y1 and y2 are the two site vectors under comparison and p is the number of species in the 
data matrix (Legendre & Legendre, 2012, eq. 7.58). As mentioned above, the numerators of 
replacement and abundance difference (eqs, 10 and 11) sum to (B+C), which is also the 
numerator of the D%diff index. Hence we can apply the denominator of the D%diff coefficient to 
these numerators to obtain Repl%diff and AbDiff%diff indices that sum to D%diff (Table S1.2): 

 

€ 

Repl%diff = 2 ×min(B,C) /(2A + B + C)  (13) 

 and

€ 

AbDiff%diff = B −C /(2A + B + C)  (14)  

The Repl%diff and AbDiff%diff indices do not seem to have been described in the literature yet and 
are thus new, although they stem from the same logic as the Podani et al. (2013) indices for 
quantitative data (eqs. 10 and 11). For the example data, Repl%diff = 0.2667 and AbDiff%diff = 
0.4000, which sum to D%diff = 0.6667. 

 Construction of indices for abundance data in the Podani family is summarized in 
Table S1.2. 

3.2. Baselga family 

 Baselga (2013) described replacement and nestedness indices for species abundance data 
that sum to the percentage difference and correspond to the presence-absence indices described in 
his 2010 paper. He called the former balanced variation component and the latter abundance 
gradient component of dissimilarity indices. They are obtained by replacing the a, b and c 
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components of the indices for presence-absence data (eqs. 5 and 6) by the quantities A, B and C 
defined above, which produces the following equations: 

 

€ 

ReplB%diff =
min(B,C)

A +min(B,C)
 (15) 

 and 

€ 

NesB%diff =
B −C

2A + B + C
×

A
A +min(B,C)

 (16)  

For the example data, ReplB%diff = 0.4444 and NesB%diff = 0.2222, which sum to D%diff = 0.6667. 

 Replication and nestedness indices that sum to the Ružička dissimilarity can now be 
described. The ReplBR and NesBR indices were not described by Baselga and are thus new. 

 

€ 

ReplBR =
2min(B,C)

A + 2min(B,C)
 (17) 

 and 

€ 

NesBR =
B −C

A + B + C
×

A
A + 2min(B,C)

 (18) 

For the example data, ReplBR = 0.6154 and NesBR = 0.1846, which sum to DR = 0.8000. 

 Construction of indices for abundance data in the Baselga family is summarized in 
Table S1.3.  

 All indices decomposing dissimilarities in the Podani and Baselga families, described 
above, have the property that when the quantitative indices are computed on presence-absence 
data, they produce the same results as the binary versions. 

4. Comparison of indices: which set of indices should one use? 

 During the past few years, arguments have been presented in favour or against each family 
of indices. Here is a short and possibly incomplete review of these exchanges. 

4.1. Richness difference versus nestedness 

 After the publication by Baselga (2010) of a first pair of indices (βsim and βnes) 
decomposing DS, Schmera & Podani (2011) argued that βnes was simply the arithmetic difference 
between DS and βsim, without any connection to an ecological measure of species replacement or 
nestedness. They then summarised the partitioning of DJ into Rrel (ReplJ) and Drel (RichJ) 
described in Podani & Schmera (2011), where each component has clear ecological meaning, and 
they illustrated the differences between their indices and Baselga’s using simulated and real 
ecological data. Baselga had explained, however, that βnes was a nestedness index, whereas Drel 
was defined by Podani & Schmera (2011) as a richness difference index. Podani & Schmera had 
recognized the difference between the two types of indices and defined a nestedness index (N) 
associated with their Rrel (ReplJ) and Drel (RichJ) indices in their 2011 paper; see section 2.1 

 Baselga explained as follows the intricate formula of the nestedness index βnes, which is the 
product of two components: “This product is needed to separate differences in richness caused by 
nestedness from other differences in richness” (Baselga 2010, p. 138). The difference between 
richness difference and nestedness is emphasized again in subsection 4.3 (below). 
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 The Podani and Baselga families of decompositions have different objectives. In the 
Baselga family, dissimilarities are decomposed into turnover (or replacement) and nestedness 
components; the latter indices do not measure richness difference. In the Podani family, 
dissimilarities are decomposed into replacement and richness difference components; nestedness 
indices have also been proposed, but they are not an additive component of the dissimilarity 
indices. The message here is that these families of decompositions are not intended for the same 
purposes. They may be used to fulfil different objectives, and they may bring out complementary 
information when applied to the same data. 

 Among other criticisms that were voiced, Almeida-Neto (2012) criticized Baselga’s βnes on 
the ground that it did not behave like a true nestedness index because it did not satisfy the 
following conditions for selected simulated data: (1) it did not always increase when nestedness 
increased, (2) it should not have varied when nestedness remained constant, and (3) it should not 
have yielded positive values when there was no nestedness in the data.  

4.2. Over- or under-estimation of species replacement 

 The βsim index of replacement (ReplBS) of Baselga was criticized by Carvalho et al. (2012) 
on the ground that it overestimated species replacement. Conversely, Baselga (2012) criticized 
Podani’s β–3 index of replacement (ReplJ) on the ground that it underestimated species 
replacement. The difference in point of view is due to the denominator that serves as the 
reference in each index; see formulas in Table S1.1. Podani & Schmera (2011) defined species 
replacement as R = 2×min(b,c) without a denominator, indicating that it is the numerators of the 
proposed functions (ReplJ, ReplS, ReplBJ, ReplBS, all having the same numerator) that estimate 
replacement. One can then use the denominator of one’s choice, depending on the purpose of the 
study. In the two families of indices, the replacement and richness difference (or nestedness) 
indices sum to dissimilarity measures (DJ, DS, DR, D%diff) that are all appropriate for beta diversity 
assessment, following the criteria of Legendre & De Cáceres (2013).  

4.3. Monotonicity 

 Carvalho et al. (2013) suggested that the replacement and richness difference indices 
should increase monotonically with increases in the amounts of replacement and richness 
difference in data. They carried out simulations using species presence-absence data. They found 
that the indices of Podani & Schmera (2011) that decompose DJ increased monotonically. That 
was not the case for Baselga’s (2010, 2012) βjne (NesBJ) and βnes (NesBS), which are nestedness 
indices; results of simulations similar to those of Carvalho et al. (2013) are shown in Appendix 
S2, Fig. S2.2. I also computed the relativized nestedness index of Podani & Schmera (2011) for 
the simulated data; values of that index decreased monotonically with the amounts of 
replacement and richness difference. In any case, this is not a problem because these indices 
measure nestedness, not richness difference. According to Podani & Schmera (2011), the quantity 
|b – c|, which measures richness difference, does not fully reflect nestedness but only a 
contribution to it. Hence there is no constraining reason why nestedness indices should increase 
monotonically with increases in replacement and richness difference in data series. 

 I carried out further simulations to complete the picture. First, I verified that the indices of 
the Podani family that decompose DS obeyed the monotonicity condition of Carvalho et al. 
(2013) (Appendix S2, Fig. S2.1). Then I carried out simulations using quantitative data to check 
that the quantitative indices developed by Podani et al. (2013) obeyed the monotonicity 
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condition. The results showed that the Repl and AbDiff forms of the Ružička and percentage 
difference indices reacted monotonically to gradual changes in quantitative community 
composition (Appendix S2, Fig. S2.3).  

4.4. Metric and Euclidean properties 

 Table S1.4 shows the metric and Euclidean properties of the dissimilarity coefficients (DJ, 
DR, DS, D%diff) and the corresponding Repl and RichDiff / AbDiff / Nes indices of the Podani 
(Table S1.4a) and Baselga (Table S1.4b) families. These properties are useful to select a 
coefficient to produce an ordination. The Jaccard and Ružička dissimilarities are metric whereas 
the Sørensen and percentage difference dissimilarities are semimetric. In all four cases, the 
dissimilarity matrix D is not Euclidean but D(0.5) = [

€ 

Dhi
0.5] is Euclidean (Legendre & Legendre, 

2012, Table 7.2), meaning that the data points can be fully represented in Euclidean space by 
principal coordinate analysis (PCoA) without production of negative eigenvalues and complex 
ordination axes. In simple terms, they are fully appropriate for ordination by PCoA.  

 The Podani-family RichDiff indices decomposing the Sørensen (RichDiffS) and percentage 
difference (AbDiff%diff) indices present clear advantages for ordination over the RichDiffJ, AbDiffR 
and Nes indices because the RichDiffS, AbDiff%diff, RichDiffS

 (0.5) and AbDiff%diff
(0.5) matrices are 

metric and Euclidean. All other forms of indices are not metric nor Euclidean, so they should be 
subjected to corrections for negative eigenvalues when used to produce ordinations by principal 
coordinate analysis (Legendre & Legendre, 2012, section 9.3.4). 

4.5. Property P5 of Legendre & De Cáceres 

 Leprieur & Oikonomou (2014) argued that the Podani & Schmera (2011) measure of 
replacement β–3 lacked an important property that a dissimilarity measure should have when it is 
used in beta diversity studies, namely property P5 of Legendre & De Cáceres (2013), which 
states that sites without species in common should have the largest dissimilarity. For Legendre & 
De Cáceres (2013), that was indeed one of the important properties that should be fulfilled by 
dissimilarity coefficients used for beta diversity assessment. When we consider the pair ReplJ and 
RichJ, or ReplS and RichS, however, these indices are not used to measure beta diversity as a 
whole; they decompose the DJ and DS dissimilarities that can be used to estimate beta diversity. It 
is DJ and DS that should have property P5, not their components, and indeed they do. 
Replacement and richness difference indices are not used to carry out the same types of data 
analyses as dissimilarity indices; they have different purposes.  

5. Artificial numerical examples 

 Leprieur & Oikonomou (2014) created an artificial data set to illustrate the fact that β–3 
(ReplJ) was correlated with differences in species richness between sites, whereas ReplBJ, (βjtu) 
and ReplBS (βsim) were not. That example is revisited here (Table S1.5). Only the first five sites of 
their example are used here. The data comparing the community of site A to those of sites B-E 
are presented in the form of the counts a, b and c used in the coefficient formulas (Table S1.1).  

 The replacement coefficients proposed by Baselga (2010, 2012), ReplBJ and ReplBS, are not 
correlated to richness difference in this example but ReplJ and ReplS are negatively correlated to 
unscaled richness difference, Rich.diff.  
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Table S1.5. Coefficients and indices computed for the first artificial example. Rich.diff: unscaled 
richness difference computed as |b – c| or |r1 – r2|. r1, r2, p1, p2: see text. Two dissimilarities: 
DJ (Jaccard) and DS (Sørensen). Four replacement indices: ReplBJ, ReplBS, ReplJ and ReplS; four 
richness difference indices: NesBJ, NesBS, RichDiffJ and RichDiffS.  
______________________________________________________________________________ 

(a) Coefficients 

Site pair  a   b   c   r1   p1   r2   p2 Rich.diff 
______________________________________________________________________________ 

A-B  10  10  10   20  1/2   20  1/2 0 

A-C  10  10  20   20  1/2   30  1/3 10 

A-D  10  10  30   20  1/2   40  1/4 20 

A-E  10  10  40   20  1/2   50  1/5 30 
______________________________________________________________________________ 

(b) Dissimilarity, replacement and richness difference indices 

Site pair DJ DS ReplBJ ReplBS ReplJ ReplS NesBJ NesBS RichDiffJ RichDiffS 
______________________________________________________________________________ 

A-B  0.667  0.500   0.667 0.500 0.667  0.500  0.000   0.000    0.000  0.000 

A-C  0.750  0.600   0.667 0.500 0.500  0.400  0.083   0.100    0.250  0.200 

A-D  0.800  0.667   0.667 0.500 0.400  0.333  0.133   0.167    0.400  0.333 

A-E  0.833  0.714   0.667 0.500 0.333  0.286  0.167   0.214    0.500  0.429 
______________________________________________________________________________ 

 

 Legendre & De Cáceres (2013, Appendix S3, property P10) showed, however, that DJ and 
DS do not depend on the species richness, r1 and r2, in the two sampling units that are compared; 
r1 = a + b and r2 = a + c. For proof, they showed that these dissimilarity coefficients can be 
expressed by formulas that do not contain r1 and r2 but only p1 and p2, where p1 is the proportion 
of shared species in the first sampling unit, p1 = a/r1; likewise, p2 is the proportion of shared 
species in the second sampling unit, p2 = a/r2. They considered this property P10 important for 
dissimilarity coefficients used for studying beta diversity; this property facilitates (although it 
does not ensure) the comparability of beta diversity values obtained for sampling units having 
different sizes or sampled using different efforts. That property can be demonstrated for all 
coefficients computed in Table S1.5 (see section 6 of the present Appendix): these coefficients 
are all invariant to the number of species in each sampling unit since they can be expressed by 
equations that only contain p1 and p2.  

 The example in Table S1.5 had been tailored to support the claim of dependence of ReplJ 
and ReplS on species richness r2; it does not show what happens when p1 and p2 remain constant 
across site comparisons. When they do, the ten coefficients produce constant values (i.e. they do 
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not change their values) when one changes r1 and r2 to any positive integer value under the 
constraint that r1p1 = r2p2.  

 To illustrate that property, a second example was generated using four pairs of unrelated 
sites (Table S1.6). In this example, the dissimilarity and replacement indices do not vary with 
changes in unscaled richness difference (Rich.diff = |b – c| or |r1 – r2|, last column in section (a) of 
the table), provided that r1p1 = r2p2 = a.  

Table S1.6. Coefficients and indices computed for the second artificial example. 
______________________________________________________________________________ 

(a) Coefficients 

Site pair  a   b   c   r1   p1   r2   p2 Rich.diff 
______________________________________________________________________________ 

A-B 3 9 3 12 0.25 6 0.5 6 

C-D 5 15 5 20 0.25 10 0.5 10 

E-F 10 30 10 40 0.25 20 0.5 20 

G-H 25 75 25 100 0.25 50 0.5 50 
______________________________________________________________________________ 

(b) Dissimilarity, replacement and richness difference indices 

Site pair DJ DS ReplBJ ReplBS ReplJ ReplS NesBJ NesBS RichDiffJ RichDiffS 
______________________________________________________________________________ 

A-B  0.800 0.667 0.667 0.500 0.400 0.333 0.133 0.167 0.400 0.333 

C-D 0.800 0.667 0.667 0.500 0.400 0.333 0.133 0.167 0.400 0.333 

E-F  0.800 0.667 0.667 0.500 0.400 0.333 0.133 0.167 0.400 0.333 

G-H  0.800 0.667 0.667 0.500 0.400 0.333 0.133 0.167 0.400 0.333 
______________________________________________________________________________ 

 
In Table S1.6, the ten indices have identical values for all pairs of sites and they are totally 
unrelated to the unscaled richness difference between sites (Rich.diff column) since they are 
invariant. When the values of p1 and p2 do not change, the values of all indices do not change. 
The indices are related in highly nonlinear ways to the values of p1 and p2, as shown by the 
equations in section 6. Data where the condition (r1p1 = r2p2 = a) is violated may, of course, show 
correlations of Repl indices with richness difference on a case-by-case basis. 

6. Proofs of property P10 for individual indices 

 Property P10 of Legendre & De Cáceres (2013) states the following:  

Indices for binary (species presence-absence) data that have this property do not directly depend 
on the number of species in the compared sampling units.  
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Does the index value change if the two communities are species rich, compared to when the two 
communities are species poor or when one is rich and the other poor? Indices having property 
P10 do not change their values with changes in numbers of species r1 and r2, in two sampling 
units x1 and x2 that are compared, provided that r1p1 = r2p2.  

The following equalities and notations are used in the demonstrations:  

• the total number of species (richness) in x1 and x2 are noted r1 = a + b and r2 = a + c ; 
• the proportion of shared species with respect to the total richness at each site is p1 = a / r1 = 
a / (a + b) and p2 = a / r2 = a / (a + c) ; 
• hence a = r1p1 = r2p2, b = r1(1 – p1) and c = r2(1 – p2). 

 The minimum of b and c, which we will need in the demonstrations, can be computed as  
min(b,c) = ((b + c) – abs(b – c))/2 = (r1(1 – p1) + r2(1 – p2) – | r1(1 – p1) – r2(1 – p2)| )/2 

 Also, because r1p1 = r2p2 = a, we have  

• if r1 > r2 then p1 < p2 ; else if r1 < r2 then p1 > p2 ; 

• min(b,c) = (r1 + r2 – 2r1p1 – |r1 – r2|)/2 = (r1 + r2 – 2r2p2 – |r1 – r2|)/2 . 

For the Jaccard and Sørensen similarity indices, demonstrations are provided in Appendix S3 of 
Legendre & De Cáceres (2013). The equations are reported again here, transformed into 
dissimilarities DJ and DS. 

 Indices that have property P10 may still be empirically correlated (linearly or not) with 
differences in species richness for particular data sets. 

(1) Jaccard dissimilarity 

€ 

DJ =1− 1
(1/ p1) + (1/ p2) −1

=
p1 + p2 − 2p1p2
p1 + p2 − p1p2

 

(2) Sørensen dissimilarity 

€ 

DS =1− 2
(1/ p1) + (1/ p2)

=
p1 + p2 − 2p1p2

p1 + p2
 

These two dissimilarity coefficients are thus independent of r1 and r2. The dissimilarity functions 
recommended in that paper for beta diversity studies all have property P10, but some other 
dissimilarity coefficients do not.  

Following are the demonstrations for the replacement and richness difference indices, 
which all have property P10. 

(3) ®–3 or ReplJ (Williams 1996, Podani & Schmera 2011)  

€ 

β–3 =
2min(b,c)
a + b + c

=
r1 + r2 − 2r1p1 − r1 − r2

r1p1 + r1(1− p1) + r2(1− p2)
=
r1 + r2 − r1 − r2 − 2r1p1

r1 + r2 − r2p2
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If r1 > r2, and considering that r1p1 = r2p2, 

€ 

β–3 =
r1 + r2 − r1 + r2 − 2r2p2

r1 + r2 − r2p2
=
2r2(1− p2)
r1 + r2 − r2p2

 

Since r1 = r2 p2/p1, 

€ 

β–3 =
2r2(1− p2)

r2p2
p1

+ r2 − r2p2
=

2r2(1− p2)
r2p2
p1

+
r2p1
p1

−
r2p1p2
p1

=
2p1(1− p2)
p1 + p2 − p1p2

 

If r1 < r2,  

€ 

β–3 =
r1 + r2 + r1 − r2 − 2r1p1

r1 + r2 − r2p2
=
2r1(1− p1)
r1 + r2 − r2p2

 

Since r2 = r1p1/p2, 

€ 

β–3 =
2r1(1− p1)

r1 +
r1p1
p2

−
r1p1p2
p2

=
2r1(1− p1)

r1p2
p2

+
r1p1
p2

−
r2p1p2
p2

=
2p2(1− p1)
p1 + p2 − p1p2

 

Hence, considering that if r1 > r2 then p1 < p2, or if r1 < r2 then p1 > p2,   

€ 

β–3 =
2min(p1, p2)(1−max(p1, p2)

p1 + p2 − p1p2
, which is independent of r1 and r2. 

(4) ReplS (Carvalho et al. 2013) 

€ 

ReplS =
2min(b,c)
2a + b + c

=
r1 + r2 − 2r1p1 − r1 − r2

2r1p1 + r1(1− p1) + r2(1− p2)
=
r1 + r2 − r1 − r2 − 2r1p1
r1 + r2 + r1p1 − r2p2

 

If r1 > r2, and considering that r1p1 = r2p2, 

€ 

ReplS =
r1 + r2 − r1 + r2 − 2r2p2

r1 + r2
=
2r2(1− p2)
r1 + r2
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Since r1 = r2p2/p1, 

€ 

ReplS =
2r2(1− p2)
r2p2
p1

+ r2
=
2r2(1− p2)
r2p2
p1

+
r2p1
p1

=
2p1(1− p2)
p1 + p2

 

If r1 < r2, and considering that r1p1 = r2p2, 

€ 

ReplS =
r1 + r2 + r1 − r2 − 2r1p1

r1 + r2
=
2r1(1− p1)
r1 + r2

 

Since r2 = r1p1/p2, 

€ 

ReplS =
2r1(1− p1)

r1 +
r1p1
p2

=
2r1(1− p1)
r1p2
p2

+
r1p1
p2

=
2p2(1− p1)
p1 + p2

 

Hence, considering that if r1 > r2 then p1 < p2, or if r1 < r2 then p1 > p2,   

€ 

ReplS =
2min(p1, p2)(1−max(p1, p2)

p1 + p2
, which is independent of r1 and r2. 

(5) ® jtu (Baselga 2012) (ReplBJ in this Appendix) 

€ 

β jtu =
2min(b,c)

a + 2min(b,c)
=

r1 + r2 − 2r1p1 − r1 − r2
r1p1 + r1 + r2 − 2r1p1 − r1 − r2

=
r1 + r2 − r1 − r2 − 2r1p1
r1 + r2 − r1 − r2 − r1p1

 

If r1 > r2, and considering that r1p1 = r2p2, 

€ 

β jtu =
r1 + r2 − r1 + r2 − 2r2p2
r1 + r2 − r1 + r2 − r2p2

=
2r2(1− p2)
2r2(1− 0.5p2)

=
1− p2
1− 0.5p2

 

If r1 < r2,  

€ 

β jtu =
r1 + r2 + r1 − r2 − 2r1p1
r1 + r2 + r1 − r2 − r1p1

=
2r1(1− p1)
2r1(1− 0.5p1)

=
1− p1
1− 0.5p1

 

Hence, considering that if r1 > r2 then p1 < p2, or if r1 < r2 then p1 > p2,  

€ 

β jtu =
1−max(p1, p2)
1−max(p1, p2) /2

, which is independent of r1 and r2. 



 15 

(6) ® sim (Baselga 2010) (ReplBS in this Appendix) 

€ 

βsim =
min(b,c)

a +min(b,c)
=

(r1 + r2 − 2r1p1 − r1 − r2 ) /2
r1p1 + (r1 + r2 − 2r1p1 − r1 − r2 ) /2

=
r1 + r2 − r1 − r2 − 2r1p1

r1 + r2 − r1 − r2
 

If r1 > r2, and considering that r1p1 = r2p2, 

€ 

βsim =
r1 + r2 − r1 + r2 − 2r2p2

r1 + r2 − r1 + r2
=
2r2(1− p2)

2r2
=1− p2  

If r1 < r2,  

€ 

βsim =
r1 + r2 + r1 − r2 − 2r1p1

r1 + r2 + r1 − r2
=
2r1(1− p1)
2r1

=1− p1 

Hence, considering that if r1 > r2 then p1 < p2, or if r1 < r2 then p1 > p2,  

€ 

βsim =1−max(p1, p2) , which is independent of r1 and r2. 

(7) Richness difference and nestedness indices 

Because the DJ and DS dissimilarities and the four replacement indices obey P10, the 
corresponding richness difference indices must also have property P10. Indeed, the richness 
difference and nestedness indices are computed as a dissimilarity (either DJ and DS) minus a 
replacement index. From the equations above, the following relationships can easily be derived: 

€ 

RichJ = DJ −β-3 =
abs(p1 − p2)
p1 + p2 − p1p2

 

€ 

RichS = DS − ReplS =
abs(p1 − p2)
p1 + p2

  

€ 

β jne = DJ −β jtu =
max(p1, p2)abs(p1 − p2)

2(p1 + p2) − 3p1p2 −max(p1
2, p2

2)(1−min(p1, p2))
   (NesBJ in this Appendix) 

€ 

βnes = DS −βsim =
max(p1, p2)abs(p1 − p2)

p1 + p2
    (NesBS in this Appendix) 

These equations show that richness difference and nestedness are independent of the values of r1 
and r2. They depend only on p1 and p2.  

7. Conclusion and summary 

 This appendix attempted to describe in an orderly fashion the development of indices that 
decompose dissimilarity coefficients into replacement and richness/abundance difference (or 
nestedness) components. In the Podani and Baselga families, each one contains indices for 
presence-absence data that decompose the Jaccard and Sørensen dissimilarities, as well as indices 
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for species abundance data that decompose the Ružička and percentage difference dissimilarities. 
Both families were completed by new indices described in the present paper. 

 From the discussions that appeared in the recent literature, I chose to discuss the following 
points: 

• As shown by Podani & Schmera (2011) and following papers, it is the numerators of the 
proposed indices that estimate replacement and richness difference. One can then scale the 
indices to values between 0 and 1 with denominators of one’s choice, depending on the purpose 
of the study. The denominators of the Jaccard, Sørensen, Ružička and percentage difference 
dissimilarities, or those used by Baselga (2010, 2012) in his replacement (turnover) indices, can 
all be used. Ecologists should understand, however, that the chosen denominators may create 
distortions in the positioning of sites in an ordination, compared to using the numerator values 
only. None of the denominators proposed up to now have all the optimal qualities. The 
discussions about over- or under-estimation of species replacement by indices of the two families 
of indices are, actually, discussions about the choice of a denominator. 

• The indices in the Podani family correspond to the concepts of replacement and 
richness/abundance difference. Those in the Baselga family are replacement (or turnover) and 
nestedness indices. Richness difference is not the same as nestedness. Podani & Schmera (2011) 
proposed an index of nestedness (Nrel) that differs from their index of richness difference; they 
explained that the latter only represents a portion of nestedness; see the Introduction of the main 
paper. Hence the Baselga nestedness indices (NesBJ and NesBS) should be compared to Podani & 
Schmera’s relativized nestedness index, not to the richness difference indices of the Podani 
family (RichJ and RichS). 

• In the two families, the replacement and richness difference (Podani family) or replacement and 
nestedness indices (Baselga family) sum to dissimilarity measures (DJ, DS, DR, D%diff) that are 
appropriate for beta diversity assessment, following the criteria of Legendre & De Cáceres 
(2013). An important point is that these indices are not themselves indices of beta diversity; they 
decompose dissimilarity coefficients that can be used as estimates of beta diversity. 

• Replacement and richness difference or nestedness indices should have an ecological 
interpretation. In that respect, indices in the Podani family are easy to interpret due to the logic of 
their construction. Likewise, interpretation of Baselga’s replacement indices is clear, whereas that 
of his nestedness indices is more intricate, albeit logical. 

• When matrices of indices are to be used to produce ordinations of the sites, the Podani-family 
RichDiff/AbDiff indices (RichDiffS and AbDiff%diff) that decompose the Sørensen and percentage 
difference dissimilarities present clear advantages for ordination because the RichDiffS and 
AbDiff%diff matrices are Euclidean. 

• Claims have been made that the Repl indices in the Podani family were correlated to species 
richness differences between the sampling units whereas indices in the Baselga family are not. 
Actually, all indices described in this appendix do not depend directly on site richness since they 
can all be expressed without recourse to the species richness of the sites that are compared, r1 and 
r2. Section 6 of this appendix has shown that they can all be expressed by equations containing 
only p1 and p2, where p1 is the proportion of shared species in the first sampling unit, p1 = a/r1, 
and p2 is the proportion of shared species in the second sampling unit, p2 = a/r2; a is the number 
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of species in common between the two sites. So this criticism does not apply to any of the indices 
described in this appendix. 
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Table S1.1. Measures of dissimilarity, replacement and richness difference for presence-absence 
data with names used by different authors. Modified and expanded from Carvalho et al. (2013).  

______________________________________________________________________________ 

Indices Equation Reference 
______________________________________________________________________________ 
 
Dissimilarity indices 

DJ or DJaccard or βCC or βjac  (b+c) / (a+b+c) Jaccard (1908) 
 
DS or DSørensen or βsor (b+c) / (2a+b+c) Sørensen (1948) 
 
Podani family, Jaccard 

β–3 or Rrel or ReplJ 

€ 

2min(b,c)
a + b + c

 Williams (1996) 

  Cardoso et al. (2009) 
  Podani & Schmera (2011) 
 

βrich or Drel or RichDiffJ 

€ 

b − c
a + b + c

 Podani & Schmera (2011) 

  Carvalho et al. (2012, 2013) 
Podani family, Sørensen 

ReplS 

€ 

2min(b,c)
2a + b + c

 Carvalho et al. (2013) 

 

RichDiffS 

€ 

b − c
2a + b + c

 Carvalho et al. (2013) 

Baselga family, Jaccard 

βjtu (ReplBJ) 

€ 

2min(b,c)
a + 2min(b,c)

 Baselga (2012) 

 

βjne (NesBJ) DJ – βjtu = 

€ 

b − c
a + b + c

×
a

a + 2min(b,c)
 Baselga (2012) 

Baselga family, Sørensen 

βsim (ReplBS) 

€ 

2min(b,c)
2a + 2min(b,c)

 = 

€ 

min(b,c)
a +min(b,c)

 Lennon et al. (2001), 

  Baselga (2010) 
 

βnes (NesBS) DS – βsim = 

€ 

b − c
2a + b + c

×
a

a +min(b,c)
 Baselga (2010) 

______________________________________________________________________________ 
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Table S1.2. Podani-family indices: construction of the replacement (Repl), richness difference (or 
abundance difference for quantitative data) (RichDiff or AbDiff), and dissimilarity (D) indices, for 
presence-absence and abundance data. References for the indices, presence-absence data, Jaccard 
group: Podani & Schmera (2011); Sørensen group: Carvalho et al. (2013). Abundance indices, 
Jaccard group: Podani et al. (2013); Sørensen group: new in this paper. 

 Presence-absence data Species abundance data 

Numerators (num.)   

 Replacement num. 2×min(b,c) = (b+c) – |b–c| 2×min(B,C) 

Richness or abund. 
difference num. 

|b–c| = max(b,c) – min(b,c) |B – C| 

 Dissimilarity num. (b+c) = 2×min(b,c) + |b–c| (B+C) = 2×min(B,C) + |B – C| 

Jaccard group (J)   

 Denominator (a+b+c) (A+B+C) 

 D Jaccard dissimilarity: 

DJ = (b+c) / (a+b+c) 

Ružička dissimilarity: 

DR = (B+C) / (A+B+C) 

 Repl ReplJ = 2×min(b,c) / (a+b+c) ReplR = 2×min(B,C) / (A+B+C) 

 RichDiff/AbDiff RichDiffJ = |b–c| / (a+b+c) AbDiffR = |B – C| / (A+B+C) 

Sørensen group (S)   

 Denominator (2a+b+c) (2A+B+C) 

 D Sørensen dissimilarity: 

DS = (b+c) / (2a+b+c) 

Percentage difference dissimilarity: 

D%diff = (B+C) / (2A+B+C) 

 Repl ReplS = 2×min(b,c) / (2a+b+c) Repl%diff = 2×min(B,C) / (2A+B+C) 

 RichDiff/AbDiff RichDiffS = |b–c| / (2a+b+c) AbDiff%diff = |B – C| / (2A+B+C) 
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Table S1.3. Baselga-family indices: construction of the replacement (Repl), nestedness (or 
abundance gradient component for quantitative data, Nes), and dissimilarity (D) indices, for 
presence-absence and abundance data. References for the indices, presence-absence data, Jaccard 
group: Baselga (2012); Sørensen group: Baselga (2010). Abundance indices, Jaccard group: new 
in this paper; Sørensen group: Baselga (2013). 

 Presence-absence data Species abundance data 

Jaccard group (J)   

 D Jaccard dissimilarity: 

DJ = (b+c) / (a+b+c) 

Ružička dissimilarity: 

DR = (B+C) / (A+B+C) 

 Repl ReplBJ = 

€ 

2min(b,c)
a + 2min(b,c)

 ReplBR = 

€ 

2min(B,C)
A + 2min(B,C)

 

 Nes NesBJ = 

€ 

b − c
a + b + c

×
a

a + 2min(b,c)
 

NesBR =  

€ 

B −C
A + B + C

×
A

A + 2min(B,C)
 

Sørensen group (S)   

 D Sørensen dissimilarity: 

DS = (b+c) / (2a+b+c) 

Percentage difference dissimilarity: 

D%diff = (B+C) / (2A+B+C) 

 Repl ReplBS = 

€ 

min(b,c)
a +min(b,c)

 ReplB%diff = 

€ 

min(B,C)
A +min(B,C)

 

 Nes NesBS = 

€ 

b − c
2a + b + c

×
a

a +min(b,c)
 

NesB%diff = 

€ 

B −C
2A + B + C

×
A

A +min(B,C)
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Table S1.4. Metric and Euclidean properties of the two families of indices: (a) Podani family, 
(b) Baselga family. Yes: the index has the property; No: the index does not have the property. 
Abbreviations: D = dissimilarity, Repl = replacement, RichDiff/AbDiff = richness/abundance 
difference, Nes = nestedness, J = Jaccard, R = Ružička, S = Sørensen, %diff = percentage 
difference.  

(a) Podani family  Metric property 
 index 

€ 

index  
 Euclidean property 
 index 

€ 

index  

Jaccard group   
 DJ  Yes Yes  No Yes 
 DR  Yes Yes  No Yes 
 ReplJ  No No  No No 
 ReplR  No No  No No 
 RichDiffJ  No No  No No 
 AbDiffR  No No  No No 
Sørensen group   
 DS  No Yes  No Yes 
 D%diff  No Yes  No Yes 
 ReplS  No No  No No 
 Repl%diff  No No  No No 
 RichDiffS  Yes Yes  Yes Yes 
 AbDiff%diff  Yes Yes  Yes Yes 

 

(b) Baselga family  Metric property 
 index 

€ 

index  
 Euclidean property 
 index 

€ 

index  

Jaccard group   
 DJ  Yes Yes  No Yes 
 DR  Yes Yes  No Yes 
 ReplBJ  No No  No No 
 ReplBR  No No  No No 
 NesBJ  No No  No No 
 NesBR  No No  No No 
Sørensen group   
 DS  No Yes  No Yes 
 D%diff  No Yes  No Yes 
 ReplBS  No No  No No 
 ReplB%diff  No No  No No 
 NesBS  No No  No No 
 NesB%diff  No No  No No 
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Legendre, P. (2014) Interpreting the replacement and richness difference components of beta 
diversity. Global Ecology and Biogeography, 23, 1324-1334. 
 
 

Appendix S2 

Simulations for monotonicity 
 
 Carvalho et al. (2013, pp. 830-831) carried out a simulation study to determine if the 
replacement and richness difference indices increased monotonically along ecological gradients 
showing increases in the amounts of replacement and richness difference. 

• The replacement gradient was generated as follows: starting with a community containing p 
species (p = 105 in our study), an increasing number of species were replaced at each time step 
during 25 steps. Each replacement involved one species that was present at time 1 and was lost at 
time 2, and one new species that appeared at time 2. At each time step, one more species was 
replaced than at the previous step.  

• Three scenarios were used to simulate gradients of richness difference, with one, two, or three 
species lost at each step. In scenario 1, replacement dominates the gradient because two new 
species are involved in replacement at each step compared to one for richness difference. The two 
processes are of equal importance in scenario 2, and richness difference dominates in scenario 3. 

There would, of course, be other ways of generating these gradients. 

 First, I reproduced the study made by these authors for the Podani & Schmera (2011) 
indices decomposing the Jaccard dissimilarity DJ. The results were similar to those obtained by 
Carvalho et al. (2013) (Fig. S2.1, upper row).  

 The study was repeated for the indices derived from the Sørensen dissimilarity DS, which 
had not been considered by Carvalho et al. (2013) in their simulation study. The indices derived 
from DS were monotonic to replacement and richness gradients (Fig. S2.1, lower row). 

 Next, I carried out simulations involving the relativized nestedness index of Podani & 
Schmera (2011) and Baselga’s nestedness indices decomposing DJ and DS. (Fig. S2.2). The 
results showed that the relativized nestedness index (Nrel) decreased monotonically when 
replacement and richness difference increased (Fig. S2.2, upper row), whereas Baselga’s 
nestedness-resultant D indices increased, then decreased (red lines in the middle and lower rows). 

 Finally, simulations were carried out to verify if the quantitative indices of the Podani-
family obeyed the monotonicity condition of Carvalho et al. (2013).  

• At each step in the simulations, which involved 100 species, selected species were replaced by 
new species, but without loss of total individuals, forming a gradient of increasing species 
replacement.  

• Other species were lost, contributing to a smooth gradient of monotonic change in the 
abundance difference. The remaining initial species lost a constant number of individuals at each 



 2 

step, following the Ordered Comparison Case Series simulation method proposed by Hajdu 
(1981) and used by Gower & Legendre (1986) to assess the properties of dissimilarity 
coefficients; these changes contributed to forming a smooth gradient of individual-based 
abundance differences along the series.  

The Repl and AbDiff forms of the Ružička and percentage difference indices reacted 
monotonically to these quantitative changes in community composition (Fig. S2.3). The R code 
used to simulate the data is shown below. The indices were computed by function beta.div.comp 
(Appendix S3). 
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Figure S2.1  Simulation results for binary data. Podani & Schmera (2011) indices decomposing 
the Jaccard (DJ, upper row) and the Sørensen (DS, lower row) dissimilarities. In each graph, the 
initial species data are compared to those at the given step along the simulated gradient (e.g. 
time). Black: dissimilarity values; blue: Repl index; red: RichDiff index. Under scenario 2, the 
Repl and RichDiff values are identical; the red squares are masking the blue 
symbols.                                   
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Figure S2.2  Simulation results for binary data. Upper row: Podani & Schmera (2011) 
decomposition of DJ into Repl and nestedness (Nrel); middle row: Baselga-family decomposing 
DJ; lower row: Baselga-family decomposing DS. Black: dissimilarity values; blue: Repl indices; 
red: nestedness indices. 
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Figure S2.3  Simulation results for quantitative data. Podani-family indices decomposing the 
Ružička (DR, upper row) and the percentage difference (D%diff, lower row) dissimilarities. In each 
graph, the initial species abundance data are compared to those at the given step along the 
simulated gradient (e.g. time). Black: dissimilarity values; blue: Repl index; red: AbDiff index. 



 6 

R functions that generated the simulated data 

 
carvalho.simul <- function(steps=25, p.init=100, scenario=2, a.min=5, val=1) 
# 
# Simulations using species presence-absence data to determine if the  
# replacement and richness difference indices respond monotonically to  
# gradients. See Carvalho et al. (2013, pp. 830:831) for details. 
# 
# steps : Number of (temporal) simulation steps after the initial vector. 
# p.init : Number of species present at reference site 1. 
# scenario={1,2,3} : how many species are lost at each step. 
#         =1 : lose one species at each step. 
#         =2 : lose two species at each step. 
#         =3 : lose three species at each step. 
# a.min : Minimum number of species in common, in scenario #3, between the   
#         initial data (data row 1) and the last time step (data row 26). 
# val : constant species abundance, e.g. 1 (binary) or 10 (quantitative). 
# 
# License: GPL-2  
# Author:: Pierre Legendre, August 2013 
{ 
# Modify p.init to insure there are species in common (a.min > 0) between the  
# initial and last time steps in scenario #3. 
p.init <- p.init+a.min  
# Simulated data matrix 
mat = matrix(0,(steps+1),(p.init+steps)) 
# 
p = p.init    # Initial no. of species for computation of richness difference 
loss = 0 
gain = 0 
mat[1,1:p] = val 
for(i in 2:(steps+1)) { 
 loss = loss+scenario 
 gain = gain+1 
 p = p-1 
 # cat("[",i,",]","p",p," loss",loss," gain",gain,"\n") 
 # 
 if((p-loss)>0) mat[i,(loss+1):p] = val 
 mat[i,(p.init+1):(p.init+gain)] = val 
 } 
mat 
} 
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abundance.simul <- function(steps=25,p.init=100,scenario=2,val=10,cst.loss=1) 
# 
# Simulations using species abundance data to determine if the quantitative  
# forms of the replacement and abundance difference indices respond  
# monotonically to gradients. Method modified from that of Carvalho et al.  
# (2013, pp. 830:831)  
#  
# Initial community: 'p.init' species, each with a runif() abundance. 
# In the following (temporal) simulation steps: 
#    Some species are lost (beginning of the vector). 
#    Some species are replaced, with no loss of individuals. 
#    The remaining initial species lose 1 individual each step (as in OCCAS). 
# 
# steps : Number of (temporal) simulation steps after the initial vector. 
# p.init : Number of species present at reference site 1. 
# scenario={1,2,3} : how many species are lost at each step. 
#         =1 : lose one species at each step. 
#         =2 : lose two species at each step. 
#         =3 : lose three species at each step. 
# val : Upper bound of values generated by runif(). 
# cst.loss : constant loss at each step for the initial species. 
# 
# License: GPL-2  
# Author:: Pierre Legendre, August 2013 
{ 
mat = matrix(0,(steps+1),(p.init+steps)) 
# 
p = p.init     # number of non-zero data in initial species vector 
loss = 0 
gain = 0 
mat[1,1:p] = floor(runif(p,1,(val+1)))+cst.loss*steps 
# 
for(i in 2:(steps+1)) { 
# Beginning of vector 1:((i-1)*scenario): lost sp. (measured by RichDiff, red) 
# Losses associated with replacements: (p.init-(i-2)): p.init) 
# Gains  associated with replacements: (p.init+1): (p.init+(i-1)) (Repl, blue) 
# => Maintain the number of individuals constant through all steps 
 loss = loss+scenario 
 gain = gain+1 
 p = p-1 
 # cat("[",i,",]","p",p," loss",loss," gain",gain,"\n") 
 if((p-loss)>0) mat[i,(loss+1):p] = mat[(i-1),(loss+1):p]-cst.loss 
 # 
 lost.ind.repl <- sum(mat[(i-1),(p.init-(i-2)):p.init]) 
 n.per.new <- lost.ind.repl/gain 
 # cat("lost.ind.repl =",lost.ind.repl," gain =",gain," n.per.new 
=",n.per.new,"\n") 
 mat[i,(p.init+gain)] = n.per.new   # Abundance of the (one) new species 
 if(i>2) mat[i,(p.init+1):(p.init+(gain-1))]  

= mat[(i-1),(p.init+1):(p.init+(gain-1))]+n.per.new 
 } 
mat 
} 



Page 1 of 5Appendix S3, beta.div.comp.R
Saved: 2014-10-09 14:37:06 Printed For: Pierre Legendre

!
# Appendix to:!
!
# Legendre, P. (2014) Interpreting the replacement and richness difference  !
# components of beta diversity. Global Ecology and Biogeography, 23, 1324-1334.!
!
#                                  Appendix S3!
#!
# R function to compute the Podani- and Baselga-family decompositions of the !
# Jaccard or Sørensen groups into replacement and richness/abundance difference !
# (or nestedness) components, for species presence-absence or abundance data.!
!
!
beta.div.comp <- function(mat, coef="J", quant=FALSE, save.abc=FALSE)!
#!
# Description --!
# !
# Podani-family and Baselga-family decompositions of the Jaccard and Sørensen !
# dissimilarity coefficients into replacement and richness/abundance difference !
# components, for species presence-absence or abundance data, as described  !
# in Legendre (2014).!
#!
# Usage --!
#!
# beta.div.comp(mat, coef="J", quant=FALSE, save.abc=FALSE)!
#!
# Arguments --!
#!
# mat : Data in matrix or data.frame form.!
# coef : Family of coefficients to be computed --!
#        "S" or "Sorensen": Podani family, Sørensen-based indices!
#        "J" or "Jaccard" : Podani family, Jaccard-based indices!
#        "BS" : Baselga family, Sørensen-based indices!
#        "BJ" : Baselga family, Sørensen-based indices!
#        "N" : Podani & Schmera (2011) relativized nestedness index.!
#        The quantitative form in Sørensen family is the percentage difference.!
#        The quantitative form in the Jaccard family is the Ruzicka index.!
#!
# quant=TRUE : Compute the quantitative form of the indices and D.!
#      =FALSE: Compute the presence-absence form of the coefficients.!
# save.abc=TRUE : Save the matrices of parameters a, b and c used in the!
#      presence-absence calculations.!
#!
# Details --!
#!
#    For species presence-absence data, the distance coefficients are !
# Jaccard=(b+c)/(a+b+c) and Sørensen=(b+c)/(2*a+b+c) with usual abc notation.!
#!
#    For species abundance data, the distance coefficients are !
# the Ruzicka index = (B+C)/(A+B+C) and Odum's percentage difference !
# (incorrectly called Bray-Curtis) = (B+C)/(2A+B+C), where  !
# A = sum of the intersections (or minima) of species abundances at two sites,!
# B = sum at site 1 minus A, C = sum at site 2 minus A.!
#!
#    The binary (quant=FALSE) and quantitative (quant=TRUE) forms of the S and  !
# J indices return the same values when computed for presence-absence data.!
#!
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# Value --!
#!
# repl : Replacement matrix, class = 'dist'.!
# rich : Richness/abundance difference or nestedness matrix, class = 'dist'.!
#        With options "BJ", "BS" and "N", 'rich' contains nestedness indices.!
#        With option "N", the 'repl' and 'rich' values do not add up to 'D'.!
# D    : Dissimilarity matrix, class = 'dist'.!
# part : Beta diversity partitioning -- !
#        1. Total beta div. = sum(D.ij)/(n*(n-1)) (Legendre & De Cáceres 2013)!
#        2. Total replacement diversity !
#        3. Total richness/abundance difference diversity (or nestedness)!
#        4. Total replacement div./Total beta div.!
#        5. Total richness/abundance diff. div. (or nestedness)/Total beta div.!
# Note : Name of the dissimilarity coefficient.!
#!
# References --!
#!
# Baselga, A. (2010) Partitioning the turnover and nestedness components of beta !
# diversity. Global Ecology and Biogeography, 19, 134–143.!
#!
# Baselga, A. (2012) The relationship between species replacement, dissimilarity !
# derived from nestedness, and nestedness. Global Ecology and Biogeography, 21, !
# 1223–1232. !
#!
# Baselga, A. (2013) Separating the two components of abundance-based !
# dissimilarity: balanced changes in abundance vs. abundance gradients. Methods !
# in Ecology and Evolution, 4, 552–557.!
#!
# Carvalho, J.C., Cardoso, P., Borges, P.A.V., Schmera, D. & Podani, J. (2013)!
# Measuring fractions of beta diversity and their relationships to nestedness: !
# a theoretical and empirical comparison of novel approaches. Oikos, 122, !
# 825–834.!
#!
# Legendre, P. (2014) Interpreting the replacement and richness difference  !
# components of beta diversity. Global Ecology and Biogeography, 23, 1324-1334.!
#!
# Podani, J., Ricotta, C. & Schmera, D. (2013) A general framework for analyzing !
# beta diversity, nestedness and related community-level phenomena based on !
# abundance data. Ecological Complexity, 15, 52-61.!
#!
# Podani, J. & Schmera, D. (2011) A new conceptual and methodological framework !
# for exploring and explaining pattern in presence-absence data. Oikos, 120, !
# 1625–1638.!
#!
# License: GPL-2 !
# Author:: Pierre Legendre!
{!
coef <- pmatch(coef, c("S", "J", "BS", "BJ", "N"))!
if(coef==5 & quant) stop("coef='N' and quant=TRUE: combination not programmed")!
mat <- as.matrix(mat)!
n <- nrow(mat)!
if(is.null(rownames(mat))) noms <- paste("Site",1:n,sep="")!
! else noms <- rownames(mat)!
#!
if(!quant) {      # Binary data provided, or make the data binary!
! if(coef==1) form="Podani family, Sorensen" !
! if(coef==2) form="Podani family, Jaccard"!
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! if(coef==3) form="Baselga family, Sorensen" !
! if(coef==4) form="Baselga family, Jaccard"!
! if(coef==5) form="Podani & Schmera (2011) relativized nestedness"!
! mat.b <- ifelse(mat>0, 1, 0)!
! a <- mat.b %*% t(mat.b)!
! b <- mat.b %*% (1 - t(mat.b))!
! c <- (1 - mat.b) %*% t(mat.b)!
! min.bc <- pmin(b,c)!
! #!
! if(coef==1 || coef==2) {!
! ! repl <- 2*min.bc   # replacement, turnover, beta-3!
! ! rich <- abs(b-c)   # nestedness, richness diff., beta-rich!
! ! #!
! ! # Add the denominators!
! ! if(coef==1) {                # Sørensen-based components!
! ! ! repl <- repl/(2*a+b+c)!
! ! ! rich <- rich/(2*a+b+c)!
! ! ! D <- (b+c)/(2*a+b+c)!
! ! ! } else if(coef==2) {     # Jaccard-based components!
! ! ! repl <- repl/(a+b+c)!
! ! ! rich <- rich/(a+b+c)!
! ! ! D <- (b+c)/(a+b+c)!
! ! ! }!
! } else if(coef==3) {     # Baselga 2010 components based on Sørensen!
! ! D <- (b+c)/(2*a+b+c)             # Sørensen dissimilarity!
! ! repl <- min.bc/(a+min.bc)        # replacement, turnover!
! ! rich <- D-repl                   # nestedness-resultant dissimilarity!
! ! !
! } else if(coef==4) {      # Baselga 2012 components based on Jaccard!
! ! D <- (b+c)/(a+b+c)               # Jaccard dissimilarity!
! ! repl <- 2*min.bc/(a+2*min.bc)    # replacement, turnover!
! ! rich <- D-repl                   # nestedness-resultant dissimilarity!
! } else if(coef==5) {      # rich = Podani N = nestdness based on Jaccard!
! ! repl <- 2*min.bc/(a+b+c)!
! ! D <- (b+c)/(a+b+c)!
! ! rich <- matrix(0,n,n)!
! ! for(i in 2:n) {!
! ! ! for(j in 1:(i-1)) {!
! ! ! aa = a[i,j]; bb = b[i,j]; cc = c[i,j]!
! ! ! if(a[i,j] == 0)  rich[i,j] <- 0  !
! ! ! ! else  rich[i,j] <- (aa + abs(bb-cc))/(aa+bb+cc) !
! ! ! ! }!
! ! ! }!
! ! }!
! !
! rownames(repl) <- rownames(rich) <- rownames(D) <- noms!
! D <- as.dist(D)!
! repl <- as.dist(repl)!
! rich <- as.dist(rich)!
! total.div <- sum(D)/(n*(n-1))!
! repl.div <- sum(repl)/(n*(n-1))!
! rich.div <- sum(rich)/(n*(n-1))!
! part <- c(total.div,repl.div,rich.div,repl.div/total.div,rich.div/total.div)!
! #!
! if(save.abc) {!
! res <- list(repl=repl, rich=rich, D=D, part=part, Note=form, !
! ! a=as.dist(a), b=as.dist(b), c=as.dist(c))!
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! } else { !
! res <- list(repl=repl, rich=rich, D=D, part=part, Note=form)!
! }!
#!
} else {      # Quantitative data!
# Calculations based on individuals.within.species!
! if(coef==1) form<-"Podani family, percentage difference" !
! if(coef==2) form<-"Podani family, Ruzicka"!
! if(coef==3) form<-"Baselga family, percentage difference"!
! if(coef==4) form<-"Baselga family, Ruzicka"!
! # Baselga (2013) notation:!
! # A = W = sum of minima in among-site comparisons!
! # B = site.1 sum - W = K.1 - W!
! # C = site.2 sum - W = K.2 - W!
! K <- vector("numeric", n)   # site (row) sums!
! W <- matrix(0,n,n)!
! repl <- matrix(0,n,n)!
! rich <- matrix(0,n,n)!
! D <- matrix(0,n,n)!
! rownames(repl) <- rownames(rich) <- rownames(D) <- noms!
! K <- apply(mat,1,sum)         # Row sums!
! for(i in 2:n) for(j in 1:(i-1)) W[i,j] <- sum(pmin(mat[i,], mat[j,]))!
! #!
! # Quantitative extensions of the S and J decompositions!
! for(i in 2:n) {!
! ! for(j in 1:(i-1)) {!
! ! ! repl[i,j] <- 2*(min(K[i],K[j])-W[i,j]) # 2*min(B,C)!
! ! ! rich[i,j] <- abs(K[i]-K[j])            # abs(B-C)!
! ! ! }!
! ! }!
! #!
! # Add the denominators!
! if(coef==1) {         # Sørensen-based (% difference) components!
! ! for(i in 2:n) {!
! ! ! for(j in 1:(i-1)) {!                        # Baselga 2013 notation:!
! ! ! ! repl[i,j] <- repl[i,j]/(K[i]+K[j])          # 2min(B,C)/(2A+B+C)!
! ! ! ! rich[i,j] <- rich[i,j]/(K[i]+K[j])          # abs(B-C)/(2A+B+C)!
! ! ! ! # cat(K[i], K[j], W[i,j],"\n")!
! ! ! ! D[i,j] <- (K[i]+K[j]-2*W[i,j])/(K[i]+K[j])  # (B+C)/(2A+B+C)!
! ! ! ! }!
! ! ! }!
! ! } else if(coef==2) {    # Jaccard-based (Ruzicka) components!
! ! for(i in 2:n) {!
! ! ! for(j in 1:(i-1)) {                         # Baselga 2013 notation:!
! ! ! ! repl[i,j] <- repl[i,j]/(K[i]+K[j]-W[i,j])   # 2min(B,C)/(A+B+C)!
! ! ! ! rich[i,j] <- rich[i,j]/(K[i]+K[j]-W[i,j])   # abs(B-C)/(A+B+C)!
! ! ! ! # cat(K[i], K[j], W[i,j],"\n")!
! ! ! D[i,j]<-(K[i]+K[j]-2*W[i,j])/(K[i]+K[j]-W[i,j]) # (B+C)/(A+B+C)!
! ! ! ! }!
! ! ! }!
! ! }!
! #!
! # Baselga (2013): quantitative extensions of the Baselga (2010) indices!
! if(coef==3) {   # Baselga (2013) indices decomposing percentage difference!
! ! for(i in 2:n) {!
! ! ! for(j in 1:(i-1)) {!
! ! ! ! repl[i,j] <- (min(K[i],K[j])-W[i,j])/min(K[i],K[j])!
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! ! ! ! rich[i,j] <- abs(K[i]-K[j])*W[i,j]/((K[i]+K[j])*min(K[i],K[j]))!
! ! ! ! # cat(K[i], K[j], W[i,j],"\n")!
! ! ! ! D[i,j] <- (K[i]+K[j]-2*W[i,j])/(K[i]+K[j])!
! ! ! ! }!
! ! ! }!
! ! }! !
! if(coef==4) {   # Decomposing Ruzicka in the spirit of Baselga 2013!
! ! for(i in 2:n) {!
! ! ! for(j in 1:(i-1)) {!
! ! ! ! repl[i,j] <- !
! ! ! ! ! 2*(min(K[i],K[j])-W[i,j])/(2*min(K[i],K[j])-W[i,j])!
! ! ! ! rich[i,j] <- abs(K[i]-K[j])*W[i,j]/!
! ! ! ! ! ((K[i]+K[j]-W[i,j])*(2*min(K[i],K[j])-W[i,j]))!
! ! ! ! # cat(K[i], K[j], W[i,j],"\n")!
! ! ! ! D[i,j] <- (K[i]+K[j]-2*W[i,j])/(K[i]+K[j]-W[i,j])!
! ! ! ! }!
! ! ! }!
! ! }! !
! #!
! repl <- as.dist(repl)!
! rich <- as.dist(rich)!
! D <- as.dist(D)!
! repl.div <- sum(repl)/(n*(n-1))!
! rich.div <- sum(rich)/(n*(n-1))!
! total.div <- sum(D)/(n*(n-1))!
! part <- c(total.div,repl.div,rich.div,repl.div/total.div,rich.div/total.div)!
! #!
! res <- list(repl=repl, rich=rich, D=D, part=part, Note=form)!
}!
res!
}
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!
# Appendix to:!
!
# Legendre, P. (2014) Interpreting the replacement and richness difference  !
# components of beta diversity. Global Ecology and Biogeography, 23, 1324-1334.!
!
#                                  Appendix S4!
#!
# R function to compute the dbRDA F-test of significance between response data !
# represented by a Euclidean or non-Euclidean dissimilarity matrix and a matrix !
# of explanatory variables, following McArdle and Anderson (2001). !
!
dbRDA.D <- function(D, X, nperm=999, option=3, compute.eig=FALSE, coord=FALSE, 
rda.coord=2, positive.RDA.values=FALSE)!
#!
# Description --!
# !
# Compute the dbRDA F-test of significance between response data represented by !
# a Euclidean or non-Euclidean dissimilarity matrix and a matrix of explanatory!
# variables, using the method of McArdle and Anderson (2001).!
#!
# Usage --!
#!
# dbRDA.D(D, X, nperm=999, option=3, compute.eig=FALSE, coord=FALSE, !
#         rda.coord=2, positive.RDA.values=FALSE)!
#!
# Arguments --!
#!
# D : Distance matrix representing the response data. D may be non-Euclidean.!
# X : Matrix of explanatory variables for the RDA, class 'data.frame' or !
#     'matrix'. Factors must be recoded as dummy variables or Helmert contrasts.!
# nperm : Number of permutations for the test of significance.!
#!
# option=1 : Original McArdle-Anderson (2001) equation 4. Slow, not recommended.!
# option=2 : McArdle-Anderson equation, simplified.!
# option=3 : Least-squares after orthogonalizing X.!
# SSY = sum(diag(G)), where G is the Gower-centred distance matrix, !
# SSYhat = sum(diag(H %*% G %*% H)), where H is the projector matrix.!
#!
# Option=1 -- The original F statistic of McArdle and Anderson (2001), eq. 4:!
#     F = SSYhat / sum(diag(I.minus.H %*% G %*% I.minus.H))!
#     Degrees of freedom are added to this equation in the output list.!
# Option=2 -- Simplified equation:!
#     F = SSYhat/(SSY-SSYhat)!
# Option=3 -- Orthogonalize matrix X by PCA before computing H. No inversion.!
#     Compute SSYhat as above, then F = SSYhat/(SSY-SSYhat)!
# Opt. 2 and 3 are equivalent; they require half the computing time of option 1.!
#!
# compute.eig=TRUE : the eigenvalues and eigenvectors of D are computed. !
#    => Do NOT use with very large matrices (slow).!
# coord=TRUE : compute the principal coordinates corresponding to the!
#    positive eigenvalues of D. Requires that compute.eig=TRUE.!
# rda.coord : Number of RDA ordination coordinates to compute, for example 2.!
# positive.RDA.values=TRUE : store only positive RDA eigenvalues in output list.!
#                    =FALSE: store all RDA eigenvalues in output list.!
#!
#!
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# Details --!
#!
# Compute the dbRDA F-test of significance. The response is represented by a !
# Euclidean or non-Euclidean dissimilarity matrix; X is a matrix of explanatory!
# variables, as in regular RDA. !
#!
# The F-statistic is obtained without prior computation of the eigenvalues and !
# eigenvectors of the dissimilarity matrix, hence no correction has to be made !
# to eliminate the negative eigenvalues. Three computation methods are !
# available, all derived from McArdle and Anderson (2001).!
#!
# The eigenvalues and eigenvectors of D are computed if compute.eig=TRUE.!
# If coord=TRUE, the principal coordinates corresponding to the positive!
# eigenvalues of D are computed.!
#!
# The function may fail to produce a meaningful RDA test of significance and !
# ordination axes if D is extremely non-Euclidean. This is the case with some !
# forms of genomic distances.!
#!
# Value --!
#!
# F : F-statistic.!
# Rsquare : R-square and adjusted R-square statistics.!
# P.perm : Permutational p-value of RDA R-square (test based on F).!
# SS.total : Trace of matrix G, equal to the total sum of squares of Y and the !
#            sum of the eigenvalues of D.!
# PCoA.values : Eigenvalues (if they are computed, i.e. if compute.eig=TRUE).!
# PCoA.vectors : Principal coordinates for the positive eigenvalues of D.!
# RDA.values : RDA eigenvalues.!
# RDA.rel.values : RDA relative eigenvalues.!
# RDA.cum.values : RDA cumulative relative eigenvalues.!
# RDA.coord : Ordination coordinates of objects on selected RDA axes.!
#!
# References --!
#!
# Legendre, P. (2014) Interpreting the replacement and richness difference  !
# components of beta diversity. Global Ecology and Biogeography, 23, 1324-1334.!
#!
# Legendre, P. & Legendre, L. (2012) Numerical ecology, 3rd English edition. !
# Elsevier Science BV, Amsterdam. !
#!
# McArdle, B.H. & Anderson, M.J. (2001) Fitting multivariate models to !
# community data: a comment on distance-based redundancy analysis. !
# Ecology, 82, 290–297. !
#!
# Example -- Six sites from the mite data available in the vegan package.!
#!
# library(vegan)!
# Load function dbRDA.D()!
# data(mite)!
# data(mite.env)!
# sel = c(14,24,31,41,49,64)!
# mite.BC = vegdist(mite[sel,], "bray")   # Two negative eigenvalues!
# res = dbRDA.D(mite.BC, mite.env[sel,1:2], nperm=999, compute.eig=TRUE)!
# plot(res$RDA.coord)!
# text(res$RDA.coord, labels=rownames(mite.env[sel6,]), pos=3)!
#!
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# License: GPL-2!
# Author:: Pierre Legendre, March 2013!
{!
! D <- as.matrix(D)!
! X <- as.matrix(X)!
! n <- nrow(D)!
! epsilon <- .Machine$double.eps!
#!
# Gower centring, matrix formula. Legendre & Legendre (2012), equation 9.42!
! One <- matrix(1,n,n)!
! mat <- diag(n) - One/n!
! G <- -0.5 * mat %*% (D^2) %*% mat!
! SSY <- sum(diag(G))!
! # LCBD <- diag(G)!
#!
# Principal coordinate analysis after eigenvalue decomposition of D!
! if(compute.eig) {!
! ! eig <- eigen(G, symmetric=TRUE)!
! ! values <- eig$values     # All eigenvalues!
! ! vectors <- eig$vectors   # All eigenvectors, scaled to lengths 1!
! ! if(coord) {!
! ! ! select <- which(values > epsilon)!
! ! ! princ.coord <- vectors[,select] %*% diag(sqrt(values[select]))!
! ! ! } else { princ.coord <- NA }!
! ! } else {!
! ! values <- princ.coord <- NA!
! ! }!
#!
# Compute projector matrix H ("hat" matrix in the statistical literature)!
! X.c <- scale(X, center=TRUE, scale=FALSE)   # Centre matrix X!
! m <- qr(X.c, tol=1e-6)$rank                 # m = rank of X.c!
! cat("Rank of X centred =",m,"\n")!
! if(m==1) { !
! ! H <- (X.c[,1] %*% t(X.c[,1]))/((t(X.c[,1]) %*% X.c[,1])[1,1]) !
! ! } else {!
! ! if(option<3) {  !
! ! ! # if(det(t(X.c)%*%X.c)<epsilon) stop ('Collinearity detected in X')!
! ! ! if(m < ncol(X.c)) stop ('Collinearity detected in X')!
! ! ! H <- X.c %*% solve(t(X.c) %*% X.c) %*% t(X.c)!
! ! ! #!
! ! ! # option=3: compute projector H from orthogonalized X; no inversion!
! ! ! } else {!
! ! ! X.eig <- eigen(cov(X.c))!
! ! ! k <- length(which(X.eig$values > epsilon))!
! ! ! X.ortho <- X.c %*% X.eig$vectors[,1:k]  # F matrix of PCA!
! ! ! XprX <- t(X.ortho) %*% X.ortho!
! ! ! H <- X.ortho %*% diag(diag(XprX)^(-1)) %*% t(X.ortho)!
! ! ! }!
! }!
#!
# Compute the F statistic: McArdle & Anderson (2001), equation 4 modified!
! HGH <- H %*% G %*% H!
! SSYhat <- sum(diag(HGH))!
! #!
! if(option==1) {!
! ! I.minus.H <- diag(n) - H!
! ! den1 <- sum(diag(I.minus.H %*% G %*% I.minus.H))!



Page 4 of 4Appendix S4, dbRDA.D.R
Saved: 2014-10-09 14:47:08 Printed For: Pierre Legendre

! ! F <- SSYhat/den1     # F statistic without the degrees of freedom!
! ! Rsquare <- F/(F+1)!
! } else {!
! ! F <- SSYhat/(SSY-SSYhat)  # F statistic without the degrees of freedom!
! ! Rsquare <- SSYhat/SSY     # or equivalent: Rsquare <- F/(F+1)!
! }!
! RsqAdj <- 1-((1-Rsquare)*(n-1)/(n-1-m))!
#!
# Permutation test of F!
! if(nperm > 0) {!
! ! nGE=1!
! ! for(i in 1:nperm) {!
! ! ! order <- sample(n)!
! ! ! Gperm <- G[order, order]!
! ! ! H.Gperm.H <- H %*% Gperm %*% H!
! ! ! SSYhat.perm <- sum(diag(H.Gperm.H))!
! ! ! #!
! ! ! if(option==1) {!
! ! ! ! den <- sum(diag(I.minus.H %*% Gperm %*% I.minus.H))!
! ! ! ! F.perm <- SSYhat.perm/den!
! ! ! } else {!
! ! ! ! F.perm <- SSYhat.perm/(SSY-SSYhat.perm)!
! ! ! }!
! ! ! if(F.perm >= F) nGE=nGE+1!
! ! ! }!
! ! P.perm <- nGE/(nperm+1)!
! ! } else { P.perm <- NA }!
#!
# Compute RDA ordination coordinates!
! if(rda.coord > 0) {!
! ! HGH.eig <- eigen(HGH, symmetric=TRUE)!
! ! # kk <- length(which(HGH.eig$values > epsilon))!
! ! RDA.values <- HGH.eig$values!
! ! rel.eig <- RDA.values/SSY!
! ! cum.eig <- cumsum(rel.eig) !
! ! kk <- length(which(rel.eig > epsilon))!
! ! if(positive.RDA.values) {!
! ! ! RDA.values <- RDA.values[1:kk]!
! ! ! rel.eig <- rel.eig[1:kk]!
! ! ! cum.eig <- cum.eig[1:kk]!
! ! ! }!
! ! k <- min(rda.coord, kk)!
! ! if(k >= 2) {!
! ! RDA.coord <-sweep(HGH.eig$vectors[,1:k],2,sqrt(RDA.values[1:k]),FUN="*")!
! ! ! } else {!
! ! ! RDA.coord <- NA!
! ! ! cat("k =",k," -- Fewer than two RDA eigenvalues > 0\n")!
! ! ! }!
! ! } else { RDA.values <- rel.eig <- cum.eig <- RDA.coord <- NA }!
#!
list(F=F*(n-m-1)/m, Rsquare=c(Rsquare,RsqAdj), P.perm=P.perm, SS.total=SSY, 
PCoA.values=values, PCoA.vectors=princ.coord, RDA.values=RDA.values/(n-1), 
RDA.rel.values=rel.eig, RDA.cum.values=cum.eig, RDA.coord=RDA.coord)!
}
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!
# Appendix to:!
# Legendre, P. (2014) Interpreting the replacement and richness difference  !
# components of beta diversity. Global Ecology and Biogeography, 23, 1324-1334.!
!
#                                  Appendix S5!
#!
# R function to compute LCBD indices from a dissimilarity matrix (D) or from !
# beta diversity component matrices (Repl, RichDiff/AbDiff or Nes).!
!
LCBD.comp <- function(x, sqrt.x=TRUE)!
#!
# Description --!
#!
# Computes LCBD indices (Legendre and De Cáceres 2013) from a dissimilarity !
# matrix (D) or beta div. component matrices (Repl, RichDiff/AbDiff or Nes).!
#!
# Arguments --!
#!
# x : D or beta diversity component matrix, class=dist.!
# sqrt.x : Take sqrt() of components before computing LCBD.comp. Use!
#     sqrt.x=TRUE for the replacement and richness/abundance difference indices !
#     computed by beta.div.comp(), as well as for the corresponding D matrices.!
#!
# Reference --!
#!
# Legendre, P. & De Cáceres, M. (2013) Beta diversity as the variance of !
# community data: dissimilarity coefficients and partitioning. Ecology !
# Letters 16: 951–963. !
#!
# License: GPL-2 !
# Author:: Pierre Legendre, August 2013!
{!
### Internal function!
centre <- function(D,n)!
! # Centre a square matrix D by matrix algebra!
! # mat.cen = (I - 11'/n) D (I - 11'/n)!
! {! One <- matrix(1,n,n)!
! ! mat <- diag(n) - One/n!
! ! mat.cen <- mat %*% D %*% mat!
! }!
###!
n <- nrow(as.matrix(x))!
!
if(sqrt.x) {!
! # x = sqrt(x)!
! SStotal <- sum(x)/n        # eq. 8!
! BDtotal <- SStotal/(n-1)   # eq. 3!
! G <- centre(as.matrix(-0.5*x), n)     # Gower-centred matrix!
! } else {!
! SStotal <- sum(x^2)/n      # eq. 8!
! BDtotal <- SStotal/(n-1)   # eq. 3!
! G <- centre(as.matrix(-0.5*x^2), n)   # Gower-centred matrix!
! }!
LCBD <- diag(G)/SStotal   # Legendre & De Caceres (2013), eq. 10b!
out <- list(SStotal_BDtotal=c(SStotal,BDtotal), LCBD=LCBD, D=x)!
}
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Appendix S6 

Principal coordinate ordinations  
 
 Principal coordinate (PCoA) ordinations of the Podani-family replacement and richness 
difference indices based on the Jaccard (Fig. S6.1) and Sørensen (Fig. S6.2) dissimilarities for the 
case study data. Detailed properties of these ordinations will be investigated in another study. 

 The ordinations in Fig. S6.1 are based upon replacement (ReplJ) and richness difference 
(RichDiffJ) matrices that are not Euclidean. Ordinations along the first principal coordinates are 
Euclidean but, as in all multivariate ordinations, the distances among sampling units are 
approximate. The ordination of the RichDiffJ indices in Fig. S6.1b shows a less precise ordering 
of the sampling units than Fig. S6.2b, which is based upon the RichDiffS indices. 
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Figure S6.1  Principal coordinate ordinations of the Podani-family replacement and richness 
difference indices based on Jaccard dissimilarity for the fish case study data. PCoA of square-root 
transformed (a) replacement (ReplJ) and (b) richness difference (RichDiffJ) indices. These 
matrices are not Euclidean even after square-root transformation. 
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 Of the four indices for species presence-absence data represented by ordinations in this 
appendix, the RichDiffS matrix is the only one that has the mathematical property of being 
Euclidean (Appendix S1, Table S1.4). The ordination in two dimensions (Fig. S6.2b) displays a 
precise ordering of the sampling units along the richness gradient, along which the sites form a 
curved one-dimensional ordination (i.e. a curved line). Site 1 (left of the graph) has the lowest 
richness with only 1 species whereas site 29 (right) is the richest with 26 species; 27 species were 
captured along the river. Sites 23-25 had reduced richness due to agricultural pollution; this 
caused reversal of the ordering of the sites by richness, compared to their geographical sequence. 
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Figure S6.2  Principal coordinate ordinations of the Podani-family replacement and richness 
difference indices based on the Sørensen dissimilarity for the fish case study data. (a) PCoA of 
square-rooted replacement (ReplS) and (b) of untransformed richness difference (RichDiffS) 
indices. The ReplS matrix is not Euclidean even after square-root transformation whereas the 
RichDiffS matrix is Euclidean without transformation. Colour lines join the sites in their 
geographic sequence along the course of the river from site 1 (headwaters) to site 30 near the 
junction with the Saône River. 

 




