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Abstract - Numerical methods are presented that represent three different approaches to
biogeographic problems. The first approach is multivariate data analysis. The delineation of
biogeographic “provinces" or areas is a type of descriptive analysis that can be accomplished by
clustering faunal data (with or without spatial contiguity constraint) and drawing the resulting
choropleth map. On the other hand, ecological biogeographers like to use ordinations of
sampling localities and interpret the main axes of variation in terms of environmental gradients;
canonical ordination, where a species presence or abundance data table and an environmental
data matrix are both analyzed simultaneously, can be used with profit in this context. Secondly,
the analysis of spatial patterns can help identify the type of spatial distribution of the biological
material, both at the population and at the community level, while Mantel tests and other derived
analyses make it possible to test hypotheses concerning causal factors possibly responsible for
the observed spatial structures. Finally, phylogenetic-tree reconstruction methods, as well as
other techniques, can be used for historical biogeographic studies: these include the study of
taxa cladograms and of area cladograms.

INTRODUCTION

Myers & Giller (1988) have clearly demonstrated that historical and ecological
biogeography can both contribute to explaining the distributions of organisms over the surface
of the Earth. In both of these approaches, the hypotheses to be tested are developed by studying
the non-randomness of the distribution patterns of living organisms in nature. While the
distinction between a purely historical and a purely ecological perspective often depends on the
spatial or temporal scale of the study, the two approaches must rely on sound numerical
methods to support as efficiently as possible their respective hypotheses, using observational
data.

This paper will focus on the most important numerical methods needed to demonstrate the
non-randomness of the patterns found in nature and to approach biogeographic problems from
an ecological and a historical perspective. [Asterisks (*) indicate specialized methods, not
available in general-purpose statistical packages, for which computer programs are suggested in
Table 5.]
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MULTIVARIATE DATA ANALYSIS

A large fraction of the currently published biogeographic studies concerns present-day
faunas and floras. Typical problems involve the delineation of biogeographic “"provinces" or
areas, or the exploration of ecological relationships by correlating geographic distributions of
organisms to environmental conditions. Methods of univariate or multivariate data analysis,
coupled with classical geographic analysis, are the appropriate tools for such problems.

A quantitative study of a spatially structured phenomenon, like the geographic distribution
of a species or a group of species, and of their controlling factors, should start with the study of
distribution maps of the variables of interest: the species, and the environmental variables.
Biogeographers usually satisfy themselves with rather unsophisticated kinds of maps. The two
most common types are the following (both types can be produced by computer software).

1- Isoline maps are similar to the contoured maps used to represent altitudes on topographic
maps, where the nested isolines represent different intensities of some continuous variable.
Since these maps are in most cases derived from point samples obtained from the study area,
intermediate values have to be estimated by interpolation. The sampling design is of prime
importance for the accuracy of such reconstructions; this problem has been discussed by
Burgess et al. (1981), McBratney et al. (1981) and Legendre et al. (1989), among others.
Some of the common interpolation methods, including trend surface analysis* and kriging*,
have recently been described for ecologists by Burrough (1987) and by Legendre & Fortin
(1989). This type of mapping places the emphasis on the continuity properties of the variable to
be mapped. The main trends in multivariate data can also be mapped by these methods, after
reducing the data tables to synthetic variables, using ordination methods (examples below).

2- In so-called "choropleth maps" on the other hand, the study area is divided into
nonoverlapping regions (or polygons), and boundaries are drawn around the regions on the
basis that all points included in any given polygon allegedly possess some common property.
This type of mapping is used to emphasize discontinuities in data. For multivariate data, the
division of the area into regions can be obtained from clustering methods.

Clustering and ordination are two common tools of multivariate data analysis; they have
been used by ecologists and biogeographers for a long time (Orléci, 1978; Legendre &
Legendre, 1983, 1984a; Jongman er al., 1987, etc.) and are currently available in easy-to-use
computer packages, both on mainframes and on microcomputers.
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Clustering

The basic idea behind clustering is to partition a collection of objects into classes on the
basis of their overall similarity or dissimilarity. (We will consider here only the clustering
methods that produce nonoverlapping clusters, although methods exist that find overlapping
clusters.) Many different clustering methods have been developed, based on mathematical
models that are all adequate for producing discontinuous groups: geometric, graph theoretic,
probabilistic, information theoretic, etc. Users also have to know that clustering can be obtained
in two basically very different ways:

1- Many of the commonly used methods proceed in two steps: first an overall measure of
resemblance (similarities or distances, reviewed in most textbooks of multivariate data analysis)
is computed among all pairs of objects, which are sampling localities in most biogeographic
studies; then clustering is performed, based upon this resemblance matrix. This family of
methods includes linkage clustering (single, complete, intermediate); the average clustering
methods (UPGMA, WPGMA, UPGMC, WPGMC), Ward's minimum-variance clustering,
McQuitty's similarity analysis, flexible clustering, as well as the other methods that can be
computed with the general agglomerative algorithm of Lance & Williams; and many of the
divisive methods. "Eye-balling" methods, such as an ordination (principal components or
correspondence analysis, for instance) followed by approximate delineation of clusters on the
ordination diagram, can be included in this category. The choice of a resemblance measure
appropriate to the data at hand is critical to obtaining meaningful results; guidance is provided
by Legendre & Legendre (1983, 1984a) and by Gower & Legendre (1986).

2- In other methods, the assessment of similarity is done as part of the clustering method itself.
These include the well-known k-means method, the ecologically-oriented method of
information analysis (Williams er al., 1966), as well as Lefkovitch's (1980, 1982, 1987)
conditional clustering.

It is important to understand that clustering is a collection of heuristic procedures. This
means that, in most cases, several methods and algorithms are equally appropriate, but none of
them may also include assumptions related to the ecological or biogeographic theory of interest
in the study. As a consequence, results also have to be Jjudged heuristically. In practice, this
means that among the methods that are appropriate to the data, users of clustering are
encouraged to apply several methods to their data. Decision, as to the most interesting result
among those that are technically appropriate, is often based on one of the following
considerations, which are external to the clustering analyses:

- retain for interpretation only the groups that are evidenced by all methods used (strict
consensus: see below);
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- keep the partition or hierarchy that optimizes some objective criterion, such as the
“cophenetic” or matrix correlation with the starting resemblance matrix;
- consider only the partition or hierarchy that best fits some other criterion of interest, such as
geographic contiguity of the data points in each group (see also the methods of constrained
clustering, below);
- consider only the partition or hierarchy that best fits some other data set of interest, for
instance a matrix of environmental data (see also the methods of canonical ordination, below).
Let us remember that biogeographers often use clustering methods to delineate
homogeneous geographic areas, based upon faunistic or floristic data. In this respect, clustering
may be looked at as a family of methods — and indeed, as the only family of methods presently
available — for mapping multivariate data. It is important at this point to realize that two
different objectives may be pursued, and that they lead to two different alternatives in
clustering.

In the first case, biogeographers are interested to locate all the areas where each given type
of fauna or flora is found. Typically, one may want to test hypotheses of environmental control
of species assemblages. In that case, geographically discontinuous ("disconnected") groups are
just as interesting as continuous ("connected”) areas, so that the results obtained by clustering
areas on the basis of the species data can be mapped directly, and subsequently interpreted,
using the environmental data.

On the other hand, the prime purpose of the study may be to outline connected geographic
areas, based on the species data. Typical studies include the delineation of biogeographic
"provinces", and the study of geographic dispersal of species assemblages after some event. In
such studies, there is an implicit constraint that the geographic areas based on the species data
will be of interest only if they are internally connected; that is, if none of them is split into
geographically disconnected sub-areas. It may happen, of course, that the usual clustering
methods will produce connected areas; an example is the study of Bock & Root (1981) who
delineated biogeographic regions for landbird winter abundances in southern Canada and the
United States. In other cases, however, some of the regions obtained by simple clustering may
come out scattered over the study area. This is why several authors (Ray & Berry 1966;
Webster & Burrough 1972; Lefkovitch 1978, 1980; Legendre & Legendre, 1984b; and others)
have suggested including a constraint of spatial contiguity in the clustering algorithm itself*, in
order to guarantee that the clustering results will also be geographically meaningful.
Technically, this means that after the resemblance matrix has been computed among sites from
the species data, one proceeds with any of the usual clustering methods, with the difference that
the algorithm is constrained to cluster only those sites or site groups that are geographically
contiguous. The constraint is provided to the program in the form of a list of connections, or
spatial links, among neighbouring localities. Clustering with constraint has interesting
properties. On the one hand, it reduces the set of mathematically possible solutions to those
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that are geographically meaningful. This avoids the well-known problem of clustering methods,
where different solutions may obtain from different clustering algorithms applied to the same
data set; constraining all these algorithms to produce results that are geographically consistent
forces them to converge towards very similar solutions. On the other hand, the partitdons
obtained in this way reproduce a larger fraction of the structure's information than equivalent
partitions obtained without constraint (Legendre, 1987). Finally, constrained agglomerative
clustering is faster with large data sets than the unconstrained equivalent, because the search for
"the next pair to join" is limited to adjacent groups only (Openshaw 1974; Lebart 1978).
Examples of the use of constrained clustering for biogeographic analysis are found in Legendre
& Legendre (1984b) on freshwater fishes, and in Legendre & Fortin (1989) on terrestrial
vegetation.

Ordinati

An ordination is a plot of object-points along an axis corresponding to a quantitative or (at
least) an ordered relationship, or on a system of two or more such axes. Scatter diagrams,
which are two-dimensional ordinations, are familiar to all scientists. The purpose of ordinations
is to exhibit the salient features of a data set, such as gradients, groupings, or the presence of
outliers. When the data contain more than two dimensions, instead of plotting all pairwise
comparisons of variables, methods exist to find the "best" projection of the objects in one, two,
or more dimensions; these graphs are called ordinations in a space of reduced dimensionality
("reduced space”). The best-known of these methods are principal components analysis,
correspondence analysis, and principal coordinates analysis; several more specialized methods,
often referred to as scaling methods, also e){ist; Gower (1987) gives a clear overview of these
methods, and illustrates each one with vegetation data.

Ordination must be seen as the geometric problem of projecting points from a
multidimensional space onto a smaller number of axes. The main ordination techniques differ
from one another, mostly in the distance relationship they allow to preserve through that
projection.

In principal components analysis, the axes on which the points are plotted in the original,
multidimensional space are the original variables, so that the distance between any two points in
that space can easily be calculated using the Euclidean distance formula. We say, then, that
principal components analysis preserves the Euclidean distance, although distances are
somewhat distorted when an n-dimensional data set is projected into 2 or 3 dimensions.
Solutions of the so-called canonical equation give the various eigenvalues; to each one is
associated an eigenvector, from which the principal components are computed. The principal
components give the coordinates of the data points in the new space; that is, their positions on
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the successive principal axes. The method guarantees that the first principal axis passes through
the direction of greatest variance of the scatter of points in the original, multidimensional space;
the variance of the points along this first axis is given by its eigenvalue. Similarly, the
succeeding principal axes, with variance equal to their respective eigenvalue, pass through the
greatest successive directions of the n-dimensional scatter of points. The principal axes are
orthogonal to one another, which means that their correlation to one another is zero. Since the
first few principal axes account for the largest fractions of the data set variance, they are the
most efficient axes to summarize, in a few important dimensions, the greatest part of the
variability of a larger number of original variables.

Correspondence analysis* differs from principal components analysis in the fact that the
distance among points is the so-called chi-square distance, instead of the Euclidean distance.
While the Euclidean distance is appropriate to represent relationships among points as
measured, for instance, by environmental variables, or by other variables that can take positive,
null, or negative values, the chi-square distance is appropriate to analyze either a species
presence/absence or abundance table, or else a contingency table comparing two qualitative
(categorical) variables (Legendre & Legendre, 1983, 1984a; Gower, 1987).

In principal coordinates analysis*, as well as in the other forms of metric or non-metric
scaling, the resemblance matrix is the user's choice, so that scientists can produce ordinations
using any one of the metric or semimetric distance measures available in the literature (reviewed
in most texts of numerical ecology), or from the corresponding similarity functions. In these
ordination methods, the programs read in a previously computed resemblance matrix, and find
the best projection of the data points in a space of reduced dimensionality. "Best" is defined by
different criteria (depending on the method), the basic concept always being to distort, as little
as possible, the original interpoint distances during the process of projecting the points onto the
reduced space. ,

The chief role of ordinations in biogeography is to help identify gradients or other
structures in the species abundance data obtained at the sampling localities, and to explain the
spatial arrangement of the community structure using other environmental variables by a
posteriori correlation or regression. This mode of analysis is called "indirect gradient analysis"
(Whittaker, 1967; ter Braak, 1987b). The converse can also be done, where the ordination is
done on the environmental variables, and the interpretation made using the species abundance
data, either one at a time (single species biogeography) or all together (community
biogeography). Reduced-space ordination of species abundance data is usually done by corre-
spondence analysis or by principal coordinates analysis (or other form of scaling), while
ordination of environmental variables is done either by principal components or by principal
coordinates analysis (or other form of scaling). Ordinations can also be used in conjunction
with clustering, and in particular with hierarchical clustering, to help decide what is the most

informative partition (cutting level) in a dendrogram to produce a choropleth map. Finally, since
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ordination axes do represent new synthetic quantitative variables, they can be mapped directly
(Fig. 1).

There are ways of jointly analyzing directly a species abundance data table and an
environmental data matrix ("direct gradient analysis": ter Braak, 1987b), instead of relying on a
posteriori correlations to associate environmental characteristics to species ordination axes.
These methods are called canonical ordination (or constrained multivariate regression), and they
pertain to two families: like principal components analysis, canonical correlation analysis and
redundancy analysis* preserve the Euclidean distance among points, while canonical
correspondence analysis* preserves the chi-square distance, just like standard correspondence
analysis. I will briefly discuss the new method of canonical correspondence analysis (ter Braak,
1986, 1987a, 1987b) which was designed to interpret species assemblage variations by
environmental variables, and should prove particularly useful for biogeographic analysis.

Direct and indirect gradient analyses will lead to the same results, if the major species
gradients can readily be accounted for by the set of available environmental variables. It often

Fig. 1. Terrestrial vegetation data: 200 sampling stations, 28 tree species. Isoline map
obtained by kriging from the first principal coordinate of a Steinhaus similarity matrix among
sampling localities. Figure from Fortin (1985), with permission. The data set is also described
in Legendre & Fortin (1989). The mapped area is 600 m wide and 1 km high. The negative
areas of the map are the zones of highest density of the maple sugar Acer saccharum
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happens, however, that a large part of the species variability is not directly controlled by

environmental variables (bottom-up process), but, instead, by other factors, such as historical
events, or by top-down ecological processes. In such cases, the larger part of the species
variability, that occupies the first principal axes of the ordination, has nothing to do with
environmental variables, so that their influence will not be brought out. Even though the
environmental variables cannot explain a large part of the species variability, they may be useful
to explain some of the remaining variation, and that fraction may still be important. The role of
canonical ordination is to bring out that part of the species variability (first data table) that can be
accounted for by the environmental variables (second data table). So, canonical ordination is
related to multiple regression as well as to ordination. More precisely, the technique of
canonical correspondence analysis selects as the first ordination axis the linear combination of
environmental variables that maximizes the dispersion of the species scores; the species scores
remain weighted averages of the site scores, as in the normal form of correspondence analysis,
and the- first eigenvalue measures the dispersion of the species scores along the axis. The
second and further axes also select linear combinations of environmental variables that are
maximally related to the species data, subject to the constraint that the successive fractions of
the environmental variables' variability have to be uncorrelated with one another. Canonical
correspondence analysis then produces a “constrained correspondence analysis" solution, since
the site scores in the species space are still weighted averages of the species scores, which are
also constrained, to be expressed as linear combinations of the environmental variables (ter
Braak, 1987b).

In biogeographic analysis, the second data table can be made to contain the geographic
coordinates (x, y) of the data points instead of environmental variables, as suggested by ter
Braak (1987a). In that case, an ordination of the species data can be obtained that will be
constrained to be consistent with the geographic distribution of the sampling localities.
Columns can also be included in the geographic data table that contain values of x2, y2, xy, and
possibly higher powers of the basic coordinates, to allow the species data to fit to a higher-
degree polynomial of the basic geographic coordinates, in the manner of trend surface analysis
(Burrough, 1987; Legendre & Fortin, 1989), which can be extended in this way to multivariate
data. On the other hand, a biplot of species and geographic variables should indicate what
species have the most important spatial structures. An example is presented for the 200 points
of vegetation data of Figure 1. The geographic data matrix contains all the terms for a cubic
trend surface regression of the form

z=bx +byy + b3x? + byxy + bsy? + bgx3 + byx2y + bgxy? + bgy3 ()

Table 1 shows the weights of the species and of the geographic variables in the formation of the
first two canonical axes. The first two eigenvalues are 0.23237 and 0.17912 respectively; they
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measure the amount of variation of the species data that is explained by the first and the second
canonical axes and, hence, by the geographic variables; these first two canonical axes together
account for 50% of the 28-species-geography biplot, and for 10% of the total 28-species
variability, at the spatial scale determined by the sampling grid. Figure 2 shows maps obtained
by kriging the sample scores: on the left, the sample scores are computed in the species space;
and on the right in the geographic coordinates space. In other words, the sample data values
from which the maps on the left-hand side have been interpolated are weighted averages of the
species (weights given in Table 1), while the data values for the maps on the right-hand side are
rend-surface maps based on equation (1) above, with weights also given in the Table. For
canonical axis I (top portion of the Figure), the first community structure surface (left) is very

Table 1. Species and standardized geographic variable weights (canonical coefficients) for
canonical axes [ and I of the vegetation data study

Species Axis Axis Geographic AxisI  AxislI
It var.

1. Abies balsamea -1.98 -1.55 1. x -3423  -20.02
2.Acer pensylvanicum 1.50 -3.17 2.y -0.82 3.05
3. Acer rubrum -0.22 093 3. x2 71.88 44 .81
4. Acer saccharum 1.29 0.43 4. xy -5.29 -6.73
5. Acer saccharinum -1.00 -3.87 5.y? 5.76 -0.29
6. Betula alleghaniensis -0.22 -1.14 6. x3 -38.43 -24.73
7. Betula papyrifera -0.97 -0.24 7. x2%y 6.91 3.34
8. Betula populifolia -0.86 1.30 8. xy? -6.04 0.65
9. Carpinus caroliniana -0.11 -1.21 9.y3 0.41 -0.17
10. Carya cordiformis 0.96 -2.64
11. Fagus grandifolia 2.66 -0.23
12. Fraxinus americana -0.86 -0.88
13. Fraxinus nigra -0.98 -1.72
14. Fraxinus 0.65 -2.45

pennsylvanica
15. Juglans cinerea 0.65 0.17
16. Malus pumila -2.28 0.78
17. Ostrya virginiana 1.11 -0.51
18. Pinus strobus -0.62 3.93
19. Populus balsamifera -2.10 2.28
20. Populus 2.18 -1.25

grandidentata
21. Populus tremuloides -1.07 -0.31
22. Prunus pensylvanica 0.94 -0.64
23. Prunus serotina 0.26 -0.60
24. Thuja occidentalis -2.58 0.09
25. Tilia americana 1.13 -2.09
26. Tsuga canadensis -0.56 -0.75
27. Ulmus americana -1.35 -0.26

28. Ulrnus rubra 207 0.17
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similar to the map in Figure 1, that represents the first principal coordinate obtained by
unconstrained ordination of the vegetation data; the signs are inverted, a result of arbitrary
decisions made by the computer programs and has no ecological significance. The species
loadings in Table 1 show that the peaks of this map correspond to high densities of species 11,
20, 2 and 4, while the troughs correspond to high densities of species 24, 16, 19 and 28. The
interesting fact is that this first component of the community structure can be pretty well
approximated (correlation = 69%) by the trend surface map on the right, with high values in the
upper right and the extreme upper left regions, and low values present in the center-left and in
the lower right-hand regions; in other words, this equation predicts pretty well the community
structure, from the simple knowledge of the geographic position of the samples. The same goes
for axis I (lower part of Figure 2), where the second community structure surface (left) is well
approximated by the trend surface on the right, to which it is correlated at 71%. This hints to a
control of this community structure by mechanisms that make it strongly spatially structured.
Leduc et al. (submitted MS) have investigated the hypothesis that while some of the tree species
is this assemblage seem to be controlled by spatially autocorrelated environmental factors,
other species’ distributions are controlled by patch or gap dynamics.

Geographic variables can be used in yet another way by biogeographers: large-scale
gradients in both the species and the environmental data can be removed by regression on the
geographic coordinates (trend surface analysis). The study of the relations between species and
environmental variables is then carried out on the regression residuals, either by direct or by
indirect gradient analysis; this is an elegant way of removing this confounding factor, which is
a common cause for spurious correlations in biogeographic analyses (Legendre & Troussellier,
1988). When removing geographic trends, however, one must always keep in mind that one
may be discarding an important component of the information, if the community structure is
indeed determined by a spatial process.

ANALYSIS OF SPATIAL PATTERNS

Much can be said on the importance of spatial heterogeneity in ecological and
biogeographic theory. Several theories and models implicitly or explicitly assume that elements
of an ecosystem that are close to one another in space are more likely to be influenced by the
same generating processes. Organisms are not distributed evenly or at random in nature, for the
good reason that spatial structures are functional in ecosystems, and not the result of some
random process; a spatially homogeneous ecosystem simply could not function. This is why
present-day biogeographers are interested in detecting the spatial arrangements of populations
and communities. As mentioned in the previous section, mapping is a good way of grasping the
salient features of geographic distributions. Qualitative examination of maps, when coupled
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with wishful thinking, may, however, play tricks on the best-intentioned of biogeographers.
This is why it is important to be able to rely on some form of statistical analysis to confirm or
infirm hypotheses about the observed spatial distributions of organisms and assemblages. This
is the first role of spatial pattern analysis in biogeography. We will see that spatial analysis can
go further and make it possible to test simple causal models that involve spatial variables as
predictors.

This section will be brief, since the statistical analysis of spatial patterns for community
analysis has been reviewed recently (Legendre & Fortin, 1989). I will limit the exposé to a
guide to the most appropriate methods (with references), classified by the ecological and
biogeographic questions they allow to be answered. Readers should refer to the above-
mentioned paper for a more complete presentation of the methods, including formulas and
ecological examples.

In the exploratory or hypothesis-generating phase of a research program, biogeographers
should spend some effort testing for the statistical significance of the spatial structure they have
detected or hypothesized. This can be done either in order to establish that there is a significant
spatial structuring, and to determine the kind or shape of the pattern, or, to establish that there is
no significant spatial pattern in the data, in order to validate the use of parametric statistical
tests. Indeed, the presence of autocorrelation in data — spatial or temporal — invalidates the
use of the classical tests, since the assumption of independence of the observations is not met.
Testing procedures that are valid in the presence of spatial autocorrelation are found in Cliff &
Ord (1981), Edgington (1987), Griffith (1987), Odland (1988) and Legendre er al. (1990).

There are various ways of testing for the presence of spatial autocorrelation in data:

1- A common structure encountered by biogeographers is the presence of a large-scale gradient
in species composition. Such gradients may reflect a change in major environmental conditions,
such as harshness of climate in north-south gradients, or dryness as one moves inland from an
ocean margin. The Mantel test* (1967) of matrix correspondence is an easy and elegant way of
verifying such an hypothesis. First, distance matrices are computed among the sampling
localities, in two different ways. The distance matrix X is computed for the species
composition data, using one of the many ecological resemblance coefficients adapted to species
abundance data; an often used coefficient is the Odum (1950) or Bray & Curtis (1957)
percentage difference. The second matrix Y contains the geographic distances among sampling
localities, i.e., their distance in m or in km on the Earth surface. The null hypothesis to be
tested is that the distances among points in matrix X are not linearly related to the
corresponding distances in matrix Y; or in other words, that the species composition difference
does not increase as the geographic distance among sampling stations increases. The
normalized form of the Mantel statistic has the same formula as the Pearson product-moment
correlation coefficient, computed for pairs of distance values in the off-diagonal of the two
distance matrices. This statistic cannot be tested as a regular correlation coefficient, however,
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because distances in a matrix are not independent of one another; instead, it is tested either by a
permutation procedure, or using a normal approximation which becomes asymptotically valid
as the size of the matrices being compared increases. Schnell et al. (1986) have used the Mantel
test to study patterns of geographic variation in dolphin morphology in the Pacific Ocean. The
Mantel test has also been used to test the agreement of ecological data with a model (Burgman,
1987; Hudon & Lamarche, 1989; Legendre & Fortin, 1989), as well as hypotheses in
panbiogeographic analysis (Page, 1987: see below).

2- In addition to gradients, it is possible to explore other shapes of spatial structures using
structure functions. The most commonly used structure functions for univariate data (one
species at a time) are the variogram* and the spatial correlograms*, and the Mantel
correlogram* for multivariate data (whole species assemblages, as in the Mantel test). In
particular, a correlogram is a graph where autocorrelation values are plotted in ordinate, against
distances d among localities in abscissa. Figure 3 is an example of a correlogram for variable
NOj3~ in the Thau marine lagoon, in southern France. In such an analysis, the problem is
subdivided into a number of discrete distance classes, and an autocorrelation statistic is
computed for each distance class. One must assume that a single dominant spatial structure
exists over the study area; or, in other words, that the main large-scale structure is the same
everywhere in that area. In correlograms, each statistic (each point in the correlogram) can be
tested for statistical significance, and an overall test can be performed on the whole correlogram
as well. Visual analysis of the shape of correlograms indicates whether the underlying spatial
structure is aggregated, or has the form of a gradient, a wave, and so on. The correlogram in
Figure 3 is characteristic of an aggregated structure; the second positive peak of the
correlogram, at distance class 7 km, indicates the average distance between successive peaks or
successive troughs of the variable, in the lagoon (see Legendre er al. (1989) for a description of
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Fig. 3. Spatial correlogram for variable NO;5~ in the Thau lagoon on June 173 1986. Black
squares represent significant values of the Moran's I statistic at the 5% level; white squares are

non-significant values
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the lagoon and a mapping of this variable). Fig. 1 of Legendre & Fortin (1989) presents the

correlograms of nine common types of spatial structures. The absence of a significant spatial
structure, for the given observation scale, is indicated by a non-significant correlogram. For
multivariate data, which in biogeography are often multi-species assemblages, the Mantel
correlogram technique can be used (Sokal, 1986; Oden & Sokal, 1986); the end result is also a
correlogram, where the statistics displayed in ordinate are Mantel statistics computed for the
various distance classes, instead of Moran's / values. Structure functions allow
biogeographers to describe the shape of their spatial structures at the same time as performing
tests of statistical significance. In this way, they complement the visual exploration of data that
can be done by mapping for univariate data, or by constrained clustering, and by normal or
constrained ordination in the case of multivariate data (as explained in the previous section).

In the hypothesis-testing (model testing) phase of a research program, biogeographers
often want to test models of assumed causal relationships among two or several variables or
groups of variables. Legendre & Troussellier (1988) have shown that even highly significant
correlations between biological and environmental variables can be spurious, because of the
confounding effect of spatial autocorrelation. In other words, two variables or groups of
variables may appear correlated simply because both obey the same spatial structure, which
may be controlled by other factors that are not explicitly included in the model of assumed
causal relationships, such as currents in the marine or estuarine environments. How is it
possible to remove the effect of a common spatial structure from such studies of causal
relationships? Smouse et al. (1986) have found a solution to this problem, suggesting that the
variations in the two variables or groups of variables be expressed by two distance matrices, A
and B, and that the effect of a third distance matrix C, that represents geographic relationships
among sampling stations be removed, by a partial Mantel test procedure. Legendre &
Troussellier (1988) have used this technique in an ecological modelling framework and have
shown a case where the wrong ecological conclusion would have been reached using classical
modelling techniques, had the confounding spatial structure not been studied.

I mentioned above that statistical tests adapted to the presence of spatial autocorrelation are
becoming available. Among them, analysis of variance is of special interest to biogeographers,
who are often interested in testing for significant differences among geographic areas on a map,
for variables that are spatially autocorrelated. A statistically valid form of analysis of variance
has been developed by Legendre er al. (1990) for these situations, where there is spatial
autocorrelation in the variable being tested, as well as in the classification criterion, which is
made of the geographic areas into which the map is subdivided. The problem with classical
analysis of variance is that positive autocorrelation reduces within-group variability, thus
artificially increasing the relative amount of among-group variance. Negative autocorrelation
may produce the opposite effect. This difficulty can be viewed as a loss of an unknown number
of degrees of freedom. Besides biogeography, such problems can be found in population
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genetics, in ecology and in other branches of biology, as well as in economics, epidemiology,
geography, geology, marketing, political science, and sociology. A computer-intensive method
has been developed to overcome this problem in certain cases. It is based on repeated
permutations of the geographic areas on the map, while keeping them internally connected,
followed by the computation of a pooled within-group sum of squares statistic after each
permutation to produce a reference distribution to which the actual value, computed for the real
map, can then be compared and its statistical significance assessed.

The paper of Legendre er al. (1990) presents a biogeographic example. The ecological
hypothesis of interest was that the number of habitats available for freshwater fishes, in the
James Bay territory of northwestern Québec (Canada), varied with the nature of the surface
deposits; significant differences in the number of fish species were hypothesized among three
contiguous geographic areas, dividing the territory under study according to geomorphology. A
large-scale, well-known north-south gradient in fish numbers had first been eliminated by
regression (trend surface analysis) from the 64, one-degree-square territory units, each about
7000 km? in area; this still left the data autocorrelated. Classical parametric ANOVA declared
the differences among the three groups to be very highly significant (p = 0.0009). Since we
know that spatial autocorrelation makes such a test too liberal — that is, differences among
groups are too often declared significant when in fact they may not be — the analysis was
repeated using the permutational procedure. After permuting 250 times at random the division
of the territory into 3 regions, the probability of the null hypothesis was found to be 0.064,
which is insufficient to reject the null hypothesis at the 0.05 level. Thus, we find no convincing
evidence that fish species diversity, as measured by the number of species, varies in this
territory according to the nature of the surface deposits. The modified test prevented a
statistically erroneous decision from being made, which could have led to needless management
decisions.

HISTORICAL BIOGEOGRAPHY

Historical (or phylogenetic) biogeography is interested in the simultaneous evolution of
taxa, species assemblages (communities), and geographic areas. It is divided into a number of
schools of thought, each one associated with the names of one or a few major proponents,
without whom the vitality of the field would not be what it is now. I will briefly summarize
these approaches, to set the stage for the presentation of the most commonly used numerical
methods of data analysis, which is the aim of this paper.

The major division of the field is between dispersal and vicariance biogeography. The
dispersal approach tries to follow the movements of organisms through geographic areas, while
the vicariance approach studies how the creation of barriers, or other geologic processes, may
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have split up (vicariated) biota; leading to allopatric speciation. Vicariance is the property of
closely related taxa that occupy similar biota located in distinct and often widely separated
geographic areas. Dispersal and vicariance are probably constantly alternating processes in
nature, although it may seem more appropriate to use the dispersal mode of analysis when
analyzing intermediate time and space processes like postglacial reinvasion of a territory, for
instance; on the contrary, the vicariance approach is certainly the main one of interest in
studying long temporal and large spatial scale problems, like continental drift and its effects
upon populations and communities, since it is at large scales that biogeographic patterns may
involve related species groups that may have become separated by vicariance events (Brooks &
McLennan, 1990). Important papers on vicariance biogeography are found in the two special
issues recently devoted by Systemaric Zoology to this question (Vol. 37 Nos. 3 and 4, 1988).

Vicariance biogeography is further divided into panbiogeography on the one hand, and
cladistic biogeography on the other. Panbiogeography (Croizat 1952, 1958, 1981) uses
“tracks" (lines on a map, each representing the distribution of one or more taxa), and "nodes"
(regions with large numbers of tracks) to express phylogenetic relationships among areas.
Tracks, represented by minimum-spanning trees, can in turn be translated into connectivity
matrices, and Page (1987) has suggested using the Mantel test of matrix correspondence (see
above) to assess the statistical significance of track concordance for different species.

Cladistic biogeography, on the other hand, uses cladograms as its main analytic tool.
Cladograms can be used either to analyze the evolution of species (species cladograms, in
phylogenetic systematics) or the biohistorical relationships of geographic areas (area
cladograms). Among the methods of cladistic biogeography, Wiley (1988a) recognizes:

1- the reduced area cladogram of Rosen (1978, 1979), a method of analysis performed by
hand, and now abandoned.

2- the component analysis of Platnick & Nelson (1978) and Nelson & Platnick (1981) —
which has nothing to do with principal component analysis mentioned in the first section of this
paper. Exposés of the method can be found in the above-mentioned papers, in Humphries et al.
(1988), as well as in Wiley (1988a, b). Wiley finds major flaws in this method because it relies
on consensus trees for the final solution. While they are good representations of the congruence
of a set of cladograms, consensus trees may, when they contain unresolved polychotomies,
turn out to be less parsimonious than the data allow when analyzed by parsimony methods.

3- Brooks ez al. (1981) parsimony analysis of area relationships (below); and

4- Zandee & Roos (1987) compatibility analysis of area rclatibnships (below), which is, in
biogeographic analysis, another form of parsimony analysis and has nothing to do with the
compatibility analysis used in phylogenetic analysis.

The relative merits of these methods have been thoroughly reviewed recently (Wiley,
1988a, b; Humphries er al., 1988), and I will limit my exposé to a presentation of the principles
of parsimony analysis in cladistic reconstruction, and then to a few statements about the way
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parsimony is applied to biogeographic analysis. Theriot (1989) reviews cladistic analysis in
algal systematics.

Some basic principles of cladistic analyis are as follows: the first axiom of cladistic
phylogenetics is that only derived states (called apomorphic states) contain information as to
phylogenetic affinity (Mitchell 1901; Le Gros Clark & Sonntag 1926). If one considers a
nominal variable observed over five species belonging to a common higher taxonomic category,
then the first task of cladistic analysis is to formulate hypotheses as to the transformation series
of the states of this character. Hennig (1950, 1966) suggests a number of methods for
establishing the ancestral state of a character, as well as the transformation series; the best
known, and most commonly applied, of these methods is outgroup analysis. In the case of a
binary (two-state) character, the derived state, often called "1", identifies all the species that
ought to be grouped together, under the assumptions that: a) the mutation that led to the derived
state is likely to have occurred only once in the lineage, and, b) no reversal "1"—"0") is
likely to have occurred during the course of evolution. Thus, a single binary character leads to
an incompletely resolved wee, in which all species sharing state "0" form a polytomy (or
"bush”) at the base of the tree, while higher up the tree, all species sharing state "1" form
another polytomy that represents the monophyletic group. Consider now several binary
characters: if the derived state is known in each case, then each derived state is the basis for
recognizing a monophyletic group of species. If the characters are compatible, drawing all
these monophyletic groups will lead to a more completely resolved tree. In the artificial
example of Table 2, proposed by Felsenstein (1982), the first four characters are compatible
and lead to a completely resolved tree for the five species (Fig. 4), with monophyletic groups
ac, ace, bd and d. What happens now if we consider also characters 5 and 67 They show the
existence of a new phylogenetic group made of species b, ¢ and e, which is incompatible with
the tree derived from characters 1 1o 4. One can of course try to revise the ancestral state
hypotheses; if the incompatibilities persist, two main solutions are offered:

1) allow parallel evolution (recurrent appearance of the derived state in various branches of the
tree), as well as reversals towards the ancestral state ("1"—"0"), to occur within the
reconstructed tree. In that case, one will be likely to find the tree that minimizes the number of
such extra evolutionary events, that contradict the assumptions above. This is the principle of
parsimony, or minimum-evolution in phylogenetic reconstruction (Edwards & Cavalli-Sforza,
1963, 1964); it states that the most likely phyvlogenetic reconstruction is that which minimizes
the number of extra evolutionary events, due to reversals, parallelism, convergence or
inadequate coding of characters.

2) idenury the largest subset of characters that are compatible with one another, in the sense that
they lead to a phylogenetic wee without exira evolutionary steps, and derive the cladogram
using these characters only. This is the method of comparibility in phylogenetic reconstruction
(LeQuesne, 1969; Estabrook, 1972; McMorris, 1975; etc.). It has nothing to do with the
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biogeographic method of component compatibility briefly described below; phylogenetic trees
used as the basis for cladistic biogeographic analysis may have been derived either by
phylogenetic parsimony or by compatibility analysis.

A third solution, actually used in biogeographic analysis, consists of finding a consensus
among the various single-character cladograms or the taxon-area cladograms. Notice that the
very idea of consensus underlies a variety of different concepts (Adams (1972) consensus,
strict consensgs, majority rule, and so on. See the review paper by McMorris et al. (1982), as
well as the special issue devoted by the Journal of Classification to the subject (Day, 1986)). In
historical biogeographic analysis, this solution was tried in the context of component analysis
and has been criticized by various authors, including Wiley (1988a) and Humpbhries et al.
(1988), as mentioned above.

The parsimony method most often used in vicariance biogeography is to construct a
Wagner tree (Kluge & Farris, 1969). Actually, the Wagner method first produces a network —
that is, an undirected, or unrooted tree — that simply minimizes the number of evolutionary
events, or, in other words, the number of mutations from "0" to "1" or from "1" to "0";

minimizing the total number of evolutionary events is actually equivalent to minimizing the

Table 2. Hypothetical binary data table

Taxa Characters

1 2 3 4 5 6
a 1 1 0 0 0 0
b 0 0 1 0 1 1
c 1 1 0 0 1 1
d 0 0 1 1 0 0
e 0 1 0 0 1 1

a C e b d

4

1
3
2

Fig. 4. Cladogram for the first 4 characters of Table 2
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number of extra evolutionary steps. The tree is then rooted at the node that attaches
the outgroup, real or hypothetical, that has been included in the analysis. The Wagner method,
like many of the other methods of phylogenetic tree reconstruction (Table 3), was defined for
binary characters. In phylogenetic analysis, multi-state characters whose transformation
sequences are known, can be transformed into series of binary characters using the method of
Kluge & Farris (1969), for instance. For quantitative characters, -other methods have been
proposed, based on the analysis of distance matrices (Fitch & Margoliash, 1967; Farris, 1972).
See Felsenstein (1982) for a review of the phylogenetic-tree reconstruction methods, and
Legendre (1986) for an application of several of these methods to community dispersal analysis
from (species ¥ area) data matrices (presence/absence, and frequencies of occurrence). Widely
distributed computer packages to carry out these analyses are HENNIG 86*, MacCLADE¥*,
PAUP* and PHYLIP*; Wagner trees can also be reconstructed using the CLADAREA*
package. Among programs that perform parsimony analysis, and algorithms within the same
program, differences may exist in their ability to find quickly the most parsimonious solution,
or to find at all a solution that is close to the most parsimonious one; the reason is that the
search for the most parsimonious solution represents a NP-complete problem, a
computationally difficult problem whose solution can only be guaranteed by enumerating all
possible trees: complete enumeration rapidly becomes impossible as the number of OTUs
increases.

Table 3. Differences among the main methods of phylogenetic tree reconstruction for binary
characters. See Felsenstein (1982) for details

Method Minimize No more than once  Forbidden
per character
Parsimony
methods:
Wagner 0-1,1—-0 -
Camin-Sokal O0—1 10
Dollo 1--0 0—1 01!
Polymorphism ont 0—(ON! 1-+0
Compatibiliry: eliminate = - 0—1-+0
incompatible 1—+0—1
characters

Lon represents the polymorphic state. The polymorphism parsimony method minimizes the
duration of retention of that state.
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Table 5. The following programs are available to compute the various methods of
biogeographic analysis identified by asterisks (*) in the text. Only those methods are listed that
are not available in general-purpose statistical packages. Footnotes indicate addresses for
programs

PROGRAM METHODS

CANOCO! Simple and canonical correspondence analysis, redundancy analysis.

CLADAREAZ2 Area cladistic analysis. Wagner tree reconstruction (parsimony).

COMPONENT3  Construction and comparison of area cladograms.

CORR2D4 Two-dimensional correlogram.

GEO-EASS Variogram, kriging.

GEOLIN®S Variogram, kriging. Also GEOSREC for non-linear and BLUEPACK
for non-stationary kriging.

GEOSTAT Variogram, kriging.

HENNIG 868 Wagner tree reconstruction (parsimony).

Kellogg's? Variogram, kriging.

MacCLADEIO Interactive analysis of phylogenies and character evolution
(parsimony).

NTSYS-PCI1 Simple Mantel test; correspondence analysis.

PAUPI2 Phylogenetic tree reconstruction (parsimony).

PHYLIPI3 Phylogenetic tree reconstruction (parsimony, compatibility).

"RU14 Spatial autocorrelation, simple and partial Mantel tests, Mantel
correlogram, clustering with space and time contiguity constraint.
Connecting networks.

SAAPIS Spatial autocorrelograms (Moran's I and Geary's ¢).

SASPl6 Two-dimensional spectral analysis.

SURFER17 Kriging from linear variogram only; other interpolation methods.

SYMAPI8 Trend surface analysis; other interpolation methods.

UNIMAP19 Variogram, kriging; other interpolation methods.

ICajo J. F. ter Braak, Agricultural Mathematics Group, TNO Institute for Applied Computer
Science, Box 100, NL-6700 AC Wageningen, Netherlands.

2Willem N. Ellis, Instituut voor Taxonomische Zoologie, afd. Entomologie, Plantage
Middenlaan 64, NL-1018 DH Amsterdam, Netherlands.

3Roderic D. M. Page, Department of Zoology, University of Auckland, Private Bag,
Auckland, New Zealand.

*Applied Biostatistics Inc., 100 North Country Road, Bldg. B, Setauket, New York 11733,
USA. (written by G. M. Jacquez)

5Evan J. Englund (Geo-EAS), USEPA EMSL-LV, EAD, P.O. Box 93478, Las Vegas,
Nevada 89193-3478, USA. (developed by EPA)

6Geovariances Intemmational, 1 rue Charles-Meunier, F-77210 Avon-Fontainebleau, France.

"Geostat Systems International Inc., 4385 rue Saint-Hubert, Suite 1, Montréal, Québec,
Canada H2J 2X1.

STames S. Farris, 41 Admiral Street, Port Jefferson Station, New York, NY 11776, USA.

9Computer Laboratory, W.K. Kellogg Biological Station, Michigan State University, Hickory
Corners, Michigan 49060, USA.
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Table 5. cont.

10W§1ync_P. Maddison and David R. Maddison, Museum of Comparative Zoology, Harvard
University, Cambridge, Massachusetts 02138, USA.

1IPC version from Applied Biostatistics Inc., 100 North Country Road, Bldg. B, Setauket,
New York 11733, USA. (developed by F.J. Rohif)

12David L. Swofford, Illinois Natural History Survey, University of Illinois, Urbana, Illinois
61801, USA.

3Joseph Felsenstein, Department of Genetics, SK-50, University of Washington, Seattle,
Washington 98125, USA.

14d§:vcloped by Alain Vaudor (P. Legendre's lab: see title page), is available for Macintosh
microcomputers, VAX, and IBM mainframes.

15pDaniel Wartenberg, Department of Environmental and Community Medicine, Robert Wood
Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854, USA.

16E. Renshaw, Department of Statistics, University of Edinburgh, King's Buildings, Mayfield
Road, Edinburgh EH9 3JZ, United Kingdom.

17Golden Software Inc., P. O. Box 281, Golden, Colorado 80402, USA

13Nq longer distributed by Laboratory for Computer Graphics and Spatial Analysis, Harvard
University, USA. It is however still available at many computing centers.

19European Software Contractors A/S, Nprregade, DK-2800 Lyngby, Denmark.

relating distributional and environmental data through ordination; the statistical analysis of
spatial patterns, and biohistorical reconstruction.

This presentation of numerical methods would be of little utility to field biogeographers if
they were not given access to computer software capable of carrying out these calculations.
Accordingly, computer programs, for methods that are not readily available in general-purpose
statistical packages, are listed in Table 5.
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