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This review focuses on the analysis of temporal beta diversity, which is the

variation in community composition along time in a study area. Temporal

beta diversity is measured by the variance of the multivariate community com-

position time series and that variance can be partitioned using appropriate

statistical methods. Some of these methods are classical, such as simple or

canonical ordination, whereas others are recent, including the methods of

temporal eigenfunction analysis developed for multiscale exploration (i.e.

addressing several scales of variation) of univariate or multivariate response

data, reviewed, to our knowledge for the first time in this review. These

methods are illustrated with ecological data from 13 years of benthic surveys

in Chesapeake Bay, USA. The following methods are applied to the Chesa-

peake data: distance-based Moran’s eigenvector maps, asymmetric

eigenvector maps, scalogram, variation partitioning, multivariate correlo-

gram, multivariate regression tree, and two-way MANOVA to study

temporal and space–time variability. Local (temporal) contributions to beta

diversity (LCBD indices) are computed and analysed graphically and by

regression against environmental variables, and the role of species in deter-

mining the LCBD values is analysed by correlation analysis. A tutorial

detailing the analyses in the R language is provided in an appendix.
1. Introduction
Study designs in community ecology involve spatial, temporal or experimental

variation, or combinations of these. Studies through space aim at understanding

processes that govern the spatial variation in community composition, called

(spatial) beta diversity. Beta diversity can also be studied through time to eluci-

date temporal processes. Spatio-temporal studies, which are more costly and

difficult, aim at understanding how the spatial variation changes through time,

or conversely how and why the temporal variation may differ from point to

point on a map. Population genetic studies may also be conducted through

space and time. After the studies have been completed, how should one analyse

the data to address the ecological (or genetic) questions of interest? This paper

reviews statistical methods recently developed for spatial analysis of multivariate

data and extends their application to the analysis of temporal or spatio-temporal

community composition data—or other kinds of multivariate data.

Developed during the past 20 years, spatial eigenfunction analysis is a family

of methods for multiscale analysis of spatially explicit univariate or multivariate

response data. Further extension of these methods to other types of data, e.g.

genetic or genomic, is straightforward except for the choice of dissimilarity func-

tions. These methods have recently been reviewed in the context of spatial

ecological analysis [1]. Local contributions to beta diversity (LCBD) are compara-

tive indicators of the ecological uniqueness of the sampling units, also developed

recently [2].

Why do ecologists want to use species assemblages to analyse and model

temporal changes in communities? A widely accepted paradigm among
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ecologists is that species assemblages are the best response

variable available to estimate the impact of changes in ecosys-

tems, natural or anthropogenic. Species live in ecosystems and

the variation of their abundances (or other dynamic variables

such as biomass) in relation to variation in environmental

conditions informs us about the strength of the species–

environment relationships. This paradigm is based upon

Hutchinson’s niche theory [3], which says that species have

ecological preferences, meaning that they are more likely to

be found at locations where they encounter appropriate

living conditions. The difficulty resides in the application of

this paradigm in actual studies: species assemblages form

multivariate data tables (sites � species), which are often of

high dimensionality and are thus harder to analyse than

univariate synthetic response data such as species richness,

LCBD or environmental quality indices.

Another important paradigm for this approach, or world-

view held by ecologists, is that the temporal structures which

can be identified in communities indicate that some process

has been at work to generate them. In correlogram analysis,

temporal structures manifest themselves by the observation

of relationships (or lack of statistical independence) between

values observed at different time intervals along the series.

In some instances, observations that are closer together tend

to display values that are more similar than observations

paired at random, resulting in positive time dependence or posi-
tive temporal correlation. Avoidance or repulsion phenomena

may produce the opposite effect (negative time dependence),

with values of close pairs of observations being less similar

than the values of pairs that are further apart. Because eco-

logical dynamics is often linked to geophysical cycles,

positive correlation is often found when sampling has taken

place several times during a dominant cycle (e.g. several

times per day or per year), whereas negative correlation is

observed when observations were only made near the maxi-

mum and minimum of each cycle, e.g. at noon and midnight,

or during the spring and autumn seasons only.

The response data, which are the variables of primary

interest in a study (e.g. the species), will be denoted by Y in

the remainder of the paper. Matrix Y ¼ [yij] will contain, for

example, abundances of species j at times i. The explanatory

data (e.g. environmental or biotic variables, experimental

factors) are assembled in matrix X ¼ [xij]. The special expla-

natory variable time, or derived temporal eigenfunctions,

are set aside and written in matrix T, described in §3;

similarly, the spatial coordinates, or derived spatial eigen-

functions, are written in matrix S if the survey involves

both space and time.

Two families of mechanisms can generate temporal depen-

dence, or temporal structures, in populations or communities.

The first form of process is called induced temporal dependence.

In this process, Y depends (in the statistical sense) on the

values of X. Identifying this dependence gives support to

the hypothesis that the temporal variation in the explanatory

variables X is responsible for the temporal variation in the

response data Y. The temporal structure present in X is reflected

in the response data Y. That model is called environmental or

biotic control of the response data, depending on the nature of

the explanatory variables controlling Y (physical variables, or

biotic variables not included in the community under study,

for example top-down influence of predators or bottom-up

influence of other species). Interactions among species are

further described in the electronic supplementary material,
appendix S1. In metacommunity theory, which refers to spatial

dynamics, that process is called species sorting (selection of

species by local environmental conditions). The temporal struc-

tures generated in this way may be broad-scaled if the generating

process is linked to broad-scaled geophysical cycles. If all impor-

tant temporally structured explanatory variables X are included

in the analysis, the model yi ¼ f(Xi) þ 1i correctly accounts for

the temporal structure of a response variable y. On the other

hand, if the function is incorrectlyspecified, for example through

the omission of important explanatory variables with temporal

patterning such as a broad-scale trend, or through inadequate

functional expression (e.g. a linear model describing a nonlinear

relationship), then one may incorrectly interpret the temporal

pattern of the residuals as autocorrelation, described in the

next paragraph [4].

The second type of processes is called neutral population or
community dynamics, i.e. processes that are not functionally

related to changes in the environmental conditions. In com-

munities, temporal structures are produced by the species

assemblages themselves, generating autocorrelation in the

response variables Y (e.g. the species). The ecological mech-

anisms are neutral processes such as ecological drift and

random dispersal [5]. They also include interactions among

species within the community of interest. Temporal structures

generated by this model may be finer-scaled than in the pre-

vious model where the explanatory variables X generating

the process are linked to broad-scaled geophysical cycles.

In statistics, autocorrelation is the temporal structure

found in the error component of a Y � X model, e.g.

community � environment, once the effect of all important

temporally structured explanatory variables has been

accounted for (i.e. included in the model in a functionally cor-

rect form). In practice, it is difficult to know whether all

important explanatory variables have been included, with

correct functional forms, in the analysis of a particular data-

set. The full model describing a response variable y at

locations i is written as follows:

yi ¼ f ðXiÞ þ ri with ri ¼ TAi þ 1i;

where y is modelled as a function of the explanatory variables

X, and r is the vector of temporally autocorrelated resi-

duals, divided into the temporal autocorrelation (TAi) of the

residuals and a random error component (1i). This review

will describe how the two components can be separated by

eigenfunction analysis if one is willing to make some assump-

tions about the TA component. The residual vector r does not

contain species abundances, but signed deviations of the

observed abundances from their fitted values, predicted by

the environmental variables [4].

Field studies have to be carefully designed to detect tem-

poral structures of interest. One cannot detect temporal

patches, for example, that are not much larger than the tem-

poral duration of the sampling unit events and the time

interval between successive observations (lag), or are larger

than the duration of the study [1].

The paper is organized as follows. Section 2 describes the

data requirements and lists standard methods of analysis,

described in regular statistical texts and not discussed here,

that will be used or referred to in the review. Sections 3 and 4

describe the application of Moran’s eigenvector maps

(MEMs), a family of methods originally developed to model

the effect of non-directional processes, to time series. Section

5 reports on the application of asymmetric eigenvector maps

http://rspb.royalsocietypublishing.org/
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(a)

(b)

Figure 1. (a) Regular (all interpoint distances are equal) and (b) irregular
time series. The truncation distance is the largest interpoint distance
within a series; it is shown by a dashed line in each case. (Online version
in colour.)
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(AEMs), a method developed to model the effect of directional

processes, to time series. Section 6 describes the analysis of

space–time community data through LCBD, which are com-

parative indicators of the ecological uniqueness of the

sampling units. Section 7 lists other methods derived from

eigenfunction analysis, that are useful for analysing commu-

nity composition time series. Section 8 develops a Case study
and outlines the main conclusions. It refers to the electronic

supplementary material, appendix S2, for calculation details

in the R statistical language. The description of the calculations

is detailed enough to allow researchers to learn by themselves

how to obtain useful results using the methods described in

this review.
R.Soc.B
281:20132728
2. Statistical toolbox
(a) Sampling
The methods described in this paper require univariate or

multivariate response data collected along time at one or sev-

eral locations, the location(s) being always the same. If

explanatory (e.g. environmental) data are used in the analysis,

then they must be associated with these same locations; in prac-

tice, they must have been collected at these locations or be

larger-scale information associated with the locations (e.g. con-

ditions associated with the hydrographic basins of lakes). For

temporal analysis, the sampling or survey times must be

known. Likewise, spatial eigenfunction analysis (not computed

in the Case study portion of this review) requires that the

localities be georeferenced. The methods do not require that

the times lags between sampling events be equal and, if several

sites are included in a spatial eigenfunction analysis, the site

locations do not need to form a regular transect or grid.

(b) Methods of analysis
Several methods of statistical analysis not described in this

paper will be used either in the construction of the temporal

eigenfunctions or in the analysis of the example data. On the

one hand, multiple regression and analysis of variance

(ANOVA), for which readers are referred to standard statistical

textbooks; on the other hand, permutation testing, ordination

by principal coordinate analysis (PCoA), canonical ordina-

tion by redundancy analysis (RDA) and multivariate

variation partitioning, for which readers may refer to [1].
3. Distance-based Moran’s eigenvector maps for
time series

The construction of MEMs uses the spatial or temporal coordi-

nates of the observations to compute a series of sine waves

similar to a Fourier decomposition. The decomposition also

works for irregular lags and in that sense, it is a generalization

of the Fourier decomposition method. We describe here the

result of the decomposition for a time series. The computation

steps, which only imply the observation coordinates, are the fol-

lowing: (i) compute a distance matrix D among the observation

coordinates, which are the observation times; (ii) determine a

truncation threshold, thresh. For a regular time series, the rec-

ommended threshold value is one time interval (or lag); for an

irregular series, use the length of the largest lag as the threshold

value (figure 1). In the irregular time series or spatial data, the
truncation distance limits the size of the temporal or spatial

structures that can be modelled by the eigenfunctions, as

shown in a simulation study [6]; (iii) modify the distance

matrix as follows: change all distances larger than the trunca-

tion distance to (4 � thresh) and write (4� thresh) values on

the diagonal of the distance matrix. This produces the truncated

distance matrix Dtrunc; (iv) compute PCoA of matrix Dtrunc;

Dtrunc explicitly describes which observations are considered

neighbours and which are not as well as the distances between

neighbours. With thresh of one lag for a regular time series, only

consecutive observations are designated as neighbours; and

(v) the eigenvectors of the Gower-centred distance matrix are

the Moran’s eigenvector maps forming matrix T; they do not

need to be rescaled to the square root of their respective eigen-

values as in regular PCoA. They represent a spectral

decomposition of the temporal relationships among the obser-

vations into all possible scales of variation along the time

series, given the sampling design.

For a series with regular lags, the first half of the eigenvec-

tors have positive eigenvalues and model positive temporal

correlation, as measured by Moran’s I coefficient, whereas

the second half have negative eigenvalues and model negative

temporal correlation. If the diagonal has not been modified in

step 3 and Dtrunc has zeros on the diagonal, the positive and

negative eigenvalues do not correspond to positive and nega-

tive Moran’s I coefficients, but the eigenvectors are identical

to the situation where the diagonal has been modified.

The eigenvectors are called ‘maps’ because their values can

be mapped using the time or geographical positions of the

observations. They are orthogonal to one another, a property

they inherit from the fact that they are principal coordinates.

Figure 2 left panels shows maps (i.e. positions along time)

of distance-based MEMs (dbMEM) eigenfunctions for a regular

time series. Results for a spatial transect would be identical.

The electronic supplementary material, figure S3.1 (see the

electronic supplementary material, appendix S3) presents

maps of dbMEM eigenfunctions for a regular and an irregular

time series; the eigenfunctions still show their basic temporally

correlated structure when computed for irregular time series.

Results for regular and irregular sampling designs on geo-

graphical surfaces have been illustrated in other publications

[1,4,8,9]. R software for MEM analysis is described and used

in the electronic supplementary material, appendix S2.

MEM modelling was originally developed to model

detrended spatial data. All the even-numbered MEMs would

be necessary to model a linear spatial trend and that

would clearly be a non-parsimonious model; a spatial trend

can be modelled more parsimoniously using a trend-surface

analysis (linear or polynomial). Despite that, in time-series

analysis, MEM analysis can be applied to either the undetrended

or detrended data when a trend, significant or not, is present in

the response data. In the electronic supplementary material,

http://rspb.royalsocietypublishing.org/
http://rspb.royalsocietypublishing.org/


MEM 1 AEM 1

MEM 2 AEM 2

MEM 3 AEM 3

MEM 12 AEM 12

0 10 20 30 40 50

MEM 24

time

0 10 20 30 40 50

AEM 24

time

Figure 2. A selection of dbMEM (left panels) and AEM (right panels) eigenfunctions for a time series with 50 equispaced points, among those (the first 24 in each
set) that model positive temporal correlation. See Blanchet et al. ([7] figure E2) for a similar picture drawn for an irregular series. (Online version in colour.)

B = 0/1
connectivity

matrix
among sites

A = edge
weighting

matrix

Hadamard
product

*
W =

Figure 3. The spatial weighting matrix W is the Hadamard product of the
binary connectivity matrix B with the edge-weighting matrix A. All three
matrices are symmetric.
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appendix S1, both forms of analysis are used to partition series

variation into non-directional and directional components.

When analysing real data series in which the presence of a

trend is not assumed from theoretical considerations, one has

to rely on a test of significance of the trend to help decide

whether or not to detrend the data prior to eigenfunction

analysis. In the section Case study (§8), no significant trend

will be detected in the site 40 data series (electronic sup-

plementary material, appendix S2, §3.2, Practicals), so the

data will not be detrended prior to eigenfunction analysis.
4. Generalized Moran’s eigenvector maps
Dray et al. [10] generalized the MEM method after realizing

that two types of information are involved in the construction

of dbMEM. The first type is the site connectivity, written into

a square matrix B that contains 1 when two sites are con-

nected and 0 when they are not. The truncation described

in the dbMEM section gives rise to the connected or uncon-

nected pairs in matrix B, which thus represents a graph

with connections between some pairs of nodes (times or

sites). The second type of information is the difficulty of

exchange between pairs of nodes, which is written in a

matrix of edge weights A. For dbMEM, A contains distances

among observations. The cell-by-cell multiplication (Hada-

mard, or elementwise, product) of matrices B and A

produces the temporal (or spatial) weighting matrix W

(figure 3). W is then modified by replacing the zeros,
including those on the diagonal, by four times the truncation

threshold. The resulting matrix Dtrunc is used to compute the

dbMEM eigenfunctions by PCoA, as in §3. Computation

details are provided by [1,10].

Following that change in algorithm, different types of

information can be used in the edge-weighting matrix A,

leading to different types of MEM eigenfunctions [10]:
— use geographical or temporal distances as weights in A to

obtains dbMEM eigenfunctions, as described in the

previous paragraph;

— when all edge weights in A equal 1, the eigenfunctions

reflect only the structure of connectivity matrix B, and

one obtains binary MEM of the type used by [11] in his

spatial filtering method;

http://rspb.royalsocietypublishing.org/
http://rspb.royalsocietypublishing.org/


E =

1 2 3 4 5 6 7 8 9 10

E1 E2 E3 E4 E5 E6 E7 E8 E9E0
(a)

(b)

O

times (nodes)

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9

time   1 1 0 0 0 0 0 0 0 0 0

time   2 1 1 0 0 0 0 0 0 0 0

time   3 1 1 1 0 0 0 0 0 0 0

time   4 1 1 1 1 0 0 0 0 0 0

time   5 1 1 1 1 1 0 0 0 0 0

time   6 1 1 1 1 1 1 0 0 0 0

time   7 1 1 1 1 1 1 1 0 0 0

time   8 1 1 1 1 1 1 1 1 0 0

time   9 1 1 1 1 1 1 1 1 1 0

time 10 1 1 1 1 1 1 1 1 1 1

Figure 4. First step of AEM analysis: for a regular time series (a), construction of
the nodes-by-edges matrix E (b). Letter ‘O’ represents the point of origin of the
process before the actual data points. In this example, the nodes represent times
1 – 10; the edges (columns of E) are labelled E0 – E9; they all have the same
weight in this example. (Online version in colour.)
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— the distances in matrix A can be replaced by some non-

linear transformation of the geographical or temporal

distances that better describes the relationship between

connected sampling units for modelling population

dispersal, community dynamics or gene transfer; and

— finally, A can contain information not based on geo-

graphical or temporal distances, for example landscape

resistance in landscape ecology and genetics, or differ-

ences in difficulties of exchange between adjacent times,

e.g. between summer and winter, in population or com-

munity dynamic studies.

With this generalization, one can compute MEM eigen-

functions that are adapted to model different types of

spatial or temporal relationships.

5. Asymmetric eigenvector maps
AEM is an eigenfunction method originally developed to

model multivariate (e.g. species) spatial distributions generated

by an asymmetric, directional physical process, for example

displacement of organisms down-current, movements of popu-

lations or communities up-current in river networks, prevailing

wind along mountainsides and glaciations at historical time

scales. The AEM method has also been applied to model

relationships along phylogenetic trees, which are time-direc-

tional structures (phylogenetic eigenvector maps [12]). AEMs

are suitable for the analysis of time series because the processes

associated with time are directional: changes occur from time 1

to time 2, not the reverse.

The calculation of AEM eigenfunctions, described in

[1,7,13], is simpler than that of MEM. One constructs a

matrix E representing a graph with nodes (times or sites) as

rows and edges (directional connexions between nodes)

as columns. For each node, matrix E lists the edges that are

on the path linking that node to the point of origin of the pro-

cess (symbolized by O), for example the source of a stream for

a flow process or the point where a small river flows into a

large river for an up-current migration process. When an

edge is active in connecting a node to another node in the

direction of the origin O, it is coded 1; otherwise, that edge

represents a segment that does not contribute to the node

and is coded 0. When information is available about the

strength of the connections, the edges can be weighted as in

generalized MEM. In AEM analysis, the weights represent

the easiness of exchange between two nodes since non-

operating connections have weights of 0. The nodes-by-

edges matrix E is subjected to principal component analysis

(PCA) or singular value decomposition (SVD) to obtain the

AEM eigenfunctions. All eigenvalues are non-negative in

AEM analysis; that is a property of PCA [1]. A Moran’s I coef-

ficient of spatial/temporal correlation can be computed for

each eigenfunction to assess whether it models positive or

negative correlation.

For a time series, the structure of matrix E is simple. An

example is given in figure 4 where all time intervals are

equal; all edge weights are thus 0 or 1 in that example. In

matrix E, E0, which has the value 1 for all times, does not

play any role; that column can be removed in time-series

analysis. In applications of AEM analysis to directional

spatial processes, the edges joining sites to the origin may

play a meaningful role (see [7,13]). Nine AEM eigenfunctions

were produced by PCA or SVD of matrix E shown in figure 4.

Among these, four AEMs model positive temporal
correlation and five model negative correlation according to

Moran’s I.
In spatial modelling, MEM eigenfunctions were not orig-

inally designed to model the directional component of

complex spatial models. That role was devoted to the AEM

method, which was designed to adequately model gradients

generated by directional processes in complex spatial situ-

ations. That is different for time series, which are physically

one-dimensional and where the action of a directional pro-

cess can only manifest itself by the production of a single

gradient along the series. In time-series analysis, MEM and

AEM modelling can both be used for analysing the unde-

trended data and estimate the directional component of

variation, as shown in the electronic supplementary material,

appendix S1. Figure 2 compares dbMEM and AEM

eigenfunctions for a time series with 50 equispaced points.

The AEM eigenfunctions selected during analysis of the

Case study data are shown in the electronic supplementary

material, figure S3.6.
6. Local contributions to beta diversity
LCBD are comparative indicators of the ecological uniqueness

of the sampling units [2]. For community composition data

transformed in an appropriate way (Hellinger or chord trans-

formation, see [2]), LCBD indices are the row sums of the

data in matrix Y transformed by centring each column and

squaring. For dissimilarity matrices, LCBD indices are the diag-

onal values in the Gower-centred dissimilarity matrix [2]. In

ordination diagrams, an LCBD index is the squared distance

of a site to the multivariate centroid of the plot. Sites located

far from the centroid have unusual species compositions.

LCBD indices indicate how much each observation contrib-

utes to beta diversity; a site with average species composition

would have an LCBD value of 0. Large LCBD values may indi-

cate sampling units that have high conservation value or,

perhaps, degraded and species-poor sites that are in need of

restoration. They may also correspond to special ecological

conditions, or result from the disturbance effect of invasive

species on communities. LCBD indices take zero or positive

http://rspb.royalsocietypublishing.org/
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values, and they sum to 1 if they are divided by the total sum of

squares of the data matrix Y or the trace of the Gower-centered

dissimilarity matrix. LCBD values can be mapped, allowing for

visual assessment of their geographical, temporal or space–

time variation. As an example, a geographical map of LCBD

indices of the spring surveys at 27 sites, summed over the

sampling years, is shown in the electronic supplementary

material, figure S3.10. Temporal and space–time maps of

LCBD indices are shown in §8.
 g.org
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7. Further methods for community time-series
analysis

To test hypotheses about changes in the environment

induced by man, ecologists sample ecosystems repeatedly

over time without replication at the level of the sampling

units (sites); in this way, the sampling effort can maximize

the size of the area covered by the study. Classical statistical

methods do not allow one to test the interaction between

space and time for lack of replicate observations. Assessing

that interaction is, however, of great interest to ecologists,

because a signicant interaction would indicate that the spatial

structure of the response data has changed through time

(and conversely), revealing for example the signature of cli-

mate change on ecosystems. Legendre et al. [14] described a

method to solve that problem. In a nutshell, the method con-

sists of representing space and time by spatial and temporal

eigenfunctions (e.g. MEM or AEM eigenfunctions) in two-

way ANOVA. This methodological development is important

for the analysis of long-term monitoring data, including

systems under anthropogenic influence. To carry out the cal-

culations, package STI in R is available on the web page

https://sites.google.com/site/miqueldecaceres/software.

Multiscale ordination (MSO; [15,16]) combines multivariate

variograms with simple or canonical ordination to determine

whether or not explanatory variables are responsible for the

spatial correlation observed in response data Y, for example

community composition, and at which distance classes their

effect is important. With simple ordination such as PCA, MSO

partitions the variance of the ordination axes among distance

classes to identify the axes that display spatial structure and

determine whether it differs among axes. With canonical ordina-

tion methods, the analysis can incorporate matrices of

environmental variables and eigenfunctions (MEM or AEM)

to determine whether the spatial/temporal correlation in Y is

due to induced spatial dependence or the presence of spatial/

temporal autocorrelation in the response data. This method is

available in R in function ‘mso’ of package ‘vegan’.

Consider the relationship between an explanatory (x)

and a response variable (y) across space or time. For linear

relationships, a significant correlation is interpreted as sup-

port for the hypothesis that x may affect y. Because y may

react to different environmental factors at different scales,

one may be interested in determining at which scale(s) x is

an important predictor of y. Guénard et al. [17] developed

multiscale codependence analysis (MCA) to address that

question and test the signicance of the correlations between

two variables at different scales. The method is based on

spatial eigenfunctions, MEM or AEM, which correspond to

different and identiable scales. It produces a vector of code-

pendence coefficients corresponding to the different scales

modelled by the eigenfunctions. Each codependence
coefficient can be tested for significance. The R package

codep is available to carry out MCA for bivariate data.

These three methods have been reviewed by Legendre &

Legendre [1]. Additional methods based on spatial eigenfunc-

tions were described by [4] for multiscale spatial analysis. They

can readily be applied to multivariate time series.
8. Case study
Electronic supplementary material, appendix S2, contains a full

practical session, using the R language, describing the analysis

of an ecological survey of Chesapeake Bay, on the Atlantic

coast of the USA, using the methods described in the paper.

The publicly available Chesapeake Bay Benthic Monitoring
Programme data used here were obtained from Versar Inc.,

Columbia, MD, USA (http://www.baybenthos.versar.com)

who collected them for the Chesapeake Bay Programme (http://

www.chesapeakebay.net/). The data are provided in an

RData file. Here, we ask questions about these data and

describe analyses that can be used to answer them.

From the Chesapeake Bay data, we included in our RData

file the 27 fixed sampling sites (see the electronic supplemen-

tary material, figure S3.2) from the ‘Maryland Data Sets’ of

the monitoring program (see http://www.baybenthos.versar.

com/data.htm) and the 13 years for which spring and

autumn sampling were present, for a total of 26 sampling

events per site, from May 1996 to October 2008. There are

351 data rows corresponding to spring surveys and the same

number for autumn surveys. Explanatory variables describe

sediment (seven variables) and water quality (seven variables).

A separate data table contains the latitude and longitude coor-

dinates of the sites. The response data are the abundances of

205 benthic macrofaunal taxa (203 invertebrates and two chor-

dates) captured at the sampling sites. Detailed descriptions of

our data selection and the resulting tables are found in section

1.1 of the electronic supplementary material, appendix S2.

(a) Macrofauna time series, site 40 data
First, we look at site 40, located in the upper (brackish) course

of the Potomac River, and model the macrofauna using

dbMEM analysis. No significant linear temporal trend was pre-

sent in the multivariate time series (r2 ¼ 0.0793, p ¼ 0.053;

electronic supplementary material, appendix S2, §3.2, Practi-

cals), so the data will not be detrended prior to eigenfunction

analysis. The dbMEM and AEM methods are equally suitable

to analyse multivariate data for temporal structure.

(i) Moran’s eigenvector map and asymmetric eigenvector map
analyses of time series, site 40 data

The model containing the 12 MEMs that model positive

temporal correlation was globally significant: r2 ¼ 0.5885,

p , 0.05. The first two axes were significant ( p , 0.05).

The model containing the 13 MEMs modelling negative tem-

poral correlation was not globally significant (r2 ¼ 0.4115,

p . 0.90), but it produced a significant canonical axis ( p ,

0.05), which is worth looking at: it illustrates the oscillation

between the spring and autumn communities (see the

electronic supplementary material, figure S3.3).

Eight MEMs were selected ( p-values , 0.05), six model-

ling positive temporal correlation (2, 3, 5, 6, 8 and 11) and

two modelling negative correlation (21 and 25). These

https://sites.google.com/site/miqueldecaceres/software
https://sites.google.com/site/miqueldecaceres/software
http://www.baybenthos.versar.com
http://www.baybenthos.versar.com
http://www.chesapeakebay.net/
http://www.chesapeakebay.net/
http://www.chesapeakebay.net/
http://www.baybenthos.versar.com/data.htm
http://www.baybenthos.versar.com/data.htm
http://www.baybenthos.versar.com/data.htm
http://rspb.royalsocietypublishing.org/
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Figure 5. Venn diagram illustrating the result of variation partitioning of the
macrofauna time series at site 40 with respect to environmental (salinity,
upper-left circle) and MEM explanatory variables (upper-right circle: six selected
MEM eigenfunctions with positive Moran I; lower circle: two selected MEM eigen-
functions with negative Moran I ). The fractions of variation displayed in the
diagram are computed from adjusted r2. Circles are not drawn to scale.
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eigenfunctions are plotted along time in the Practicals, §3.2.1

(see the electronic supplementary material, figure S3.4).

Examine the RDA models or the positively and negatively

correlated MEMs plotted along the years (Practicals, §3.2.1,

electronic supplementary material, figure S3.5) where the

following can be seen.

— Two significant RDA axes represent the positive correlation

model, models 1 and 2, which are orthogonal to each other

(i.e. linearly independent) and thus contain complemen-

tary information. They display large fluctuations across

13 years. These models were interpreted by stepwise selec-

tion in multiple regression. For MEM model 1, the North

Atlantic Oscillation (NAO, added to the database for this

analysis) and total nitrogen explained r2
adj ¼ 0.2570 of the

variation. For MEM model 2, no explanatory variable was

selected and significant.

— The single significant RDA axis representing the negative

correlation model is interesting because it shows an

important, significant alternation in community structure

between the spring (the positive model values in the elec-

tronic supplementary material, figure S3.5) and autumn

samplings (the negative values). (Note that the signs

along eigenfunction models may be inverted when the

calculations are done on different computers or using

different software.) In stepwise selection against the avail-

able environmental variables, that axis is well explained

by the season factor (r2 ¼ 0.8583).

The canonical axes obtained using AEM eigenfunctions

(see the electronic supplementary material, figure S3.7)

were similar to the MEM models (Practicals, §3.2.2 and elec-

tronic supplementary material, figure S3.5). RV coefficients

between the groups of MEM and AEM eigenfunctions were

0.9129 for the 12 functions modelling positive temporal corre-

lation and 0.9196 for the 13 functions modelling negative

correlation, indicating that the MEM and AEM sets of eigen-

functions should have similar explanatory powers. The RV

coefficient is a multivariate generalization of the Pearson cor-

relation to compare two datasets [18,19].

A scalogram of the relative importance of the 12 dbMEM

eigenfunctions modelling positive temporal correlation is

shown in the electronic supplementary material, figure A3.8

(Practicals, §3.2.3). The contributions of the eigenfunctions

to modelling the variation of the macrofauna series are

given by the semipartial r2 of each MEM analysed in the

presence of all other MEMs, but the significance is the one

found during forward selection of the eigenfunctions, as in

[1]. Scalograms are especially useful when there are many

significant MEMs (not the case here) and one wants to

group them into submodels corresponding to broad,

middle and fine scales.
(ii) Variation partitioning involving environmental variables and
distance-based Moran’s eigenvector maps

Partitioning the variation of the macrofauna time series at

site 40 with respect to environmental and MEM explanatory

variables is illustrated in figure 5 (Practicals, §3.3). Among

the available environmental variables, only salinity was

retained by forward selection. Its influence is represented by

the upper-left circle. The upper-right circle represents the varia-

tion explained by the six MEMs modelling positive temporal
correlation; this is the dominant explanatory factor in this par-

titioning. The lower circle represents the variation explained by

the two MEMs modelling negative correlation. The partial con-

tribution of salinity in the presence of the two MEM models is

not significant, but the partial contributions of the two MEM

models are significant, showing that they represent interesting

fractions of variation that remains unexplained by the available

environmental variables.

(iii) Multivariate correlogram, multivariate regression tree
A multivariate correlogram was computed for the same site

40 data (Practicals, §3.4; electronic supplementary material,

figure S3.9). The correlogram shows that observations 1 year

apart (second distance class along the abscissa) were highly

positively correlated. The correlation between adjacent obser-

vations (first distance class), which are from different seasons,

was marginally significant ( p ¼ 0.048, although p-values may

depend on the permutation run) and weaker. The other

distance classes showed no significant temporal correlation.

A multivariate regression tree (MRT) was used as a time-

constrained clustering method to identify one or several

breakpoints in the data series (Practicals, §3.5). The analysis

identified one breakpoint separating observations 1–6

(years 1996–1998, spring and autumn) from years 1999 to

2008. This is consistent with the small variation among the

first six observations along the MEM model of positive axis

1 in the electronic supplementary material, figures S3.3 and

S3.5. Other examples of time-constrained clustering by MRT

are provided in [9,20].

Space–time analysis of LCBD indices based upon the

Hellinger distance (Practicals, §5), allowed for the unambigu-

ous identification of unique sites and site–year combinations

(see the electronic supplementary material, figures S3.12 and

S3.13). It also revealed that the year effect was negligible

during the autumn, and that the site effect was the most

important in explaining LCBD scores, regardless of season.

http://rspb.royalsocietypublishing.org/
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The NAO and water quality variables (notably salinity and

conductivity) explained a smaller fraction of variation. Sec-

tion (c) of the Case study, which describes the contributions

of the spatio-temporal sampling units to beta diversity, is pre-

sented in the electronic supplementary material, appendix S4.
cietypublishing.org
Proc.R.Soc.B

281:20132728
(b) Analysis of subsets of the sites
(i) Two-way temporal MANOVA of a subset of five sites
Sites 22, 23, 201, 202 and 203 located around the large inlet

near the city of Baltimore were selected. Site 203 somewhat

stood apart from the others in terms of water quality, but

not in temperature, and these sites exhibited gradients

along sampling years in terms of sedimentary variables,

notably moisture, total carbon and total nitrogen content.

We will examine the response of the macrofauna to factors

year and season using a two-way MANOVA (i.e. multivariate

ANOVA) with permutation tests computed by RDA (Practicals,

§4.1). The design is balanced with 5 observations in each cell of

the year-by-season contingency table. The two factors are rep-

resented by Helmert contrasts. The interaction is generated by

computing the products of all the Helmert variables coding

for the two factors, as described in the Practicals.

The hypothesis that the within-group covariance matrices

were homogeneous was not rejected by a test of multivariate

homogeneity. We could thus proceed with the analysis of var-

iance. The interaction was not significant and we could move

to the analysis of the main factors. The tests found the variation

explained by the two main factors to be significant (p , 0.05).

However, factor season (r2 ¼ 0.1538) explained more of the

macrofauna variation than factor year (r2 ¼ 0.1000).
(ii) Space-time variability among sites and years
Now we selected two groups of three sites, located in dif-

ferent regions of Chesapeake Bay. Sites 43, 44 and 47 were

in the Potomac River estuary in the southwest of the bay

whereas sites 201, 202 and 203 were in the large inlet near

Baltimore (electronic supplementary material, appendix S3,

figure S3.2). The six sites formed two groups with three

replicates each. The sites within each group were far

enough from one another that the faunal data should not

be pseudoreplicated. We tested whether the site and year fac-

tors could explain the multivariate dispersion between these

two groups of geographically distant sites during each season

(Practicals, §4.2).

Comparing the spring survey data, we failed to reject the

hypothesis of homogeneity of the multivariate within-group

covariance matrices, and we found that the interaction

between factors site and year was not significant (p � 0.50).

Similar results were found for the fall survey data.

Testing the effect of the main factors for the spring

data, we found highly significant variation between the

groups of sites (p , 0.01, r2 ¼ 0.1530) and among the years

(p , 0.01, r2 ¼ 0.2303). For the fall data, we found highly

significant variation between the groups of sites (p , 0.01,

r2 ¼ 0.2104) but not among the years (p � 0.80, r2 ¼ 0.1137).

Hence the macrofaunal differences between the two groups

of sites were clear during both seasons. However, the dif-

ferences among years were stronger and more consistent in

the spring than in the fall, suggesting that the outcome at the

end of the growing season (fall) was rather stable from year

to year despite marked variations at the spring starting points.
Sections 8b(i,ii) reported results of two-way MANOVAs

with replication, which posed no particular problem for the

test of the interaction between factors. When there is no repli-

cation, it is still possible to test the interaction between space

and time using the method proposed by [13], which is based

upon MEM coding of the factors instead of Helmert contrasts.

A package of R functions is available, as a supplement to that

paper, to carry out the calculations.
9. Conclusion
Ecologists study communities of living beings because they

represent the best response data available to answer questions

about species–environment relationships and test theories

about productivity, stability, and the generation and mainten-

ance of biodiversity in ecosystems. Ecological studies are

designed to analyse the variance of the observed response

data; most investigations aim at studying spatial, temporal,

or experimentally controlled variation.

In the spatial context, Whittaker [21] described the

spatial organization of biodiversity and called beta diversity
the variation in community composition among sites in a

geographical region of interest. Beta diversity can be analysed

as either a directional change along spatial, temporal or

environmental gradients, or a non-directional change in com-

position among sampling units without reference to any

explicit gradient [22–24]. The total variance (Vartotal) of a

community composition data table is an appropriate estimate

of beta diversity in the latter context [1,2,23,24].

In studies through time aimed at elucidating temporal

processes, that concept can readily be extended to the vari-

ation in the community composition among temporal

sampling units, where it can be referred to as temporal beta

diversity. A further step is to apply the concept to spatio-

temporal data such as the Chesapeake Bay macrofaunal

data analysed in §8.

This total variance can be computed either from the raw

species presence–absence or abundance data table, properly

transformed or through one of several dissimilarity coeffi-

cients developed and used by ecologists for the analysis of

community composition data [2]. This last step links the con-

cept of beta diversity to all methods of analysis developed

and used by ecologists to decompose the total variance or

the total sum of squares (SSTotal) of the community compo-

sition data table, namely partitioning SSTotal among

ordination or canonical ordination axes by PCA or RDA; par-

titioning SSTotal with respect to one or several factors

structuring the data table by ANOVA; partitioning total

beta into LCBD indices, either among sites, times or spatio-

temporal observations, as shown in this paper; SSTotal can

be partitioned with respect to two or more matrices of expla-

natory variables by variation partitioning; last but not least,

SSTotal can be partitioned among spatial or temporal obser-

vation scales by spatial eigenfunction analysis (MEM,

AEM), scalogram, multivariate correlogram or MSO analysis.

This review describes, for the first time to our knowledge,

the statistical theory of eigenfunction-based methods for

multivariate time-series analysis. Electronic supplementary

material, appendix S2, contains a detailed description of

how to carry out the calculations using the R statistical

language, and how to use the software. The case study illus-

trates the interest of the eigenfunction-based methods, which

http://rspb.royalsocietypublishing.org/
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allow ecologists to describe the multiscale temporal structure

of community composition data observed at a site through

the methods mentioned in the previous paragraph. Other

recently developed methods are shown in §8 to be applicable

to community composition time series: multivariate correlo-

grams, MRT analysis as a form of constrained clustering,

one-way and two-way MANOVA and the analysis of local

(temporal) contributions to beta diversity.
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