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Abstract Aims Beta diversity is the variation in species composition among sites in a geographic region.
Beta diversity is a key concept for understanding the functioning of ecosystems for the conservation of biodi-
versity and for ecosystem management. This paper describes how to analyze it from community composition
and associated environmental and spatial data tables.

Methods Beta diversity can be studied by computing diversity indices for each site and testing hypotheses
about the factors that may explain the variation among sites. Or one can carry out a direct analysis of the com-
munity composition data table over the study sites as a function of sets of environmental and spatial variables.
These analyses are carried out by the statistical method of partitioning the variation of the diversity indices or
the community composition data table with respect to environmental and spatial variables. Variation partitioning
is briefly described in this paper.

Important findings Variation partitioning is a method of choice for the interpretation of beta diversity using
tables of environmental and spatial variables. Beta diversity is an interesting currency” for ecologists to com-
pare either different sampling areas or different ecological communities co-occurring in an area. Partitioning
must be based upon unbiased estimates of the variation of the community composition data table that is ex-
plained by the various tables of explanatory variables. The adjusted coefficient of determination provides such
an unbiased estimate in both multiple regression and canonical redundancy analysis. After partitioning one
can test the significance of the fractions of interest and plot maps of the fitted values corresponding to these
fractions.
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Abstract

Aims

Beta diversity is the variation in species composition among sites in
a geographic region. Beta diversity is a key concept for understand-
ing the functioning of ecosystems, for the conservation of biodiversity
and for ecosystem management. The present report describes how to
analyse beta diversity from community composition and associated
environmental and spatial data tables.

Methods

Beta diversity can be studied by computing diversity indices for each
site and testing hypotheses about the factors that may explain the var-
iation among sites. Alternatively, one can carry out a direct analysis
of the community composition data table over the study sites, as
a function of sets of environmental and spatial variables. These anal-
yses are carried out by the statistical method of partitioning the var-
iation of the diversity indices or the community composition data
table with respect to environmental and spatial variables. Variation
partitioning is briefly described herein.

Important findings

Variation partitioning is a method of choice for the interpretation of
beta diversity using tables of environmental and spatial variables. Beta
diversity is an interesting ‘currency’ for ecologists to compare either
different sampling areas or different ecological communities co-
occurring in an area. Partitioning must be based upon unbiased esti-
mates of the variation of the community composition data table that is
explained by the various tables of explanatory variables. The adjusted
coefficient of determination provides such an unbiased estimate in
both multiple regression and canonical redundancy analysis. After
partitioning, one can test the significance of the fractions of interest
and plot maps of the fitted values corresponding to these fractions.

Keywords: Adjusted coefficient of determination e beta
diversity e biodiversity ¢ canonical redundancy
analysis ® community composition e variation partitioning
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Introduction

Ecologists collect community composition data (species pres-
ence—absence or abundance data) at several sites in a region
of interest in order to analyse and interpret beta diversity,
which is the variation in species composition among the sites
(Whittaker, 1960, 1972; Legendre et al., 2005). Analysis of
a synthetic descriptor such as species richness or Shannon di-
versity can be done by multiple regression, whereas the anal-
ysis of whole community composition data tables is carried out
by canonical analysis. Results from these two types of analyses
are not equivalent: analysis of the whole community compo-
sition data produces results that are much more informative
since they provide information about the reactions of individ-
ual species to the environmental and spatial variables. The
asymmetrical forms of canonical analysis used for this type
of research are canonical redundancy analysis (RDA; Rao,

1964) and canonical correspondence analysis (CCA; ter Braak,
1986, 1987a, b). These analyses are described in several text-
books, including Legendre and Legendre (1998). They are
implemented in computer packages such as Canoco (ter Braak
and Smilauer, 2002) and the ‘vegan’ library (Oksanen et al.,
2007) of the R statistical language (R Development Core Team,
2007).

Variation in species composition among sites is studied by
canonical analysis of the species composition data as a function
of different types of environmental variables: water or soil
chemistry, geology, geomorphology, environmental impact
descriptors, and so on. The study of spatial structures involves
spatial variables derived from the geographic coordinates of the
sampling sites, described below. Variation partitioningis a tech-
nique of choice for this type of analysis. In all cases, statistics are
used to describe how successful the explanatory variables are at
explaining the response variables (community composition

© The Author 2007. Published by Oxford University Press on behalf of the Institute of Botany, Chinese Academy of Sciences and the Botanical Society of China.

All rights reserved. For permissions, please email: journals.permissions@oxfordjournals.org
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data). The choice of an appropriate, unbiased statistical estima-
tor is of great importance for the correct interpretation of the
results. This report will briefly describe partial linear regression
and canonical analysis, the simple and adjusted forms of the
coefficient of determination used in regression and canonical
analysis, and finally variation partitioning.

Partial linear regression

The notation y~X|W represents the partial linear regression
of a response variable y (vector of length #) on a matrix X
containing m explanatory variables, while controlling for
the linear effect of a matrix W containing g covariables. Partial
regression is computed in two steps: (i) regress X on W and
compute the residuals Xesw); and (ii) regress y on Xiesw)
to obtain the partial R?, the fitted values, the residuals, and
SO on.

The R? statistic of a partial regression that will be used to
construct the F-statistic for the test of significance (next para-
graph) is called the partial R*. It is the ratio of the sum-of-
squares (SS) of the fitted values of the partial regression on
the sum (SS of the fitted values + SS of the residuals):

R32/~X|W = SS(fitted values of y~X|W)/(SS(fitted values)
+SS(residuals))

Using the graphical representation of Fig. 1, R,Z,NX‘W = [a]/
[a +d].

The F-statistic used to test the significance of the partial re-
gression relationship takes into account the number of cova-
riables ¢; in ordinary multiple regression, g = 0. The F-statistic
is computed as follows using the partial R?:

F=(Ry _xw/m)/(1 =Ry _xw)/(n—=1-m—q))  (2)
It can also be computed directly from the sums-of-squares:

F = (SS(titted values of y~X|W)/m) /((SS(residuals))/

(-1 —m—q)) G)

or, using Fig. 1:

F=([a]/m)/([d]/(n =1 —m —q)) (4)

Significance of the F-statistic can be tested with reference to
an F-distribution if the condition of normality of the residuals
is met (this is rarely the case for ecological data), or by a
permutation test if it is not (this is the most common case).
Permutation tests are described in several textbooks, includ-
ing Manly (1997) and Legendre and Legendre (1998). In
the application to variation partitioning described below,
both y~X|W and y~W|X will be computed and tested for
significance.

Partial canonical analysis

Similarly, the notation Y~X|W represents the partial canon-
ical redundancy analysis (partial RDA) of a response data ma-
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Variation in Variation Variation
response explained explained
variabley = | by X by W

Oor response
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(residual variation) = [d]

Figure 1 Venn diagram representing the partition of the variation of
a response variable y or a response matrix Y between two sets of ex-
planatory variables X and W. The rectangle represents 100% of the
variation in y or Y. Fraction [b] is the intersection (not the interaction)
of the amounts of variation explained by linear models of X and W.
Adapted from Legendre (1993).

trix Y of size (n X p) on a matrix X containing m explanatory
variables, while controlling for the linear effect of a matrix W
containing g covariables. Partial canonical analysis is com-
puted in the same way as partial linear regression and uses
the same F-statistic for significance testing (see below for
details). In the application to variation partitioning described
below, both Y~X|W and Y~W|X will be computed and tested
for significance.

Unadjusted and adjusted coefficients
of determination
The coefficient of multiple determination (unadjusted R?) esti-

mates the forecasting potential of a multiple regression equa-
tion:

B residual SS
total SS

R regression SS 2(37i — V)z B
~ twotalSS  X(y,—y)?

where ‘regression SS’ is the sum-of-squares of the fitted values
of the regression equation. It measures the proportion of the
variation of y about its mean that is explained by the regression
equation.

In multiple regression, an alternative measure of determina-
tion is the adjusted coefficient of multiple determination R2
(Ezekiel, 1930):

(5)

R?=

a

residual d.f.
(6)

The right-hand parentheses of equation 6 shows that R2 takes
into account the numbers of degrees of freedom associated
with the numerator and denominator of equation 5. In ordi-
nary multiple regression, the total degrees of freedom of the
F-statistic are (n — 1) and the degrees of freedom of the
residuals are (n—m — 1) where 7 is the number of observations
and m is the number of explanatory variables in the model. In
multiple regression through the origin, where the intercept is
forced to zero, the total degrees of freedom of the F-statistic are

) residualmeansquare_1 (1 2) total d.f.
total mean square
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n and the residual degrees of freedom are (7 — m). In both
cases, the correction takes into account the number of
objects n and the number of explanatory variables m; the cor-
rection is light when m is small when compared with 7. R is
a suitable measure of goodness-of-fit for comparing regression
equations fitted to different data sets, with different numbers
of objects and explanatory variables. Using simulated data with
normal error, Ohtani (2000) has shown that R? is an unbiased
estimator of the contribution of a set of explanatory variables X
to the explanation of y. The R? statistic cannot be directly
computed for partial linear regression because the number
of degrees of freedom to use in the correction is then
unknown.

In RDA, the canonical R? is called the bimultivariate redun-
dancy statistic (Miller and Farr, 1971) or the canonical coeffi-
cient of determination. It is computed in the same way as in
multiple regression: it is the ratio of the sum of each response
variable’s regression (or fitted values) SS to the sum of all re-
sponse variables’ total SS. In canonical analysis, the signifi-
cance of the F-statistic is always tested by permutation,
except in the very restrictive case where the variables in Y
are standardized and the residuals are multinormal. These con-
ditions are almost never met with ecological data; in the rare
cases where they are, the F-statistic is tested using the Fisher—
Snedecor F-distribution with (m X p) and p(n—m — 1) degrees
of freedom (Miller, 1975). Using numerical simulations, Peres-
Neto et al. (2006) have shown that, for normally distributed
data or Hellinger-transformed species abundances in RDA,
the adjusted bimultivariate redundancy statistic R2, obtained
by applying equation 6 to the canonical R?, produced unbiased
estimates of the real contributions of the variables in X to the
explanation of a response matrix Y. The Hellinger transforma-
tion is one of five transformations that make community com-
position data containing many zeros suitable for analysis by
linear methods such as principal component analysis (PCA)
or RDA (Legendre and Gallagher, 2001).

Adjusted coefficients of determination in multiple regres-
sion and canonical analysis can, on occasion, take negative
values. For large data sets, R? is zero when the explanatory
variables explain no more variation than random normal
variables would. Negative values of R> are interpreted as
zeros; they correspond to cases where the explanatory varia-
bles explain less variation than random normal variables
would.

Variation partitioning

The technique of variation partitioning is used when two or
more complementary sets of hypotheses can be invoked to ex-
plain the variation of an ecological response variable. For ex-
ample, the abundance of a species could vary as a function of
biotic and abiotic factors. In the study of beta diversity, the
total variation of the community composition data table,
denoted SS(Y), can be partitioned among one or more sets

of environmental variables and a table describing the spatial
relationships among the sampling sites. Fitting the community
composition data to spatial variables, as described below,
allows researchers to establish that there are significant spatial
patterns, perhaps at various scales, present in the species data.
The presence of significant spatial patterns in the response data
can be invoked as support either for a neutral model (Bell,
2001, Hubbell, 2001, He, 2005) or for environmental control
since environmental data are often spatially structured. The
presence of significant relationships between the species and
environmental variables would strongly support the hypoth-
esis of environmental control, which is not in opposition to
a hypothesis of neutral process, as discussed by Legendre et al.
(2005).

Variation partitioning among environmental and spatial
components was first described by Borcard et al. (1992) and
Borcard and Legendre (1994). Variation partitioning will be
presented in the context of the analysis of a response commu-
nity composition data table Y. It can also be applied to a single
response variable y since the algebra of partial linear regression
is the same as that of partial canonical analysis.

Variation partitioning of a response data table Y with respect
to two matrices of explanatory variables X and W involves the
following three steps, which correspond to different research
objectives.

Obtaining the Fractions of Variation

The calculations, based upon three multiple regressions (for
a single variable y) or three canonical analyses (for a multivar-
iate response table Y), are summarized in Table 1.

(i) Compute the canonical analysis of Y with respect to the
first table of explanatory variables X. Compute the R? and
R? using equations 5 and 6. Assuming that the rectangle
has a surface area normalized to 1, the R2 corresponds to
the surface area of the left-hand circle in Fig. 1. It contains
the adjusted fractions [a] and [b].

(ii) Compute the canonical analysis of Y with respect to the
second table of explanatory variables W. Compute the R?
and R? using equations 5 and 6. The R corresponds to the
surface area of the right-hand circle in Fig. 1. It contains
the adjusted fractions [b] and [c].

(iii) Compute the canonical analysis of Y with respect to the
union of tables X and W. Compute the R* and R2 using
equations 5 and 6. The R2 corresponds to the union of the
two circles in Fig. 1. It contains the adjusted fractions [a],
[b] and [c].

(iv) From these first results, compute fraction [b] by subtrac-
tion: [b]=[a+b]+[b+c]—[a+b+].

(v) Compute fraction [a] by subtraction: [a] = [a + b] — [b].

(vi) Compute fraction [c] by subtraction: [c] = [b + c] — [b].

(vii) Compute fraction [d], which represents the residual var-
iation, by subtraction: [d] =1 — [a+ b + ].

These values can be added to a Venn diagram such as the
one shown in Fig. 1. Because they are based on adjusted
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Table 1 Method for calculating the adjusted fractions of variation [a] to [d] depicted in Fig. 1

Compute Compute R2 (eq. 6) and Can be tested

Canonical analyses R? (eq. 5) fractions of variation for significance
Y~X R? of Y~X [a+Db] =R2of Y~X Yes
Y~W R* of Y~W [b+c] = R of Y~W Yes
Y~ (X, W) R* of Y~(X,W) [a+Db+c] = R of Y~(X,W) Yes

[a] = [a + b] — [b] Yes

[b]=[a+b]+[b+c] —[a+b+c] No

[c] = [b+c] — [b] Yes

Residuals = [d] =1 — [a+ b + ] No

Three multiple regressions or canonical analyses are required.

coefficients of determination, the fractions can, on occasion,
take negative values. These are interpreted as zeros, as
explained in the previous section.

When X is a matrix of environmental variables and W con-
tains descriptors of the spatial relationships among the sam-
pling sites, the Venn diagram (Fig. 1) provides the following
information:

(i) The circle containing [a + b] shows how much of the var-
iation of Y is explained by the environmental variables. Of
that, [b] is the variation explained jointly by X and W, or
the fraction of the environmentally explained variation
that is spatially structured. [a] is the environmentally
explained variation that is not explained by the spatial var-
iables found in W.

(ii) The circle containing [b + c] shows how much of the var-
iation of Y is explained by the spatial variables found in W.
Of that, [c] is the variation explained uniquely by a linear
model of the spatial variables found in W and not by a lin-
ear effect of the environmental variables X. This compo-
nent may be due to spatially structured environmental
variables that are not present in table X or to non-linear
effects of the environmental variables X on Y. That vari-
ation may also be due to processes, such as competition
or dispersal, in the ecological community depicted by table
Y. In that case, it cannot be related to environmental
variables.

To model broad-scale spatial patterns only, Borcard et al.
(1992) and Borcard and Legendre (1994) used a third-degree
polynomial function of the geographic coordinates of the sam-
pling sites as matrix W in variation partitioning. More recently,
Borcard and Legendre (2002) and Borcard et al. (2004) de-
scribed PCNM (principal coordinate analysis of neighbour ma-
trices) analysis, which generates a matrix W containing spatial
descriptors that represent a spectral decomposition of the spa-
tial relationships among the sampling sites. PCNM analysis
allows researchers to model these relationships at all spatial
scales. PCNM geographic functions are a type of ‘distance-based
eigenvector maps’ (DBEMs), which belong to a general class
called ‘Moran’s eigenvector maps’ (MEMs) (Dray et al., 2006).

Testing the Significance of the Fractions

The fractions must be tested for significance in order to support
fully the reasoning described in the first paragraph of this
section. The F-statistics of the three regressions or canonical
analyses giving rise to the adjusted fractions [a + b], [b + ¢]
and [a + b + ¢] (Table 1) can be tested directly by parametric
or permutation tests. Individual fractions [a] and [c] cannot
be tested in that way (see below), while fraction [b] cannot
be tested at all, as shown in Table 1. [d] is the residual varia-
tion. Fraction [d], together with its degrees of freedom, forms
the denominator of the F-statistics used in testing the other
fractions.

The partial canonical analyses Y~X|W and Y~W/|X have to
be computed to test the significance of fractions [a] and [c],
respectively. The F-statistics are computed following equation
2, 3 or 4. These F-statistics are tested using special permutation
methods, called ‘permutation of the residuals’, described in
Legendre and Legendre (1998) and Anderson and Legendre
(1999).

Mapping the Fitted Values of the Fractions

The fitted values corresponding to fractions [a + b], [b+c], [a +
b + ], [a] and [c] can be computed in order to draw maps that
will help in interpreting them. In the case of a single response
variable y, the fitted values of the multiple and partial multiple
regressions giving rise to these fractions provide the values that
can be mapped. In the case of a multivariate response table Y,
e.g. a community composition table, the fitted values are con-
tained in multivariate tables of site scores produced by the ca-
nonical and partial canonical analyses. The first few axes of
each of these tables, which correspond to the largest canonical
eigenvalues, can be used for mapping. Point maps, such as
bubble plots, should be produced for fraction [a] because that
fraction is not spatially structured; the map will display the ‘lo-
cal innovation’ at each sampling site. Interpolation mapping
techniques, such as kriging, can be used for the other fractions,
which contain spatially correlated values.

Variation partitioning of Y can be computed with respect
to three or four tables of explanatory variables. The algebra,



Legendre | Studying beta diversity: ecological variation partitioning by multiple regression and canonical analysis 7

which involves more steps, will not be explained in detail here.
It is described in one of the documentation files of the package
‘vegan’ (Oksanen et al., 2007) of the R statistical language.

Discussion

Analysis of the variation of a community composition data ta-
ble is a widely used approach in community ecology. As stated
in the Introduction, the total variation in a community com-
position table, denoted SS(Y), is a measure of beta diversity,
which is the diversity among sites in the study area. Ordination
methods such as PCA, correspondence analysis (CA) and prin-
cipal coordinate analysis (PCoA) have been used since the
1970s to partition the variation of community composition
data tables into orthogonal axes, which can be used to produce
ordination plots or can be related to potentially explanatory
variables. In the years 1980 and 1990, canonical ordination
methods were made widely available to ecologists, firstly
through the program Canoco (ter Braak, 1988; ter Braak
and Smilauer, 2002). Canonical ordination offers the possibil-
ity of directly incorporating the environmental variables of in-
terest in the analysis as constraints for the ordination, hence
the expression ‘constrained ordination methods’. Ecologists
quickly took advantage of this improved methodology and ap-
plied it to all problems of species—environment relationships.
(Two bibliographies on the applications of canonical analysis
to ecology, covering together the period 1986 to 1996, contain
a total of 804 entries. They are available from H. J. B. Birks,
Botanical Institute, University of Bergen, Allégaten 41, N-
5007 Bergen, Norway, and also on the URL http:/www.bio.
umontreal.ca/casgrain/cca_bib/.) In 1990, Legendre proposed
to use canonical analysis to model the spatial structure of com-
munity composition data, representing the spatial relation-
ships among the sampling sites by a polynomial function of
their geographic coordinates. That development led to the
method of variation partitioning among environmental and
spatial components, described in the previous section.

Variation partitioning has become a method of choice for
the interpretation of beta diversity using tables of environmen-
tal and spatial variables. At the last count, the ISI Web of
Knowledge of the Institute for Scientific Information listed
603 papers that had used the method or were referring to
it. The published examples concern most groups of organisms.
An example is the analysis of the spatial variation of a commu-
nity of oribatid mites in the peat carpet of a peat bog. Thirty-
five mite species collected in 70 soil cores were analysed by
variation partitioning with respect to a set of environmental
and spatial variables. In the papers of Borcard et al. (1992)
and Borcard and Legendre (1994), a polynomial function of
the geographic coordinates was used as the spatial representa-
tion of the spatial relationships among the soil cores. In Bor-
card and Legendre (2002) and Borcard et al. (2004), PCNM
spatial base functions were used instead, providing a much
better explanation of the spatial variation in species composi-
tion among the cores (beta diversity).

Beta diversity is an interesting ‘currency’ for ecologists to
compare either different sampling areas, or different ecological
communities co-occurring in an area. (i) For the comparison of
different study areas to be meaningful, the areas must be of the
same size and sampled in the same way. An example would be
the comparative study of the five 24 ha forest plots that are
presently monitored under the auspices of the Chinese Forest
Biodiversity Monitoring Network, forming a latitudinal gradi-
ent through China. The comparison would be meaningful if all
compared plots are similarly divided into cells of 20 m X 20 m,
or 40 m X 40 m, etc. In the framework of variation partition-
ing, SS(Y) is a convenient measure of beta diversity within
each area. The total beta variation can be partitioned among
one or several sets of environmental variables, as well as a table
of spatial variables. The resulting partitions of the five separate
areas can be compared using the results of these analyses. (ii)
In each of these forest plots, one could compare the beta di-
versity of trees with that of other vegetation strata, for exam-
ple, after dividing the plot into cells of equal sizes. The method
of variation partitioning would allow researchers to partition
the beta variation of each community among environmental
and spatial variables and determine if the factors controlling
the spatial organization are the same for the different groups
of organisms.

Statistical analysis of community composition data must not
be taken lightly. For proper tests of hypotheses concerning the
factors responsible for the creation and maintenance of beta
diversity in ecosystems, it is important to use tests of signifi-
cance that do not rely on unrealistic assumptions, such as mul-
tivariate normality, when the data do not support these
assumptions. Tests of significance must have correct type I er-
ror rates and good power to detect effects, whether natural or
anthropogenic, when these effects are present. When signifi-
cant effects are identified, one should use unbiased statistics
(R2) to report their magnitude. The conclusions reached during
ecological analysis will be used by practitioners to take impor-
tant decisions about the management of ecosystems, so they
must be grounded in good science.

This report described the method of variation partitioning,
which took many years to develop. Variation partitioning
allows researchers to test precise hypotheses about the origin
of beta diversity in ecosystems and determine how much of the
spatial variation is controlled by environmental variables and
how much remains unexplained. The latter fraction may be
under the influence of unmeasured environmental variables,
or else it may be determined by community processes such as
competition or dispersal that need to be explored. In any case,
the use of appropriate statistics is of foremost importance dur-
ing ecological variation partitioning.
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