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This paper describes a procedure to partition ordered variables into discrete states for the discrimination of an ecological 
classification. At each step, the best partition is that which maximizes a log likelihood ratio for nonhomogeneity of distributions 
across the groups of the classification. The partitioning procedure ends when the probability of the log likelihood X' statistic 
reaches its minimum value. An actual ecological example is given of the discrete discriminant analysis of a benthos classification, 
with vegetation and oxygen concentration as discriminant variables. The 0' observations are first partitioned into discrete states, 
using the partitioning algorithm described before. Following three-dimensional contingency table analysis, it is concluded that 
the benthos classification is independent of oxygen concentrations. 

LEGENDRE, L., et P. LEGENDRE. 1983. Partitioning ordered variables into discrete states for discriminant analysis of ecological 
classifications. Can. J. Zool. 61: 1002- 1010. 

Cet article dkcrit une mkthode qui permet de partitionner des variables ordonnkes en classes, en vue de discriminer entre les 
groupes d'une classification kcologique. A chaque ktape, la meilleure partition est celle qui maximise un rapport de 
vraisemblance pour la non homogknkitk des distributions parmi les groupes de la classification. La partition se termine lorsque la 
probabilitk du X2 atteint sa valeur minimale. A titre d'exemple kcologique, une classification de benthos animal est soumise a 
l'analyse discriminante discrkte, en utilisant la vkgktation et la concentration d'oxygene comme variables discriminantes. Les 
mesures de I'oxygkne sont tout d'abord partitionnkes en classes discrktes, au moyen de l'algorithme dkcrit prkckdemment. Au 
terme de l'analyse du tableau de contingence a trois dimensions, on conclut que la classification benthique est indipendante des 
concentrations d'oxygkne. 

Introduction 
Qualitative (nominal) data are often disregarded by 

ecologists because they cannot be treated directly 
together with the more usual quantitative variables, even 
though many essential variables are qualitative, and 
many quantitative variables are much more efficiently 
sampled as rank ordered (ordinal). Among the qualita- 
tive data are the dominant species, the biological 
association, the presence or absence of a species or of 
some substance (e.g., pollutant), the values exceeding 
or lower than a physiological threshold, the type of 
substrate, etc. Cyclical variables such as the direction of 
the wind or of a current, coded into nonordered states, 
are other examples of qualitative data encountered in 
ecology. Quantitative information, on the other hand, 
may often be sampled efficiently as importance or 
abundance scores; samples can also be rapidly enumer- 
ated in the laboratory as coded abundance scores 
(Frontier 1969, 1973), the cost of data collection being 
reduced, or the number of samples increased for a given 
cost. 

This paper describes a procedure whereby quantita- 
tive or rank-ordered variables can be partitioned into 

discrete states, in order to use them together with 
qualitative discrete variables in problems of ecological 
discrimination. The importance of this problem has been 
emphasized by various authors, including Fienberg 
(1970). The rationale of the proposed method is the 
following. 

Ecological data analysis often requires the assessment 
of the relationships between two data sets, describing in 
different ways the same objects of study (these objects 
being the samples, the quadrats, the -stations, and so 
forth). For example, the ecologist may wish to explain 
the distribution of species in a territory as a function of 
observed environmental characteristics, or to compare 
two groups of taxa within a region, or even to establish 
the similarity between two sets of environmental vari- 
ables. In theory, the best approach to such a problem 
would be that of canonical correlation analysis, in which 
maximum correlations between linear combinations of 
the two sets of variables (canonical variates) are com- 
puted. Unfortunately this symmetric approach requires 
the relationships between variables to be strictly linear 
(Gauch and Wentworth 1976). This is not often the case 
in ecology. 
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The asymmetric approach, more adapted to ecologi- 
cal data (Cassie 1972), consists in first establishing the 
structure (clustering or ordination) within one of the two 
data sets, and then analyzing this structure using the data 
of the second set. The structure of the first set is often 
known as a classification, that is, a partition of the set of 
objects (or of variables) into a series of mutually 
exclusive groups. These groups may be observed 
directly by the ecologist or they may be predetermined 
by the system under examination. Alternatively, the 
structure may be defined through multivariate numerical 
analysis (cluster analyses, ordination techniques, com- 
bination of the two by superimposing a clustering on the 
scatter diagram of the objects in the ordination space), as 
discussed for instance by Legendre and Legendre 
(1983). Given the classification, the ecological approach 
is then to interpret the structure using potentially 
explanatory data from a second set. To be of any 
ecological significance, the analysis has to provide 
quantitative information on how the variables of the 
second set discriminate between the groups established 
on the basis of the variables of the first set. The statistical 
analysis designed to discriminate between groups using 
a set of new variables is called discriminant analysis and 
it is routinely used by a growing number of ecologists. 

Two types of analysis can be used for this discrimina- 
tion. These are parametric and discrete discriminant 
analysis. The parametric analysis is restricted to the case 
where all the discriminant variables are quantitative, 
(mu1ti)normally distributed and interact linearly so as to 
discriminate between the groups making the ecological 
classification. On the other hand, discrete discriminant 
analysis (Goldstein and Dillon 1978) may be used when 
the discriminant variables are qualitative (discrete 
states). When the discriminant variables are of mixed 
types (some qualitative, some rank-ordered and (or) 
some quantitative), discrete discriminant analysis may 
be used, but only after partitioning the ordered variables 
(quantitative and rank-ordered) into discrete states in 
order to use them as the qualitative variables. An 
alternative method wbuld be the ALSOS program (alter- 
nating least squares and optimal scaling) mentioned by 
Young (1981), for discriminant analysis with mixed- 
type data. 

It must be pointed out that a multidimensional discrete 
discriminant analysis can never be replaced by the 
analysis of a set of two~way contingency tables compar- 
ing each of the potentially explaining variables in turn to 
the classification to be explained. Indeed, such an 
approach forgets all interactions higher than the 
first degree and prevents testing more complex causal 
models. The necessity of testing higher-order interaction 
models will become obvious in the very simple ecologi- 
cal example given in the last section of this paper. 

In partitioning ordered variables, two decisions must 

be made: ( a )  the number of states that are required, and 
(b) where to place divisions between states. There are at 
least two ways of making these decisions. 

First, there may be biological, geological, chemical, 
or other ecological reasons to place the partitions at 
known or hypothesized threshold values; ecologically 
located divisions are to be preferred to mathematically 
determined ones. A second way consists in partitioning 
the variable into states of equal width, or alternatively, 
into states containing the same number of objects. This 
solves only the b and not the n problem. Another variant 
of this solution is the one proposed by Cox (1957), who 
addressed himself to the problem of finding the optimal 
partitioning of a normally distributed variable into a 
predetermined number of states. He solved problem b 
by minimizing a loss function based on variance 
computations, and he found in this way where the 
normal distribution would be partitioned to form two to 
six states. 

In this paper, a procedure is presented and criteria are 
proposed to allow partitioning of an ordered variable 
into states, such that maximum discrimination of a 
classification scheme is obtained. The underlying idea is 
that the final interpretation can only be improved by 
partitioning variables optimally with respect to maxi- 
mum discrimination. The procedure answers both prob- 
lems a and b above, and can be translated into a 
computer program. I 

A real example is also presented, in which an ecologi- 
cal classification is interpreted by a mixture of qualita- 
tive and quantitative variables. In much the same way as 
in this example, Vincent and Bergeron (1983) used our 
algorithm to partition physical and chemical descriptors 
of water masses to optimize their power to explain a 
previous classification of the stations into aquatic 
vegetation types. 

This partitioning algorithm has also been used for 
purposes quite different from discriminant analysis. 
Andr6 et al .  (198 1) have used it in a comparative study 
of benthos samplers; they divided species abundance 
variables into classes optimally related to the "sampling 
device" descriptor, in order to measure the selectivity of 
the sampling gears. Hudon et al .  ( 1983) have used it to 
order a mixed-type group of variables as to their power 
to predict a predetermined classification. The quantita- 
tive variables were divided into classes, so that all 
descriptors could be compared to the reference classifi- 
cation (four substrate types, in that case), using the same 
coefficient of dependence. On the other hand, J .  Ferraris 
(to be published) used our partitioning method to 
compare a metric distance matrix, computed between a 
group of objects, to the ultrametric matrix resulting from 

'A computer program written in PASCAL is available from 
the second author, for CDC machines of the series 6000. 
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the application of a clustering procedure to these same 
objects. In this case, the classes of the qualitative 
reference variable correspond to the fusion levels of the 
clustering dendrogram. 

Method 
A simple numerical example will be used. A fictitious 

ordered discriminant variable (D) is to be partitioned 
into states, in order to maximize discrimination of a 
4-group classification (C). The number of observations 
is N = 16. The fictitious data (in contingency table form) 
are the following: 

Successive values of ordered discriminant 
variable D 

Groups 
o f C  1 2  3 4 5 6 7 8 9 10 11 12 13 14 

1 1  1 1 1  
2 1 1 1 1 
3 1 1  1 1 
4 1 1  2 

Partitions 1 2  3 4 5 6 7 8 9 10 11 12 13 

Variable D is ordered, which means that the successive 
columns of the table correspond to increasingly higher 
(or lower) values of D; tied observations are possible (as 
in group 4) and they prevent any partition to allocate 
them to different states. In such a table, quantitative 
variables are automatically reduced to ranks; tied obser- 
vations are accepted and values of the quantitative 
variable for which there are no observations are noted as 
columns of zeros: these have no effect on the following 
computations and may therefore be eliminated. For 
instance, each column of the data table could be the 
observed temperature, rounded to the nearest integer. In 
the table above, two observations corresponding to the 
10th temperature interval fall into the fourth group of the 
classification. In the 14th temperature interval, one 
observation falls into the first group of the classification 
and another into the second. 

The variable (D) is then partitioned into two states. In 
this case, there are 13 such possible partitions, as 
indicated under the table. For instance, partition 9 
(occurring between values 9 and 10 of variable D) would 
result in the following contingency table: 

States of D 
Groups 

of C 1 2 Total 

Total 9 7 16 

In each cell of this contingency table is the number of 
observations, belonging to a given group of the classi- 
fication, that are allocated to a state of D by the 
partitioning algorithm. Each number in the first state of 
D is the sum of those to the left of partition 9 in the data 
table above, whereas each number in the second state of 
D is the sum of those to the right of partition 9. 

The dependence between the classification (C) and 
the discriminant variable (D) is measured through 
Wilks' (1935) likelihood ratio statistic, which is asymp- 
totically distributed as X 2  when the total number of 
observations (N) is large: 

x 2 = 2  1 Oln(O/E)  when 0 ,  E > 0 
all the 
cells 

where 0 is the number of observations in each cell of the 
contingency table, and E is the corresponding expected 
value; the statistic is computed using natural logarithms 
(In). Under the null hypothesis of independence between 
C and D,  E values are computed as: 

(total of the row x total of the column)/N 

The same results are achieved if the expected cell 
frequencies are written as an additive log-linear model: 

In E = [8] + [C] + [Dl 

the null hypothesis being then Ho: [CD] = 0. Explana- 
tions about log-linear models are given in the next 
section. 

When the distribution of D is the same for all the 
groups of the classification (same relative frequencies of 
D in each row of the contingency table), and conversely 
the distribution of C is the same for all the states of D,  
then C and D are completely independent. In this case, 
looking at the states of one variable does not give any 
information about the distribution among the states of 
the other. The corresponding log likelihood ratio is zero. 
This statistic thus measures the nonhomogeneity of the 
distribution of D across the groups of C, the associated 
probability being that of independence between C and 
D. For partition 9 above, the log likelihood ratio is 
0.796, with a corresponding probability 0.850 which 
indicates that the hypothesis of independence between C 
and D cannot be rejected at the 5% probability level. 

The best partition into a given number of states is that 
with the highest log likelihood ratio, since it has the 
maximum "weight of evidence" (Good 1950) for non- 
homogeneity of distributions across the groups, and thus 
the lowest probability of independence between C and 
D. The highest computed log likelihood ratio for two 
states is that resulting from partition 11 (Table 1). 

Similarly, all the possible three-states partitions may 
be assessed, in order to determine the one resulting in the 
highest log likelihood ratio. The procedure is the same 
as for the two-states partitioning, except that partition 11 
of the fictitious example is now kept fixed. For instance, 
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TABLE 1. Stepwise partitioning of fictitious discriminant 
variable D, given classification C (see the text). Position of 
successive partitions are shown, as well as maximum log 
likelihood ratio (x2 statistic), number of degrees of freedom 
(v), and probability (P) of independence between C and D 

No. of 
states Partitions x v P 
- - - - - - - - 

2 11 6.904 3 0.0750 
3 11 and 6 17.995 6 0.0063 
4 1 1 and 6 and 20.629 9 0.0144 

(1 or5or  10) 

partition 9 ,  keeping partition 11 fixed, would result in 
the following three-states discriminant variable: 

States of D 
Groups 

of C 1 2 3 Total 

1 2 0 2 4 
2 2 0 2 4 
3 3 1 0 4 
4 2 2 0 4 

Total 9 3 4 16 

The log likelihood ratio resulting from this partition is 
10.357. The maximum is that of partition 6 (Table 1 ), so 
that the best partition into a three-states variable is at 11 
and 6. 

For a four-states variable D,  keeping partitions 1 1 and 
6 fixed, the best partition would be 1 or 5 or 10, which 
result in the same maximum log likelihood ratio (Table 
1). 

The partitioning procedure ends when the probability 
of the log likelihood X2 is minimum, since the depen- 
dence of the classification on the discriminant descriptor 
is then maximum. The best partition of discriminant 
variable D is therefore into three states, as the probabil- 
ity reaches a minimum (Table 1). 

This stepwise procedure (keeping the previous s - 1 
partitions fixed when partitioning into s states) does not 
always give exactly the same resu1ts.a~ the simultaneous 
partitioning of the variable into s states: sometimes, it is 
possible to find a simultaneous partitioning with a 
slightly higher X2 than with the stepwise procedure. In 
the simultaneous procedure, for every successive parti- 
tioning into 2, 3, ... , s ,  ... states, all the possible 
( N  - I)! / ( N  - 1 - S) s-states partitions are tried in turn. 
The latter procedure must be preferred when computer 
time is not limited. However, in view of the rapid 
increase in computing time with the simultaneous 
algorithm, especially when N  is large, the stepwise 
procedure is described here as a practical alternative. 

In the fictitious example above, equivalent partitions 
were encountered when partitioning into four states. If 
such a situation had been encountered in the first steps of 
the procedure, a predeternlined rule of decision could 
have been used for deciding between otherwise equiva- 
lent solutions. Alternatively, the various equivalent 
partitions could have been tried in turn, the final choice 
being based on the overall minimum probability. 

With more complex variables than the fictitious 
example above, a first probability minimum may be 
reached after partitioning the variable into a few states, 
and then another and lower minimum be found after 
partitioning into a larger number of states. It is suggested 
to stop the partitioning at the first probability minimum 
encountered, in order to keep the number of empty cells 
in the multidimensional contingency table as low as 
possible, and to establish the simplest possible corre- 
spondence between the classification and the discrimi- 
nant variables (see the discussion below). Another 
decision might be more appropriate, however, in view 
of specific ecological problems: for instance, retaining 
the minimum corresponding to the number of states of D 
closest to the number of groups of C. 

A similar approach was described by Pielou (1969) to 
divide quadrats into groups, using presence-absence 
data. The subdivision is made by choosing a "critical 
species" and dividing on that species. Quadrats are first 
divided into those containing and those not containing a 
first species. Data in the left-hand column of the 
contingency table are the numbers of occurrences of 
every other species, in quadrats containing the first 
species. Data in the right-hand column are similar 
numbers of occurrences, but in quadrats not containing 
the first species. X2 is then computed and the procedure 
is repeated for all the species in turn. As in our method, 
the first division of quadrats is on the species with the 
highest x2. The first two groups of quadrats are then 
divided and redivided by the same method, until all 
evidence of heterogeneity is removed. 

Following the partitioning procedure described here, 
it is therefore possible to use any type of ordered 
variables, together with nonordered ones, in the discrete 
discriminant analysis of ecological classifications. 

Ecological example 
Baie de Penouille is a small cove of baie de GaspC, in 

the Gulf of St. Lawrence (Fig. I). Sampling was 
conducted at eight stations which were visited six times 
between July 1976 and June 1977 (Anonymous 1978). 
Various physical and chemical properties (including O2 
concentration of the water) were measured, and the 
vegetation growing at each station was recorded. Ben- 
thic organisms were quantitatively sampled and 48 taxa 
(among which annelids, molluscs, crustaceans, ara- 
chnids, and insects) were enumerated. A cursory analy- 
sis of the Penouille data is used here as an example; it is 
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FIG. 1 .  Location of the sampling stations in baie de Penouille (Gulf of St. Lawrence). 

not intended to provide a full ecological interpretation of 
the data set. 

After elimination of 24 very rare taxa, a classification 
of the 48 samples was performed. Counts were normal- 
ized by log transformation. The X2 metric (Roux and 
Reysac 1975) was used to calculate a sample-by-sample 
distance matrix, from which principal coordinates 
(Gower 1966) were computed, as well as various 
agglomerative clustering classifications: single and 
complete linkage, proportional link linkage (Sneath 
1966) with 0.75 connectedness, and flexible clustering 
(Lance and Williams 1966) with P = -0.25. After 
drawing the results of the clusterings onto the projection 
of the sample points on the two first principal coordi- 
nates, it was possible to recognize three clusters of 
samples, three sample points being left unclassified. 

Seeking an interpretative model of the benthos classi- 
fication, the discrete-states classification (Table 2) was 
compared with the three-states vegetation variable, and 
to dissolved oxygen. Since the latter is quantitative and 
continuous, it had to be divided into states before being 
used together with the qualitative vegetation variable in 
a discrete discriminant analysis. 

Partitioning the O2 variable into discrete states, given 
the benthos classification, was done according to the 
stepwise procedure described in the previous section. 
The steps .of this partitioning are shown in Table 3. 
Partitioning the O2 variable into five states resulted in a 
probability minimum, where the partitioning procedure 
ended. 

Data from Table 2 are allocated to a three-way 
contingency table (Table 4). Various procedures of 
discrete discriminant analysis are then available (Gold- 
stein and Dillon 1978). The analysis is conducted here 
by fitting log-linear models to the cell frequencies of the 
contingency table, since discrimination problems can be 
solved using multiway contingency table analysis 
(Goldstein and Dillon 1978, p. 25). To do so, logarithms 
of the expected cell frequencies (E) are written as 
an additive function of main effects and interactions 
between the variables. The full second-order model for 
the three variables (Table 4) is: 

In E = [8] + [C] + [V] + [O] + [CV] + [CO] + [VO] 

Symbols in brackets (see heading of Table 4) are the 
effects: for instance, [CO] is the effect due to the 
interaction between the benthos classification (C) and 
the oxygen concentration ( 0 ) .  [8] is the grand mean of 
the logarithms of the expected counts. The effect due to 
the interaction between all the variables [CVO] is never 
included since, in the resulting saturated model, the 
expected cell frequencies simply turn out to be equal to 
the observed counts: E = 0 .  

If only the effect of the interaction between the 
classification and the oxygen concentration is consid- 
ered, for instance, the hierarchical model becomes: 

In E = [8] + [C] + [V] + [O] + [CO] 

the null hypothesis being then Ho: [CV] = 0 (no 
interaction between the benthos classification and the 
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LEGENDRE AND LEGENDRE 

TABLE 2. Data describing the 48 samples from baie de Penouille. The O2 variable is 
presented both as raw data and after coding as in Table 3. Vegetation: 1 = epilithic 
algae, 2 = absent or Ruppia and Zostera, 3 = Zostera with or without Fucus. NC, 

unclassified sample (see text) 

Station Date Classification Vegetation O2 ( m g . ~ - ' )  O2 (coded) 
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TABLE 3. Results of the stepwise partitioning of the O2 
(mg.LP1) variable of Table 2, given the benthos classification 

scheme 

Partition after 
Number the value 
of states (mg-L-') x v Probability 

vegetation types) and [VO] =O (no interaction between 
the two discriminant variables V and 0 ) .  These models 
are hierarchical in the sense that a higher order effect 
cannot be present unless all lower order effects whose 
variables are subsets of the higher order effect are also 
included in the model: for instance, if [VO] is present, 
then [V] and [O] must be included. Details on computa- 
tions of these models are given in Fienberg (1970), 
Bishop et al. (1975), Fienberg (1980) and Upton 
(1978). Program BMDP4F (Dixon 198 1) was used to 
compute the expected cell frequencies, for the hierarchi- 
cal models adjusted to the multiway contingency table. 

The goodness-of-fit of a model is tested with null 
hypothesis (Ho) that the effects not included in the model 
are zero. The test is performed using Wilks' likelihood 
ratio statistic, as in the previous section. When the 
probability associated with X2 is smaller than or equal to 
a preselected level a ,  the hypothesis Ho is rejected. The 
alternative hypothesis that all the effects included in the 
model are nonzero cannot be accepted, however, since 
the only conclusion of the test is that at least some of 
these effects are nonzero. When a model is found with a 
probability larger than a ,  this model can be accepted as 
fitting the data. However, since the number of observa- 
tions is small relative to the number of cells in the table, 
the resulting test6 are overly liberal; that is, Ho is 
rejected too often relative to a .  Accordingly, a is taken 
as 0.01 rather than 0.05. 

When several models are acceptable, the ecologist 
may choose the most parsimonious, that is the model 
with the largest possible number of null effects in its Ho 
hypothesis. Dixon .(1981) proposes to search for the 
most parsimonious, nonsignificant model, in two steps. 
First, a screening of all the separate effects, using a test 
of partial association of the factors, and then fitting the 
models thought to be most appropriate. Sokal and Rohlf 
(1981; p. 762) add to this that if any of the marginal 
totals have been fixed by the design of the experiment, 
then the corresponding term must be present in all 
models tested. When there are only three variables, as 

TABLE 4. Contingency table of the benthos classification (C) as 
a function of vegetation (V) and oxygen concentration ( 0 ) .  In 
the last column: configuration cells for interaction (VO). Total 

number of observations N = 45. Data from Table 2 

Benthos 
classification 

(C) 
Vegetation (V) Oxygen ( 0 )  Interaction 
(see Table 2) (mg-L-') 1 2 3 ( vo) 

here, all the possible models can easily be fitted in turn 
(Table 5). 

A major problem in ecology is that very often some 
observed cell frequencies are zero, due to the small 
number of data relative to the number of cells in the 
contingency table; in Table 4, for instance, the N = 45 
data are distributed among 3 x 5 x 3 = 45 cells. In 
computing interactions, these empty cells may become 
so arranged that some of the configuration cells are 
empty; in Table 4 ,  it is shown that five configuration 
cells for interaction (VO) are empty. These will result in 
a certain number of zero expected frequencies (E = O), 
for which adjustment is necessary in the computation 
of the degrees of freedom. Program BMDP4F auto- 
matically provides such an adjustment, the bases of 
which can be found, for instance in Bishop et al. (1975, 
p. 116 and following pages) or in Dixon (1981, p. 666). 

Model 15 has the best fit among those with interaction 
[VO] fixed by the design. According to this model, the 
benthos classification is independent of the oxygen 
concentration. 

The sole consideration of the various two-way contin- 
gency tables between the three variables (classification 
x vegetation, classification x oxygen and vegetation x 
oxygen) could not have led to the same conclusions, 
since the hypothesis of independence (see previous 
section) is rejected for the three tables: X 2 [ ~ V ]  = 55.53 
(v = 4, p < 0.001), x2 [c0 ]  = 32.65 (v = 8, p < 
0.001) and x2[v0] = 30.07 (v = 8, p < 0.001). The 
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TABLE 5. Models fitted to the contingency table (Table 4).  Total number of cells: 3 X 5 X 3 = 45. 
All models are hierarchical (see text): for instance in model 8. 101. [Cv] stands for 101, I Cj. 

[Vl- [CVl 

Model Ho: effects = 0 v X 2  Probability 

bivariate approach would therefore have been inconclu- 
sive as to the discrimination problem stated. As is 
always the case, multivariate ecological problems must 
be resolved using the proper available multivariate 
analyses. 
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