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ASSESSING CONGRUENCE AMONG DISTANCE MATRICES:
SINGLE-MALT SCOTCH WHISKIES REVISITED
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Université de Montréal

Summary

A test of congruence among distance matrices is described. It tests the hypothesis that sev-
eral matrices, containing different types of variables about the same objects, are congruent
with one another, so they can be used jointly in statistical analysis. Raw data tables are
turned into similarity or distance matrices prior to testing; they can then be compared to
data that naturally come in the form of distance matrices. The proposed test can be seen
as a generalization of the Mantel test of matrix correspondence to any number of distance
matrices. This paper shows that the new test has the correct rate of Type I error and good
power. Power increases as the number of objects and the number of congruent data matrices
increase; power is higher when the total number of matrices in the study is smaller. To
illustrate the method, the proposed test is used to test the hypothesis that matrices repre-
senting different types of organoleptic variables (colour, nose, body, palate and finish) in
single-malt Scotch whiskies are congruent.

Key words: coefficient of concordance; congruence; data combination; distance matrices; power
analysis; single-malt Scotch whiskies; statistical test, simulations.

1. Introduction

During multivariate data analysis, scientists often have to compare matrices containing
different types of variables from the same objects and decide if they are congruent with one
another, before using them jointly in statistical analysis. Such problems are commonly found
in the fields of population genetics, phylogenetics, ecology, anthropology, archaeology, psy-
chometry, sociology and food science. There is thus a need for a test to assess whether several
data matrices contain congruent information, i.e. information having mutual agreement or con-
formity. The Mantel test of matrix correspondence (Mantel, 1967; Mantel & Valand, 1970),
which is widely used in the above-mentioned fields, offers a way of testing such a hypothesis
for two distance matrices: if two rectangular data matrices contain congruent information, the
distances derived from them should be significantly correlated.

This paper proposes a new test of the significance of congruence among distance matrices
(CADM). It can be seen as a generalization of the Mantel test to more than two matrices. CADM
helps decide whether several distance matrices should be analysed jointly or separately. We
show that the proposed test has the correct rate of Type I error over a range of numbers of
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objects (n) and data matrices (pD) for any significance level α, as well as good power. We
also show that a posteriori tests on individual incongruent matrices have, individually, correct
Type I error rates in the presence of any number of congruent matrices in the study. Single-
malt Scotch whiskies serve to illustrate the applicability of the test to real data: we test the
hypothesis that matrices representing different types of organoleptic variables (colour, nose,
body, palate and finish), estimated over 109 whiskies, are congruent.

The CADM method has distinct properties that differentiate it from previously described
procedures: (i) the test is based on the comparison of distance matrices, each one representing
a separate dataset; if distance matrices are computed from rectangular tables of variables, the
chosen distance functions must be appropriate to each dataset; (ii) the null hypothesis (H0)

for the test is the lack of congruence (defined above) of all distance matrices; (iii) if the null
hypothesis is rejected, a posteriori tests of incongruence can be performed for each matrix,
in turn, to identify incongruent members in a set of distance matrices; complementary Mantel
tests can also be used to identify groups of congruent matrices; (iv) using CADM, data that
readily come in the form of distance matrices can be compared to rectangular data tables,
which can easily be transformed into distance matrices; observational or experimental data
that readily come in the form of distance matrices (e.g. DNA hybridization data) do not have to
be artificially transformed into rectangular data tables for comparison; (v) distance matrices
derived from data tables containing different numbers of variables receive the same weight
in the basic form of the congruence analysis; if this is not deemed appropriate, a weighted
version of the test is available.

2. The CADM test

Consider a collection of raw object-by-variable data tables and/or distance matrices ob-
tained from field or laboratory observations. The CADM method proceeds as follows:

1. For each raw data table, compute an (n × n) distance matrix among the n objects using
an appropriate distance function; quantitative variables that are expressed in different
physical dimensions should be standardized, or ranged in the [0, 1] interval using their
minimum and maximum values, prior to distance calculation. Distance functions can
vary from dataset to dataset. With no loss of generality, we talk only about distance
matrices in this paper, with the understanding that similarity matrices can be used in the
same fashion.

2. Unfold the upper (or lower) off-diagonal portion of each distance matrix into a vector
and write this vector to a row (i) of a work table. We assume for the moment that all
distance matrices are symmetric. However, non-symmetric distance matrices can also
be handled by the method, as shown in Section 7.

3. Transform the values in each row of the work table into ranks.
4. Compute W = Kendall’s coefficient of concordance among the unfolded and ranked

distance matrices; the formulae are given in Section 3. Transform W into Friedman’s χ2

statistic, which is a pivotal statistic appropriate for testing. This provides the reference
statistic (χ2

ref) for the test. Actually, W (= Wref) as well as the sum of squared Rj

values (SSRref) is equivalent to χ2 for permutation testing, where Rj is the sum of
the ranks in each column (j ) of the table of ranked values (Section 3). Within a given
permutation test, the three statistics W, χ2 and SSR are monotonic to one another; thus
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they are equivalent statistics for permutation testing, producing the same permutational
probability.

5. Permute each distance matrix using a ‘matrix permutation’ procedure, as in the Mantel
test (Mantel, 1967; Mantel & Valand, 1970; Legendre, 2000). The need for a permutation
test in CADM is discussed at the end of this section. Compute a χ2∗ (or W∗, or SSR∗)
value under permutation. ‘Matrix permutation’ is an algorithm in which the rows and
corresponding columns of the matrix are rewritten as if the objects had been permuted in
the original rectangular data matrix and the distances recomputed; in computer programs,
even this rewriting step can be avoided by indirect addressing of the distance matrix
elements, using a vector of permuted object numbers. Rewrite the permuted distance
matrices to the rows of the work table.

5a. For the global test of significance, all distance matrices are permuted at random,
independently of one another. The null hypothesis for this test is the monotonic
independence (or incongruence) of all matrices. The alternative hypothesis is that at
least two matrices are congruent, having similar rankings of the distances. The test
is one-tailed in the upper tail; two matrices with exactly opposite rankings produce
a value of 0 for the Kendall statistic.

5b. In a posteriori comparisons, a single distance matrix is permuted at a time. This
is repeated for all matrices in turn. The null hypothesis in a posteriori tests is the
monotonic independence (or incongruence) of the matrix subjected to the test, with
respect to all the other matrices in the study. The alternative hypothesis is that this
matrix is congruent with at least one other matrix in the set, having similar rankings
of the distances (one-tailed test).

6. Repeat step 5 a large number of times to obtain an estimate of the distribution of the χ2

(or W, or SSR) statistic under permutation. Add the reference value χ2
ref (or Wref , or

SSRref) to the distribution (Hope, 1968).
7. Calculate the one-tailed probability (P-value) of the data under the null hypothesis as the

proportion of values of χ2∗ (or W∗ , or SSR∗) that are larger than or equal to χ2
ref (or

Wref , or SSRref) . The test indicates that the set contains congruent matrices if χ2
ref (or

Wref , or SSRref) is larger than or equal to most (say, 95% for α = 0.05) of the χ2∗ (or
W∗, or SSR∗) values obtained through permutations. If the overall null hypothesis is
rejected, a posteriori tests can determine which of the individual matrices are congruent.

CADM uses Friedman’s χ2 statistic, or one of the other statistics that are equivalent
to it for permutation testing, but in many other respects it differs from Friedman’s two-way
analysis of variance by ranks, and from the test of Kendall’s coefficient of concordance. (i) In
CADM, the null hypothesis concerns distance matrices; (ii) testing is done by matrix permuta-
tion; (iii) a posteriori tests are available in CADM (the latter could also be implemented with
Kendall’s coefficient of concordance, but to our knowledge it has not been suggested yet in
the statistical literature).

Friedman’s χ2 is the statistic used in the CADM test, but the associated P -value is not
obtained from the χ2 distribution. CADM requires a permutation test for the same reason that
the Mantel test does: it is the objects that label the rows and columns of a distance matrix
that are the permutable units under the null hypothesis, not the individual distance values
(Legendre, 2000). A parametric test of the CADM χ2 statistic would mimic a permutation test
where the individual distances would be permuted, which would be wrong since the distances
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are not the permutable units. For a symmetric distance matrix, permuting the distance values
at random would generate an incorrect permutation set of size ( 1

2n(n − 1))! for n objects,
whereas permuting the objects only (which is done by the ‘matrix permutation’ procedure de-
scribed above) results in a correct permutation set of size n! (Legendre, Lapointe & Casgrain,
1994). The permutation set is the set of all distinguishable permutations that can be generated
by a permutation procedure. Section 9 shows that the permutation test described above has
correct rates of Type I error.

3. The Kendall coefficient of concordance

There is a close relationship between Friedman’s two-way analysis of variance without
replication by ranks and Kendall’s coefficient of concordance. They address hypotheses con-
cerning the same data table and they use the same χ2 statistic for testing. They only differ
in the formulation of their respective null hypotheses. To illustrate the difference, consider p

judges (rows of the data table) assessing n athletes (columns) in a competition. In Friedman’s
test, the null hypothesis is that there is no real difference among the n athletes. If that is the
case, they should receive random ranks from the various judges, so that the sums of ranks of
the athletes should be approximately equal. Kendall’s test focuses on the p judges. If the
null hypothesis of Friedman’s test is true, it means that the judges have produced rankings
that are monotonically independent of one another. This is the null hypothesis of Kendall’s
test of concordance.

Friedman’s H0 : The n objects (columns j of the work table) are drawn from the same
statistical population.

Kendall’s H0 : The p judges (rows i of the work table) produce independent rankings of the
objects.

In CADM analysis, the judges (rows of the work table) are replaced by distance matrices;
the athletes are replaced by the pairs of objects between which distances are calculated; the
objects among which distances are computed must be the same in all distance matrices in the
study.

There are two ways found in textbooks for computing Kendall’s W statistic (left- and
right-hand forms in (1) and (2)); they lead to the same result. One computes first one of the
following statistics from the column-marginal sums of ranks Rj received by objects j (Siegel,
1956 p .234; Siegel & Castellan, 1988 p .266):

S =
n∑

j=1

(Rj − R̄)2 or S′ =
n∑

j=1

R2
j = SSR . (1)

Kendall’s W statistic can be obtained from either one of the following formulae:

W = 12S

p2(n3 − n) − pT
or W = 12S′ − 3p2n(n + 1)2

p2(n3 − n) − pT
, (2)

where T is a correction factor for tied ranks (Siegel, 1956 p .234; Siegel & Castellan, 1988
p .266; Zar, 1999 p .446),

T =
m∑

k=1

(t3
k − tk) ,
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in which tk is the number of tied ranks in each (k) of m groups of ties. The sum is computed
over all groups of ties found in all p judges of the data table.

Kendall’s W statistic is simply the variance of the column sums of ranks Rj divided by
the maximum possible value that this variance can take; this occurs when all judges (or all
distance matrices in the CADM test) are in total agreement. Hence 0 ≤ W ≤ 1. To obtain
the formulae for W given above, one must know that the sum of all ranks in the data table is
1
2pn(n + 1) and that the sum of squares of all ranks is 1

6p2n(n + 1)(2n + 1). Friedman’s χ2

statistic is obtained from W using the following formula:

χ2 = p(n − 1)W .

4. Weighted form of CADM

A weighted form of CADM is obtained by including row weights wj in the calculation
of the column marginal sums of ranks Rj . W must be calculated using the formulae in the
left-hand column of Section 3; the formulae in the right-hand column assume equal weights.
The sum of the weights should be equal to the number of matrices p. This option is available in
the computer program mentioned at the end of the Conclusion. Default values for the weights
are 1.

In most cases, users prefer to give equal weights to all distance matrices that are compared
in a CADM test, especially when the variables used to obtain the distance matrices are of dif-
ferent natures. This procedure requires fewer statements; it is an application of the principle of
parsimony (Ockham’s razor) which states that we should make as few assumptions as possible
when formulating hypotheses. Still, it may be justifiable in some cases to weight the distance
matrices differently. For example, in biological applications, some practitioners prefer to give
higher weight to the table of morphological characters than to the table of molecular data,
acknowledging the fact that several genes are involved in the coding of each morphological
character (de Queiroz, Donoghue & Kim, 1995; Huelsenbeck, Bull & Cunningham, 1996).

The application domain may also suggest weighting the distance matrices proportionally
to the number of variables in each data table from which a distance matrix is computed. A
better weighting scheme, which takes into account the covariance structure of the variables
in each table, is to compute the number of non-zero eigenvalues of a principal component
analysis of each data table. The numbers of non-zero eigenvalues, which give the ranks of the
tables’ covariance matrices, can be used to calculate weights for weighted CADM analysis.

5. A posteriori tests of congruence

As mentioned in Section 2, in a posteriori comparisons, one distance matrix is permuted
at a time, and this is repeated for all matrices in turn. To preserve a correct or approxi-
mately correct experimentwise error rate, the probabilities should be adjusted for multiple
testing. Wright (1992) recommends the Holm (1979) procedure for non-independent tests.
This procedure is less conservative than an ordinary Bonferroni adjustment.

A posteriori tests are useful for identifying the matrices that are not congruent with the
other matrices in the study, as can be seen in the example, but they do not tell us which, if any,
groups of matrices are congruent among those for which the null hypothesis of independence
(or incongruence) is rejected.
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6. Complementary information: Mantel tests based upon ranks

There is a close relationship between Spearman’s correlation coefficient rS and Kendall’s
W statistic: W can be directly calculated from the mean (r̄S) of the pairwise Spearman
correlations rS using the following relationship (Zar, 1999 p .448):

W = (p − 1)r̄S + 1

p
,

where p is the number of variables (or judges) among which Spearman’s correlation coeffi-
cients are computed. For two variables (or judges) only, W is simply a linear transformation
of rS : W = 1

2 (rS + 1). So, in that case, a permutation test of W for two distance matrices is
the exact equivalent of a permutation test of rS for the same matrices.

We transpose this reasoning from simple variables to distance matrices: Mantel tests
based upon ranks, using the Spearman statistic (as suggested by Mantel, 1967, and Dietz,
1983), are thus the exact equivalent of CADM tests conducted on two distance matrices. They
can be used to determine the groups of congruent distance matrices in studies involving several
datasets. Since the alternative hypothesis of the CADM test is one-tailed (see step 5 of the test
procedure described in Section 2), the Mantel test of the Spearman statistic should also be
one-tailed (H1 : positive correlation between the ranks of the distances in the two matrices).

7. Non-symmetric distance matrices

In biology, laboratory techniques such as DNA-hybridization or comparative serology can
produce non-symmetric similarity or distance matrices (e.g. Casgrain et al., 1996; Lapointe,
Kirsch & Hutcheon, 1999). Non-symmetric matrices are also known in other fields such as so-
ciometry (e.g. Coleman, 1964 pp .444–455). If at least one of the matrices is non-symmetric,
the full distance matrices, except diagonal entries, may be written to row vectors of the work
table, in step 2 of the procedure (Section 2).

Any non-symmetric distance matrix D = [dij] can be made symmetric by averaging the
corresponding entries in the upper and lower triangular portions and writing the result in the
upper and lower triangular portions, so that D′ = [ 1

2 (dij +dji)]; this is the transformation that
should be applied in most cases. Another approach is to compute one of the skew-symmetric
matrices D′′ = [ 1

2 (dij − dji)] or D′′′ = [ 1
2 (dji − dij)], for i ≤ j , and use these matrices

for CADM analysis. In some cases, the relevant information is found in the skew-symmetric
matrices; see for instance Casgrain et al. (1996).

The CADM method allows non-symmetric distance matrices to be compared to sym-
metric or other non-symmetric matrices using all distances in the upper and lower triangular
portions of the matrix, as described in step 2 of the CADM test procedure. In our computer
program, we made sure that in such a case the statistics computed under permutation only
involve permuting the distances written in the same triangular portion of the matrices. Before
using this option instead of the averaging option described above, one should make sure that
the two triangular portions of the matrix represent clearly different information and, if several
matrices are non-symmetric, that all upper triangular portions correspond to one another, and
similarly for the lower triangular portions.

8. Simulation procedure

We carried out simulations to check the Type I error and power of the test of congruence
among distance matrices. Type I error concerns rejecting the null hypothesis when the data
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conform to this null hypothesis. To be valid, a test of significance should have a rate of
rejection of the null hypothesis that is not larger than the nominal (α) significance level of the
test (Edgington, 1995 p .37) when the null hypothesis (H0) is true. On the other hand, a test
of significance should be able to reject the null hypothesis when H0 is false; the frequency of
rejection of H0 in these circumstances is referred to as the power of the test.

Since the null hypothesis of the CADM test is the incongruence of all distance matrices,
simulations for Type I error only involve independently-generated distance matrices (indepen-
dent matrices: IM); pIM is the number of independent matrices in a simulation. To produce
each IM matrix, (a) an (n × p) data matrix is created and filled with pseudo-random N(0, 1)

deviates, with n objects in rows and p variables in columns; (b) a distance matrix is created
by computing the Euclidean distance among the n objects. The distances within each matrix
are transformed into ranks in step 3 of the CADM test.

In simulations to estimate power, the alternative hypothesis is true, meaning that at least
some matrices are congruent. These simulations involve various combinations of IM matrices,
and some partly similar matrices (PM); pPM is the number of partly similar matrices in a
simulation. A set of PM matrices is created as follows: (a) a table containing random normal
deviates for n objects and (p − 1) variables is generated using a pseudo-random normal
N(0, 1) generator. (b) For each member of the set of PM matrices, the following is done:
(b.1) copy these (p − 1) variables into the (p − 1) columns of a new data table; (b.2) fill the
pth column using N(0, 1) random deviates; this column differs from one member of the set
of PM matrices to another; (b.3) create the PM matrix by computing the Euclidean distance
among the n objects. The distances within each matrix are transformed into ranks in step 3
of the CADM test.

For Type I error, simulations are run for different numbers (pIM) of IM. For power, sim-
ulations are run for different combinations of IM and PM matrices and numbers of objects (n).

The number of variables (p) here is kept to 5 in all simulations. 1000 replicate simulations
are run for each result; 999 random permutations are used for the test in each simulation. The
rate of rejection of the null hypothesis is given along with its 95% confidence interval.

9. Simulation results

The null hypothesis (H0) for the CADM test is the incongruence (monotonic indepen-
dence) of all distance matrices. Hence, in the simulations to measure the rate of Type I error,
all matrices are created to be independent of one another. The simulation results show that
the test produces correct estimated rates of Type I errors for all significance levels (α) and
combinations of number of objects n = {5, 10, 20, 50, 100} and number of data matrices
pIM = {2, 3, 4, 5, 10, 20}. The results for five independently-generated matrices are shown
in Figure 1. In all cases, the nominal significance level (α) is included in the 95% confidence
interval of the rejection rate; the estimated rejection rate is the proportion of replicate sim-
ulations for which the null hypothesis is rejected. These simulations were repeated for data
matrices in which the variables were highly correlated within each matrix (but not among
matrices). The results were very similar to those reported above. Despite the presence of
correlations among variables within a data table, the Euclidean distances among the objects
in a file remain unrelated to the distances among the objects in the other files.

The power study is based upon simulations in which the null hypothesis is false by con-
struct; in other words, at least some of the data matrices (pPM) are similar. Simulations for
power are run for a total of pIM + pPM = 5 or 10 matrices. Power of the CADM test is
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Figure 1. Type I error rates (symbols) and 95% confidence intervals (bars) in
CADM simulations involving pIM = 5 independently-generated data tables for
various number of objects n = {5, 10, 20, 50, 100}. The symbols are positioned

at the rejection rates of the null hypothesis at the stated significance level.

assessed by permuting at random the distances in all distance matrices, independently of one
another, as described in step 5 of the procedure (Section 2). The estimated power is the pro-
portion of the 1000 replicate simulations for which the null hypothesis is rejected (Figure 2).
As expected, power increases as the number of objects increases and as the number (pPM)

of congruent distance matrices increases. For a given number (pPM) of congruent distance
matrices, power is higher when the number of non-congruent matrices in the study (pIM) is
smaller. Power is high, for example, when there are pPM = 3 partly similar matrices out of
a total of five matrices and n = 10 or more, or when pPM = 4 partly similar matrices out
of 10 matrices and n = 10 or more, or pPM = 3 partly similar matrices out of 10 matrices
and n = 20.
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Figure 2. Mean and 95% confidence interval of power of the CADM test (at α = 0.05)
for various numbers (pPM) of partly similar matrices, for (a) 5 and (b) 10 data matrices.
The three curves correspond to different numbers of objects in the matrices. There were
1000 replicate simulations for each combination of parameters. For the leftmost point of
each curve, the null hypothesis of independence of the distance matrices is true. The 95%

confidence intervals are often so small that the error bars are hidden by the symbols.

Simulations have also been performed to assess the a posteriori comparisons obtained
by permuting the distance matrices one at a time. The results are presented in Figure 3. When
the null hypothesis is true by construct (pPM = 1 in the three graphs), the overall test (black
circle), in which all matrices are permuted, as well as the tests involving permutation of a
single matrix at a time (open symbols), all have correct rejection rates, with values near 0.05
for tests performed using α = 5% as the significance level. When the null hypothesis is false
by construct (pPM > 1 in the graphs), permuting one of the ‘similar’ or ‘congruent’ matrices
produces a test with power greater than α (e.g. open circle and square when pPM = 2), but
when one of the ‘independent’ or ‘incongruent’ matrices is permuted (the other three symbols
when pPM = 2), the rejection rate is at or near the α significance level. The a posteriori tests
on individual incongruent matrices have, individually, correct Type I error rates in the presence
of any number of congruent matrices in the study. For instance, for pPM = 3, permuting
any one of the first three matrices (symbols in the graphs: open circle for Rate 1, square for
Rate 2, and upward-pointing triangle for Rate 3) rejects the null hypothesis at nearly the same
rate as in the global test, but in permutations involving matrices 4 or 5 (symbols in the graph:
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Figure 3. A posteriori comparisons in CADM tests, in simulations involving five data tables; n is
the number of objects in each table; pPM is the number of matrices that were partly similar in the
simulations. When pPM = 2, for example, it is the first two matrices that were created to be similar;
likewise for pPM = 3, 4 or 5. All distance matrices are incongruent when pPM = 1. Rate (black
circle) is the rejection rate of the global null hypothesis (at α = 0.05) after 1000 simulations, computed
by permutation of all matrices. Rate 1 (open circle) is the rejection rate of the null hypothesis in tests
involving permutations of matrix 1 only; similarly for matrices 2 to 5 (Rate 2 to Rate 5, other open

symbols). Some symbols have been moved sideways to improve clarity of the graphs.
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diamond for Rate 4 and downward-pointing triangle for Rate 5), the rejection rate is near
α = 0.05. Power of the a posteriori tests increases with n when H0 is false (compare panels
a, b and c of Figure 3). These results show that when the general null hypothesis is rejected,
it should be possible in general to identify which of the distance matrices are partly similar
and thus congruent, and which are the incongruent ones. This property of the CADM test is
further illustrated in the real-case application below.

Additional simulations, not reported here in detail, have shown that the outcome of the
CADM test, in terms of Type I error and power, is not affected by the number of variables
found in the data tables from which distance matrices are computed. This result was expected:
the outcome of a CADM test could not depend on the number of variables in the original data
tables, since the method, which only uses distance matrices, does not ‘know’ how many vari-
ables the original datasets contained. In some biological applications, the original data come
directly from the lab in the form of a distance matrix (see last paragraph of the Introduction);
there are no variables associated with such distance matrices.

10. Interpretation of the CADM test results

CADM results are interpreted as follows:

1. For the overall test of significance, the null hypothesis is the incongruence of all distance
matrices. If this hypothesis is not rejected, the matrices should not be used together in
statistical analysis. However, if the probability is smaller than or equal to the nominal
significance level α (say, 0.05), the null hypothesis is rejected with a probability of Type I
error equal to α. The interpretation is that the distance matrices are not all incongruent;
there is at least partial congruence among them.

2. The a posteriori tests computed to identify the incongruent matrices which cannot be
combined in statistical analysis are interpreted as follows. The null hypothesis is that a
given matrix is incongruent with respect to all the other matrices in the study.

2a. If the probability is smaller than or equal to the nominal significance level α (say,
0.05), the null hypothesis should be rejected for this matrix with a probability of
Type I error equal to α. One concludes that this matrix is congruent with at least
one of the other matrices.

2b. If the probability is larger than the nominal significance level α (say, 0.05), the
null hypothesis cannot be rejected. One concludes that this matrix differs from all
the other distance matrices. The weight of the evidence against the null hypothesis
is given by the probability: the higher it is, the more evidence there is that the
corresponding distance matrix differs from all the other matrices in the study.

3. In studies involving several datasets, pairwise Mantel tests based upon ranks (Spearman
statistics) are useful to determine the groups of congruent distance matrices. When there
are many matrices in the study, one can perform clustering or ordination on the table of
Mantel statistics; see Section 11 for an example. For smaller sets of matrices, one can
simply examine the results of the tests of significance to determine the congruent groups
of matrices.

11. Application of CADM: single-malt Scotch whiskies revisited

A few years ago, we published a classification of 109 single-malt Scotch whiskies from
108 distilleries of Scotland (Lapointe & Legendre, 1994), based upon 68 organoleptic variables

c© 2004 Australian Statistical Publishing Association Inc.



626 PIERRE LEGENDRE AND FRANÇOIS-JOSEPH LAPOINTE

derived from tasters’ descriptions published in Michael Jackson’s Malt Whisky Companion
(Jackson, 1989). The binary variables (presence–absence, or 1–0) in the five datasets were:

1. Colour (14 variables): white wine, yellow, very pale, pale, pale gold, gold, old gold, full
gold, bronze, pale amber, amber, full amber, red, fino sherry.

2. Nose (12 variables): aromatic, peaty, sweet, light, fresh, dry, fruity, grassy, salty, sherry,
spicy, rich.

3. Body (8 variables): soft, medium, full, round, smooth, light, firm, oily.
4. Palate (15 variables): full, dry, sherry, big, light, smooth, clean, fruity, grassy, smoky,

sweet, spicy, oily, salty, aromatic.
5. Finish (19 variables): full, dry, warm, big, light, smooth, clean, fruity, grassy, smoky,

sweet, spicy, oily, salty, aromatic, quick, long, very long, lingering.

We now revisit the whisky data to determine if the five datasets are congruent with one
another. We would like to determine if the five datasets contain redundant information in
the sense that a qualified taster could, for instance, look at the colour of a whisky and infer
many of the characteristics of its nose, body, palate and finish. The analyses published in the
above-mentioned classification paper indicated that the ‘finish’ data contained information
somewhat unrelated to the other four datasets. CADM offers a way of conducting a global test
of significance of the hypothesis of incongruence of all distance matrices, prior to testing the
significance of individual matrices using a posteriori CADM tests (H0 : incongruence of the
matrix subjected to the test with respect to all the other matrices in the study) or Mantel tests
(H0 : monotonic independence of the distances in two matrices).

The Jaccard similarity coefficient, which is appropriate for presence–absence data when
double absences should not be emphasized (Legendre & Legendre, 1998 Chapter 7), was com-
puted among whiskies for each dataset separately, producing five similarity matrices. Since
we use distances, the similarities were transformed into distances using the transformation
Dij = √

1 − Sij ; any other monotonic transformation such as Dij = 1 − Sij would have
produced exactly the same CADM results since the distances are transformed into ranks prior
to the calculation of the test statistics. Performing the test on the Jaccard similarity matrices
would also have produced identical results.

The CADM and Mantel results are shown in Table 1. The overall hypothesis of incongru-
ence of all five distance matrices is rejected, meaning that at least some of the organoleptic
groups of variables are congruent with one another. Without or with adjustment for multiple
testing, the a posteriori tests identify the ‘finish’ matrix (No. 5) as the incongruent one in
the lot. This does not guarantee, however, that the other four distance matrices are all pair-
wise congruent. The complementary Mantel tests based upon ranks provide the necessary
information: matrices 1–4 are congruent to various degrees, except for colour (No. 1) and
palate (No. 4) which are incongruent; the permutation probabilities measure the strength of
the evidence against the null hypothesis. The ‘colour’ and ‘body’ matrices are the most con-
gruent (P = 0.001), followed by the ‘nose–palate’ pair (P = 0.004), and finally the pairs
‘colour–nose’, ‘nose–body’ and ‘body–palate’ (P < 0.05). These results are illustrated by
drawing links representing the strengths of the relationships between matrices on a principal
coordinate ordination (Gower, 1966) of the Mantel statistics (Figure 4).

This study shows that organoleptic impressions obtained by smell alone are not sufficient
for appreciating the full richness of organoleptic impressions that can be enjoyed during whisky
tasting. The finish, or aftertaste, represents a portion of the variation which is incongruent
with the other types of data: colour, nose, body and palate. So, to fully appreciate single-
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Table 1

Results of the (a) overall and (b) a posteriori CADM tests, using distance matrices derived
from the five whisky organoleptic datasets. (c) The complementary Mantel tests are also
shown. P = permutational probability, PH =permutational probability after Holm adjust-
ment, r =Mantel statistic using ranks. All probabilities are based upon 9999 permutations.

(a) Overall CADM test H0 : The five distance matrices are incongruent
Kendall’s W : 0.22658
Friedman’s chi-squared: 6667.00524 P = 0.000 Reject H 0

(b) A posteriori CADM tests H0 : This distance matrix is incongruent with the other four
Matrix 1 (14 colour variables) P = 0.002 PH = 0.005 Reject H0
Matrix 2 (12 nose variables) P = 0.001 PH = 0.005 Reject H0
Matrix 3 (8 body variables) P = 0.001 PH = 0.004 Reject H0
Matrix 4 (15 palate variables) P = 0.010 PH = 0.021 Reject H0
Matrix 5 (19 finish variables) P = 0.476 PH = 0.476 Do not reject H0

(c) One-tailed Mantel tests H0: r = 0; H1: r > 0
based upon ranks (Spearman correlation)

Colour Nose Body Palate Finish
Colour r 1.0000 0.0344 0.0724 0.0294 –0.0037

P 0.042 0.001 0.108 0.564
Nose r 1.0000 0.0479 0.0843 0.0084

P 0.035 0.004 0.349
Body r 1.0000 0.0559 0.0153

P 0.049 0.268
Palate r 1.0000 –0.0190

P 0.730
Finish r 1.0000

P

 –0.8  –0.6

–0.2
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Figure 4. Principal coordinate ordination of the five organoleptic data matrices, based upon the
Mantel statistics. Axis I (abscissa) accounts for 28.7% of the variance, and axis II (ordinate) for
26.3%. Results of the Mantel tests that are significant are represented by lines; no adjustment
is done for multiple testing since the probabilities are used in the graph in an arbitrary way.
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malt Scotch whiskies, they have to be swallowed for the taster to have access to the finish
component. This is in agreement with the conclusions of our previous paper (Lapointe &
Legendre, 1994).

12. Conclusion

The CADM test opens a new avenue for assessing congruence among several datasets
that originate in the form of raw data or distance matrices. Since CADM conducted on two
distance matrices is equivalent to a Mantel test based upon ranks, a CADM test for several
distance matrices can be seen as a generalization of the Mantel test of matrix correspondence
to the multiple-matrix case. In studies involving several datasets, the advantage of CADM
over pairwise tests of significance is that the overall (‘experimentwise’) significance level of
the test is correct, whereas pairwise Mantel tests would require a Holm (1979) correction for
multiple testing, and even then would only have an approximately correct experimentwise
significance level.

The CADM method, with its a posteriori tests and Mantel complements, provides a tool
for determining which matrices can be used together in an overall multivariate data analysis
and which ones should be analysed separately because they contain incongruent information.
In the case of raw data tables, rejecting the null hypothesis in the global and all a posteriori
CADM tests indicates that all variables can be included in a single data table for subsequent
analysis. In the case of distance matrices depicting evolutionary data, rejecting the null hy-
pothesis in the global and all a posteriori tests indicates that all distance matrices can be used
together in a combined analysis. In the field of evolution, another test of the same general
hypothesis has been proposed by Huelsenbeck & Bull (1996).

The whisky example was an application with a different perspective: CADM was used to
directly test a hypothesis of congruence among five data tables describing the same objects.
Another application concerns the classical problem of deciding if datasets can be combined
or should be analysed separately. For instance, for an ecological survey repeated at different
dates, in which a group of species (e.g. fish) have been counted at several sites, one can use
CADM to decide if (and which of) the data tables, collected at the same sites during successive
surveys, are congruent and can be combined into a single data table, prior to multivariate
analysis. If this is deemed a requirement for fusion of the data, CADM can be complemented
by a MANOVA to support the hypothesis that there are no significant differences among the
multivariate centroids of the data tables. For community composition data, species counts
need to be transformed prior to MANOVA (Legendre & Gallagher, 2001).

A FORTRAN program (CADM: source code, compiled versions for Macintosh and DOS,
and program documentation) is available to carry out the calculations described in this paper;
see http://www.bio.umontreal.ca/legendre/.
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