
Characters and Clustering in Taxonomy: A Synthesis of Two Taximetric Procedures
Author(s): Pierre Legendre and David J. Rogers
Source: Taxon, Vol. 21, No. 5/6 (Nov., 1972), pp. 567-606
Published by: International Association for Plant Taxonomy (IAPT)
Stable URL: http://www.jstor.org/stable/1219157 .

Accessed: 18/09/2013 15:51

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

 .
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

 .

International Association for Plant Taxonomy (IAPT) is collaborating with JSTOR to digitize, preserve and
extend access to Taxon.

http://www.jstor.org 

This content downloaded from 132.204.124.197 on Wed, 18 Sep 2013 15:51:44 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/action/showPublisher?publisherCode=iapt
http://www.jstor.org/stable/1219157?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp


TAXON 21(5/6): 567 - 606. NOVEMBER 1972 

CHARACTERS AND CLUSTERING IN TAXONOMY: A SYNTHESIS 
OF TWO TAXIMETRIC PROCEDURES1 

Pierre Legendre2,3 and David J. Rogers2 

Summary 

The problem of producing a classification from data gathered on specimens has two 
main components: first the information about the specimens must be structured as 
characters and character states in such a way that it carries the most information about 
the taxonomic structure of the objects under study, the mathematical 'noise' being elimina- 
ted as much as possible. Then this information must be handled in such a way that a 
hierarchical partitioning of the objects, called classification, is derived. 

This paper presents computer-aided methods for the accomplishment of these steps. 
These methods were worked out to be both mathematically and biologically sound. The 
character analysis method (called CHARANAL) uses information theory to measure the 
amount of information common to pairs of characters, and derives from it various 
measures for the comparison of characters. The clustering technique presented here 
(entitled GRAPH), on the other hand, is based upon graph theory, and is intended to 
represent the thought process of the 'classical' taxonomist. For each method are given a 
general explanation, a detailed explanation of the mathematics involved, an example, and 
a section on interpretation of results. 

Resume' 

Une classification produite 
' 

partir des donnies recueillies sur des specimens resulte de 
deux manipulations successives de ces donnies: il faut d'abord structurer l'information 
que l'on poss'de sous la forme de differentes descriptions d'un certain nombre de 
caracteres, et faire en sorte que l'information taxonomiquement significative soit preservie 
et que le brouillage mathbmatique soit 6limind le plus possible. Par la suite cette meme 
information doit servir ' produire une serie hierarchique de partitions des objets sous 
etude, ce qui s'appelle une classification. 

Les auteurs prbsentent ici pour ce faire des m6thodes d'analyse par ordinateur derivies 
de principes biologiques et mathematiques reconnus. Pour l'analyse des caractkres (pro- 
gramme CHARANAL), l'information commune ' des paires de caractbres est mesurbe 
suivant les principes de la thdorie de l'information, ce qui permet de deriver diff6rentes 
mesures pour la comparaison des caractkres. La technique de groupement des objects 
(programme GRAPH) dbrive d'autre part de la th6orie des graphes et essaie de repro- 
duire aussi fiddlement que possible le cheminement de la pensee du taxonomiste dit 
'classique'. A la suite de l'explication gknbrale, on retrouvera une explication dbtaill"e de 
l'aspect mathbmatique, un exemple ainsi qu'une section sur I'interpretation des resultats, 
ce pour chacune des deux techniques. 

i. Paper No. 27 from the Taximetrics Laboratory, Univ. of Colorado, Boulder, Colorado 
80302, U.S.A. 
2. Taximetrics Laboratory, Department of Biology, University of Colorado, Boulder, 
Colorado 80302, U.S.A. 
3. Present address: Centre de recherches 6cologiques, Universit6 du Quebec a Montreal, 
C.P. 8888, Montreal Ioi, Qu6bec. 
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Introduction 

Over the past 12 to 15 years, a considerable amount of effort has been 
expended to understand the methods and thought processes by which tax- 
onomists produce classifications. During this period, several schools and 
workers have developed various models of various parts of the classification 
process, but there has been little overall effort to integrate the methods into 
a flowing step-wise set of processes. The most prominent of these efforts 
has been in procedures to make the process of clustering more objective. 
Clustering, which is indeed a major part of the classification process, at- 
temps to place specimens, or taxa, into hierarchical groups, indicating the 
various levels of relationships between the objects which form clusters. Once 
clustering techniques were established, it became painfully obvious that 
there was great need to consider the information, or characters, which were 
used in the clustering process, because, no matter how powerful the clustering 
model was, there were frequent cases when the clusters formed did not meet 
the necessary criteria required by taxonomists to reflect the biological 
relationships of the organisms comprising the clusters. 

Various attemps have been made to improve the clustering process. One 
obvious attempt is to consider a very large number of characters simul- 
taneously, rather than by making a priori judgements about which charac- 
ters were "good" or "bad". Hopefully, by describing as many characters as 
possible, and using all of them simultaneously, one would overcome the 
serious problems caused by inept weighing of the characters. This led num- 
bers of people to attempt scaling techniques, by which there would be no 
more, no less, value assigned to each character. It has also become painfully 
obvious that there are as many dangers in this process as there are in the a 
priori, intuitive process of selecting characters. For example, in using many 
characters, one may measure the same character in different ways, thus in- 
judiciously introducing a biased classification towards one small component 
of the gene pool, and either ignoring, or underemphasizing other important 
components. 

Such processes have frequently led to more and more models to test this or 
that component of the model, each step generating more and more numbers, 
and at the same time, separating the taxonomist farther and farther from 
his initial objective of classification. Since it is obvious that "good" clas- 
sifications have been produced, some of them well over one hundred years 
ago, it should also be obvious that the most useful process to build models 
from would be to examine carefully what a number of taxonomists can agree 
upon as useful procedures, and to then build models which reflected the best 
thinking these taxonomists have done. This is a rather difficult process, but 
one which eventually produces the best results. The difficulty lies in the fact 
that the "good" taxonomists seldom state the methods by which they reach 
decisions, but place before us the results of their thinking, and leave to the 
less-good taxonomist, or non-taxonomist, the enormous job of deciding 
how decisions were made which produced a good classification. 

Basically, it has become apparent that good taxonomists are outstanding 
pattern analysts. By some process, they have learned to distinguish between 
patterns which were reliable and predictive, and those which were con- 
fusing and unpredictable (in the jargon of the information specialist, "noisy 
signals"). Furthermore, it is apparent that the basic process used to select a 
character is a comparative one - comparing a known pattern with a new 
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or undefined pattern. Whether the taxonomist compared only external 
morphology, or anatomical structure, chemical structure or cytological 
information, made no real difference. If the taxonomist gives us a character 
(or a classification) by comparing known against unknown, and reflects in 
the unknown the same clear differentiation as in the known, he has pro- 
vided a pattern, reproducable and understandable by others. 

It is further apparent that good taxonomists must have a broad-ranging 
knowledge of the groups of organisms under study (and other, related 
groups), in order to select patterns which will serve the purpose of producing 
a good classification. Thus it is not only an insult to well-trained biological 
taxonomists to attempt to have an "intelligent ignoramus" (Sokal and Rohlf, 
1970) make a classification, it is also absurd. 

There is still much confusion caused by the failure to separate clearly the 
methods of thought employed in making models from the multitudinous 
data confronting the taxonomist. For example, Michener (I970) has no 
clear definition of the structure of a character in the first part of his paper, 
but toward the end, he seems to have clarified his own thinking. Mayr (1970) 
describes the character in terms of its biological nature, but does not tell 
the basic requirement that a character must serve to make a useful clas- 
sification. There is a further misconception that all classifications, to qualify 
as "good", must both reflect the modern-day relationships between taxa, 
and reflect the phylogeny of the group of organisms. The dualism inherent 
in this requirement frequently is the cause of poor classifications. 

In this paper, we attempt to describe together two separate models, which 
have been previously described separately (Estabrook, 1966, 1967; Wirth 
et al., 1966), in hopes that their juxtaposition herein provides better insight 
into the methods employed by taxonomists. The first model (the analysis 
of characters) reflects the processes of sorting and sifting of information 
as a taxonomist begins his process of classification, starting with many 
potential characters, and eventually choosing from the many potential ones 
those which will clearly aid in the process of classification, and rejecting, 
or modifying the poor characters which do not provide useful patterns. The 
second model (clustering) indicates the continuing process of synthesizing the 
individual characters chosen from the first model, in two basic steps. The 
first part of the clustering requires that the same measure of similarity be- 
tween all the objects be provided, and the second part is that which is for- 
mally the clustering. In the second part, all the measures of similarity derived 
in the first part are used to place together in clusters, hierarchically and in a 
non-overlapping manner, all the objects for which similarities have been 
derived. Our philosophy with respect to the building of the models described 
below was that they must reflect the thinking of taxonomists, they must be 
mathematically sound, they must provide information to the taxonomist to 
aid in his decision-making, and they must be made into practical computer 
programs. 

SECTION I: CHARACTER ANALYSIS 

What are the requirements of a character for a classification? A character, 
at a minimum, must partition the objects under study into nonoverlapping 
groups. To accomplish this requirement, a character must be structured as a 
rule which associates with each organism (specimen) in a collection under 
study one member of a set of nonoverlapping descriptions called character 
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states. A necessary property of the states of any character is that they are 
independant: in other words, for any given state of a character, we have 
to be able to say that any one organism falls in this state, or not. On the 
contrary, the characters do not have to be independant from each other. The 
information contained in one character may be a partial or complete redun- 
dancy of the information contained in another character. A complete redun- 
dancy of the information in two characters would mean that one of them 
will contribute as much as both to the classification. Independance of two 
characters indicates that they contribute differently, then complementarily, 
to the classification. In summary, a character is a single basis for comparison 
defined over all the objects under study. This definition allows the tax- 
onomist to employ his full range of biological knowledge in the construction 
of a classification. For a more detailed discussion on the properties of the 
characters and the character states, see also Estabrook (1967) and Estabrook 
and Rogers (1966). 

It is evident that the task of defining which characters have to be used in 
order to work out the classification of a group of organisms (hereafter 
referred to as objects), and which states have to be defined for each character, 
requires a good biological knowledge of the objects under study: one has to 
be careful with such phenomena as phenotypic plasticity and minor allelic 
differences. 

The competent biologist knows from his own experience, and that of other 
specialists, the most useful characters for the classification of the objects 
under study. These fundamental characters are those which will have a 
higher weight in his classification. However, those using numerical methods 
in taxonomy usually work with a relatively large number of characters, the 
inter-dependency of which is not always clear. 

Considering all the information (structured in terms of characters and 
character states) available on the objects under study, two types of structure 
can be recognized. The intrinsic structure of the information refers to that 
part of the information which has a taxonomic value because it reflects the 
affinities and differences between the objects. It is the portion of the infor- 
mation that one wants to use in order to establish the hierarchical grouping 
of the objects called a classification. The extrinsic structure of the infor- 
mation, on the other hand, is that added by the taxonomist by his action of 
defining the characters and the character states. There is a certain amount of 
unescapable "noise" introduced into the classification process that can distort 
the resulting classification, the amount of which has to be reduced as much 
as possible. The way to reduce this "noise" is to conduct a study of the struc- 
ture of the information. At the end of such a study, referred to hereafter 
as character analysis, a redefinition of the states and an evaluation of the 
characters will be possible. To summarize the questions of interest with 
regard to the information content of characters (Rogers and Appan, 1969, 
pp. 615-616): 

I) What is the taxonomically significant information content of each 
character? 

2) What is the amount of correlation between characters, as present in the 
various objects? 

3) Is there any redundancy as a consequence of the description in different 
ways of the same genetic cause? 

4) Should the character states be redefined? 
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SYMBOLS USED IN CHARACTER ANALYSIS 

n 

H: amount of entropy, or confusion, equal to - pi log2 pi 

1-I 

pi: the probability of an object being in state i of the character 
I, J, K: names of three characters 
J(a) = Js means that the character J assigns to object a the third state of character J 
S: set of 'good objects' under study, or objects for which the information about the two 

characters compared is known 
Jh-1: the subset of S that includes all the objects to which state h of character J has been 

attributed 
p(Jh): the probability of state h of character J 
C[A]: the number of objects in the set A 
C[Jh-1]: the number of objects to which state h has been attributed 
C[S]: the total number of 'good objects' 
H(J): amount of entropy in character J 
p(J3/1): probability of finding an object to which state i of character I and state 3 of 

character J have been attributed, among those objects coded in state i of character I 

H(J/L1): conditional entropy remaining in J for the objects to which state Il has been 
attributed 

H(J/I): the total conditional entropy remaining in character J after observing all the 
states of character I 

D(I,J): measure of independence (distance) of the characters I and J 
p [I, Jh]: the probability of choosing an object with state g of character I and state h 

of character J in the set of 'good objects' 
H[I . J]: total amount of information possessed by both I and J 
S(I,J): similarity of characters I and J equal to i - D (I,J) 

5) Which characters are of diagnostic value? 
6) Which characters can be eliminated because they are of marginal 

interest? 
Various techniques have been used in the past to measure the amount of 

information held in common by two characters, the most common of which 
are statistical correlations. Estabrook (1967, p. 86) mentions some other 
techniques that have been used in connection with this problem. 

Correlation studies made with the usual parametric statistics require that 
the characters be ordered (an ordered character is one in which the states 
can be associated with the real numbers, or placed in succession on an axis). 
However, many of the characters used in biology are of the non-ordered 
type: there is no taxonomic significance, for instance, in ordering the 
various colours of the human hairs on a wave length axis. Consequently, no 
regression is possible with such a character. 

The computer-aided method described below, called CHARANAL, 
measures how the information is distributed between the states of each 
character, and also in the comparison of pairs of characters. It is applicable 
to ordered and non-ordered characters, as well as to combinations of both 
types. It cannot be associated with parametric statistics, because it does not 
compare measures abstracted from the data distributions, such as means or 
standard deviations. Instead, it studies the actual distributions of the data. 
In this sense, it is related to non-parametric statistics, except that it uses 
information theory instead of the theory of probabilities. This method will 
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be discussed after a short presentation of the concept of entropy in infor- 
mation theory. 

Entropy 
The concept of entropy was first developed as a quantitative formulation 

of the second law of thermodynamics. Entropy is a measure of the disorga- 
nization of a closed system: so, the higher the entropy is, the lower is the 
amount of work that can be done by this system. Accordingly, the second 
law of thermodynamics becomes, in the formulation of Boltzmann (I896, 
p. 6o): a closed system can vary only if its probability (entropy) is increased 
by the variation. 

The transfer of the entropy concept to information theory was gradual. 
The first step was accomplished by Boltzmann (1896, pp. 41-42) who found 
the entropy to be proportional to the logarithm of the number of alternatives 
possible for a closed system, when all the known information has been 
recorded. In other words, the entropy is proportional to the logarithm of 
the amount of information that is missing. 

This concept was developed by various authors; among them Shannon 
(1948, pp. 419-420), who derived from the premises of the theory of infor- 
mation, the equation 

n 

H=- 
ptlogp 

1=I 

where H is a measure of the uncertainty, or choice; pi is the probability 
of the various events i, or the frequency attached to each piece of information 
i. He recognized that his equation was similar to the equation of entropy of 
Boltzmann (1898, pp. 219-221) and concluded that H corresponds to the 
entropy of an information system. 

Probability distribution 

The example introduced here will be carried all through the following 
discussion. Two correlated metric characters will be analyzed in twelve 
populations of trouts. Table I defines the character states and Table II 
describes the 6o objects (specimens) with the two characters. The first two 
digits of the object number refer to the population. 

An example using non-ordered, qualitative biological descriptors can be 
found in Estabrook (I967). A character (denoted by a capital letter, e.g., I or J) has been defined as 
a function which assigns to each object under study (denoted by a small 
letter, e.g., a) one and only one state (denoted by function symbols with a 
subscript) of this character. For example, J(a) = J3 means that character 
J assigns to object a the third state, or description, of character J. The set 
of objects under study will be referred to as the set S. Jh will designate the 
subset of S that includes all the objects to which state h of character J has 
been attributed. 

A probability distribution can be associated with each character over the 
range of its states: the probability of each state will be equal to the relative 
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TABLE I. Definition of the character states. 

Character I = i Head length I standard length 

State I 0.220 - 0.245 
State 2 0.251 - 0.273 
State 3 0.276 - 0.290 
State 4 0.294 - 0.300 
State 5 0.306 - 0.310 

Character J = 2 Orbit length / standard length 

State I 0.049 - 0.052 
State 2 0.062 - 0.063 
State 3 0.067 - o.o88 
State 4 o.o91 - 0.096 

TABLE II. Description of the objects by characters i and 2. 

Object State for State for Object State for State for 
number character character number character character 

I=1 J=2 I=i J=2 

OII I I 071 I 3 
012 I I 072 2 3 
013 I I 073 2 3 
014 I I 074 2 3 
015 I I 075 2 3 
021 2 3 o81 2 3 
022 2 3 082 3 3 
023 2 3 083 2 3 
024 3 3 084 2 3 
025 2 3 o08 2 3 
031 4 4 091 2 3 
032 4 4 092 2 3 
033 5 4 093 2 3 
034 5 4 094 2 3 
035 4 3 095 2 3 
041 2 3 101 2 3 
042 3 3 102 2 2 

043 2 3 103 2 2 

044 3 3 104 2 2 

045 2 3 105 3 3 
051 3 3 III 2 3 
052 3 3 12 3 3 
053 3 3 113 2 3 
054 2 3 114 3 3 
055 3 3 115 3 3 
o61 2 3 121 3 3 
062 3 3 122 3 3 
063 3 3 123 3 4 
064 3 3 124 4 4 
065 2 3 125 4 4 
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frequency of this state as found in the set S of objects under study. For 
example, referring to Table II, state 2 of character i has been attributed 
to 29 of the 6o specimens. The relative frequency of this state is 29/60 = 
0.48333. This frequency can also be considered as the probability of ran- 
domly choosing, from the set of objects under study, an object to which the 
state 2 has been attributed. To generalize, the probability of each state h of 
character J can be noted as 

C[Jh-] 
P(Jh) C[S] 

where C[A] denotes the number of objects in (or cardinality of) the set A. 
C[Jh-1] is the number of objects to which state h has been attributed and 
C[S] is the total number of objects in the study (actually, if the state of an 
object is not known for a given character, the program is built in such a 
way that C[S] will be the cardinality of the set of "good objects", or objects 
for which the information is known). Table III shows the probability 
distribution associated with characters I = I and J = 2 of the example. 

TABLE III. Probability distribution associated with characters I=i and ]=2. 

p(I) = .1oooo P(J1) = .08333 
p(I) = .48333 P(J2) = .05000 
p(I) = .30000 P(Ja) = .75000 
p(I) = .08333 p(J4) = .11667 

p(Is) = .03333 

Unconditional entropy 

An information-theoretic measure of entropy can now be assigned to each 
of these probability distributions. It will be referred to as unconditional 
entropy, by opposition to the conditional entropy that will be introduced 
below. As mentioned above, the entropy measures essentially the difficulty 
of predicting what state of the character considered has been applied to an 
object chosen randomly. This measure of entropy is also equal in quantity 
to the information learned by actually observing the objects: entropy and 
information will then be considered as synonymous. 

This confusing last sentence can be illustrated by a simple example. If half 
of the objects are found in each of the two states of a character, one can 
say that there is confusion, or entropy, in this distribution, because one 
cannot predict with certainty in which state a given object will fall, by 
observing only the probability distribution on the two states. By comparison 
to that, if one knows in which state each object has been classified, the 
confusion is removed, and we can say that the amount of information gained 
by observing the objects is equal to the amount of confusion, or entropy, that 
the probability distribution presented before. This is why, when talking 
about this amount, we can refer to it as an amount of entropy or of infor- 
mation necessary to remove the confusion. 

Now, if one makes his observation by asking yes-no questions, the average 
minimum number of these questions necessary to find the proper assignment 
of each object can be seen as a measure of the confusion, or entropy of the 
system. The entropy will then depend on the number of states and on the 
distribution of the objects in the various states of the character. A few 
examples can clarify the process. 
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i) If all the objects are in the same state of the character, everything is 
already known about the distribution of the objects in the states of this 
character. The number of questions necessary is then o. 

2) With a two-state character, if one of the states has been attributed to 
half the objects and the other state to the other half, it will be necessary, for 
each object, to ask exactly one yes-no question of the type: "Has the state i 
been attributed to this object?", in order to know the probability distri- 
bution of the character: 

S = set of objects under study 

-binary question 

State I 

p(J = I1/2 

State 2 

p(J1 = 1/2 

The entropy associated with this character is then I. 
3) The same process, applied to a character of four states between which 

the objects are distributed equally, would give an entropy of 2, since exactly 
2 binary questions have to be asked for each object: 

S 

State I 

p(Ji)= 1/4 

State 2 

p(J2)= 1/4 

State 3 

p(J3)= I/4 

State 4 

p(J4)= 1/4 

first binary question 

econd binary 
question 

4) The same process is applicable in the case of an eight-state character 
with equal distribution of the objects between the states: 

S 

first binary question 

second binary question 

third binary question 

State I State 2 State 3 State 4 State 5 State 6 State 7 State 8 

p(J1) =8 p(J2) = 1/8 p(J3) = 1/8 p(J4) = 1/8 p(J5) = 1/8 p(J6)= 1/8 p(J7)= 1/8 p(J8) = 1/8 
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The total entropy in this character will then be [3 questions x 8(i/8 of the 
objects)] = 3. 

To generalize, the entropy associated with a character for which the 
objects are evenly distributed between the states is the logarithm base 2 of 
the number of states: log2I - o; l0g22 = I; log24 = 2; log28 = 3; etc. 

Note: The presentation of the entropy concept in information theory made above, using 
the actual minimum average number of yes-no questions that have to be asked in order 
to remove the confusion of the system, as a measure of entropy, gives only an approx- 
imation of the entropy. It has been used in order to give the reader a conceptual under- 
standing of what entropy is. But this method is accurate only in the cases where 
the number of states in the character is one of the integer powers of 2, like I, 2, 4, 8, 
16, . . . , the objects being, again, equally distributed between the states. In the other cases, 
there is a slight departure between the yes-no and the logarithmic method of calculating 
the entropy, as shown in Table IV. This is due to the fact the yes-no questions have 
their optimal effect only when they can divide the objects under study into two equal 
groups, which cannot be the case when the number of states is not an integer power of 2, 
(the objects being again, equally distributed between the states) or when the number of 
objects in the various states is not such that the binary questions will divide them into 
equal groups, as in number 5 below. In the other cases, because the binary questions are 
a little less efficient, on the average, more questions than log2 (number of states) are 
necessary in order to remove the confusion. For a justification of the measure of the 
information-theoretic entropy by the logarithm of the number of states, see Shannon 
(1948) or any textbook of information theory. 

As the entropy of a character depends on the number of states in the 
character, the total entropy of the character with four states above can be 
divided between the four states. To each state will be attributed 1/4 log2 4, 

TABLE IV. The minimum average number of yes-no questions necessary to remove the 
confusion of the system is equal to log2 (number of states) only when the number of states 
is equal to an integer power of 2 (values in boldface), the objects being equally distributed 
between the states. In the other cases, the former is larger. 

Number of states log2 (number of states) Average minimum number 
of yes-no questions 

1 0.00000 0.00000 
2 1.00000 1.00000 

3 1.58496 1.66666 
4 2.00000 2.00000 

5 2.32193 2.40000 
6 2.58496 2.66666 

7 2.80735 2.85714 
8 3.00000 3.00000 
9 3.16993 3.22222 

IO 3.32193 3.40000 
II 3-45943 3-54545 
12 3.58496 3.66666 
13 3-70044 3-76154 
14 3.80735 3.85714 
15 3.90689 3-93333 
16 4.00000 4.00000 
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that is equal to 1/4 log2 (1/4)-'. The entropy of the character is then: 

I/4 
log2 (1/4)-1 

the 4 states 

For the eight-state character above, to each state is attributed one eighth 
of the entropy of the character, or i/8 log2 8, that is equal to i/8 log2 (1/8)-1. 
The entropy of this character is then: 

/8log2 (1/8)-1 

the 8 states 

5) Suppose now that the number of objects to which each state is attributed 
varies from one state to the other. An example would be a four-states 
character in which state i has been attributed to i/2 of the objects, state 2 to 
1/4, state 3 to I/8 and state 4 to 1/8. The less evenly the probabilities of the 
different states are distributed, the more information one has, then the 
less should be the entropy: consequently the entropy of this character should 
be lower than 2 (see no. 3 above), that is the maximum amount of entropy 
that can be found in a four-states character. In asking the yes-no questions, 
it is economical to isolate half of the objects with the first question, then 
half of the remaining objects with the second question, and use a third 
question for the two last groups of i/8 of the objects, following this pattern: 

first binary question firstecond binary question 

second binary question 

third binary question 
State I State 2 State 3 State 4 
p(J) 1/2 p(J2) = 1/4 p(J3) = 1/8 p(J4) 1/8 

Half of the objects require i question, 1/4 require 2, and the two groups of 1/8 require 
3 each. So, the total unconditional entropy of this character is 
(1/2 x I) + (1/4 x 2) + (1/8 x 3) + (1/8 x 3) = 1.75 
= 1/2 log2 2 + 1/4 log2 4 + 1/8 log 2 8 + I/8 log2 8 

1/2 log2 (1/2)-' + 1/4 log2 (1/4)-1 + 1/8 log2 (1/8)-1 I/8 log2 (1/8)-1 

4 

= P(Jh) 

" 
log2 [p(Jh)]1- 

h=i 

As log2 x" = a log2 x, the general form of the expression defining the entropy can be 
written 

H(J) =- p(Jh) log2 [p(Jh)] 

h=i 
where j is the number of states of character J. 
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The unconditional entropy of character I of the example is then, using the data of 
Table III: 
- [.1oooo log2 (.Ioooo) + .48333 log2 (.48333) + .30000 log2 (.30000) + .08333 log2 
(.08333) + .03333 log2 (.03333)] = 1.82257 
The maximum amount of entropy that can be found in a five-states character is log2 
5 = 2.32193 

Similarly, the unconditional entropy of character 2 of the example is 
- [.08333 log2 (.08333) + .05000ooo log (.050ooo) + .75000 log2 (.75000) .+ .11667 lo0g 
(.11667)] = 1.18773 
The maximum amount of entropy that can be found in a four-states character is log2 
4 = 2. 

Conditional entropy 
As pointed out above, the entropy of a character is equal to the infor- 

mation that can be gained by observing the character over the objects. The 
entropy of character J is the maximum amount of information that can be 
obtained about J. Now suppose that instead of J, I is observed in order to 
learn about J; the relevant information will be obtained only insofar as I 
and J contain information in common. Knowing the probability distribution 
of I, it is possible to establish the conditional probability distribution of J, 
and then calculate the conditional entropy of J that it determines. If I and 
J share no common information, the conditional entropy of J is equal to 
its unconditional entropy; but in the other event, the conditional entropy 
of J is lowered by an amount equal to the information shared in common by 
the two characters. 

The first step is to build a matrix in which the frequency of the objects, 
in each of the states of character J, will be established for the various states 
of character I. This is done in Table V for the example. 

The first line of the Table V, for instance, represents all the objects that are in IL and 
gives their frequency distribution on the character J. State J1 has been attributed to 
83.3330/0 of these objects, and state J3 to 16.6670/o0. This is why this row, as well as the 
others, sums to i. In other words, the probability of finding an object to which state I 
of character I and state 3 of character J, noted p(Ja/L), is the number of objects to which 
J3 and IL have been attributed (that is the number of objects in the intersection, noted 12, 
of the subsets I1- and J3-1), divided by the number of objects to which state IL has been 
attributed (that is the number of objects in the subset I1-'). It would then be noted 

C [J3-1 12 -1] 
p(J3/I1) = C [I'] 

The number of objects in the subset I-` (Table II) is 6, and the number of objects in the 
intersection of J3-1 and L-` is I, since states IL and J3 have been attributed only to object 
071. Then 

p 
(J,/I1) 

= I/6 = .16666' 

The general formula will be written 

p (Jh/Ig) - C [J-1] 
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TABLE V. Conditional probability distributions: probability of choosing an object with 
the various states of character J=2 assuming that the object has the given state of 
character I = i. 

States of p(J1) = p(J2) = p(Js) = p(J4) = 
character I= .08333 .0500o 75000 . 11667 

Il .83333 0.00000 .16667 0.00000 
12 0.00000 .10345 .89655 0.00000 

13 0.00000 0.00000 .94444 .05556 
14 0.00000 0.00000 .20000 .80000 
I 0.00000 0.00000 0.00000 1.00000 

The conditional entropies remaining in character J after observing each 
of the states of character I can now be established by using the formula of 
entropy developed above. The conditional entropy remaining in J for the 
objects to which state I, has been attributed is: 

H(J/L) = - [.83333 log2 (.83333)+ .16667 log2 (.16667)] = .65002 
For the objects to which state 12 has been attributed: 
H(J/I2) = - [.IO345 log2 (.I0345)+ .89655 log2 (.89655)] = 

.47983 And similarly 
H(J/I) = - [.94444 log2 (94444) + .05556 log2 (.o5556)] 

= .30954 
H(J/14) = - [.20000 log (.20000) + .80000oooo log2 (.80000)] .72193 
H(J/15) = - [.ooooo log2 (I.ooooo)] = o.ooooo 
In the general form, the entropy remaining in character J after observing each of the 
states g of character I is determined by the formula 

H(J/Ig) = - p(Jh/Ig) log2[p(Jh/Ig)] 

h=I 

where i is the number of states in J. 

The conditional entropy H(J/I) applies to the proportion of objects to 
which state i of character I has been attributed, that is .i oooo of the objects, 
according to Table III. Similarly, the conditional entropy H(J/12) applies 
to .48333 of the objects. And so on. The total conditional entropy remaining 
in character J after observing all the states of character I is then the weighed 
sum, over the frequencies of the various states of I, of the conditional 
entropies H(J/I,) found above. 

The general formula can be written: 

H(J/I) 

- 

H(J/Ig) 

? 

p(Ig) 

g--I 

where i is the number of states in I. 

From the results above and the data of Table III, the calculations of the 
conditional entropy remaining in J after observing I will be performed in 
Table VI. 
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TABLE VI. Conditional entropy remaining in character J=2 after observing character I=i. 

H(J/Ig) p(I,) H(J/Ig) 
. 

p(I,) 

H(J/I) = .65002 p(I() = .10000 .o6500oo 
H(J/I2) = .47983 p(I2) = .48333 .23192 
H(J/Is) = .30954 p(Is) = .30000 .09286 
H(J/L) = .72193 p(4) = .08333 .o6oi06 
H(J/I5) = o.ooooo p(Is) = .03333 0.00000 

H(J/I) = H(J/Ig) 
p(Ig) 

=44994 

g=I 

Similarly, the conditional entropy H(I/J) remaining in character I= 
after observing character J=2 of the example, is 1.o08478. 

Interdependence of characters 

Of the 1.82257 units of information (unconditional entropy) of character 
I= I, 1.o08478 belong exclusively to character I. The remaining .73779 units 
are shared with character J=2. Similarly, of the I.I8773 units of infor- 
mation of character J, .44994 belong exclusively to it and .73779 units are 
shared with I. The fraction of information in character I= i also contained 
in character J=2 can be found by dividing .73779 by 1.82257, which gives 
.40481. The same calculation, applied to character J, gives .62117 of the 
information of J that is shared with I. 

A measure of independence can now be constructed from the various 
entropy measures, as follows: 

info. held exclusively by I + info. held exclusively by J 
total information possessed by both I and J 

The amount of information held exclusively by I and J are the values H(J/I) 
and H(I/J) calculated above. 

To obtain the value of the total information possessed by both I and J, 
the procedure will be similar as before. The frequency of each of the possible 
combinations of states of the two characters is established first (in Table 
VII for the example). Each of these frequencies is obtained by dividing the 
number of objects in each of the pairs of states by the total number of 
objects in the study. Formally, the equation of each frequency, or proba- 
bility, is 

C [Ig-~ Jh-1] 
p [Ig 

* 
Jh[ C [S] 

where C[A] is the number of objects in the set A, as before. The symbol 
p(Ig/Jh) was used before in the sense of "the probability of choosing an 
object with state g of character I in the set of objects that have state h of 
character J". The symbol p [Ig, Jh] is used here to mean "the probability 
of choosing an object with state g of character I and state h of character J 
in the set of objects under study". 
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TABLE VII. Actual number of objects in each of the possible combinations of states of 
the two characters I= and J=2 (above), and the corresponding frequency (below), or 
probability, when each number is divided by the total number of objects in the study, 
which is 60 in this example. 

J1 J1 J3 J4 

I, 5 0 I 0 
12 0 3 26 o 
I o o 0 17 I 
14 0 0 I 4 
15 0 0 0 2 

I, .08333 0.00000 .o 1667 0.00000 
12 0.00000 .o05000ooo .43333 0.00000 
13 0.00000 0.00000 .28333 .01667 
I o0.00000 0.00000 .0o1667 .06667 
I5 0.00000 0.00000 0.00000 ooooo .03333 

Then the total amount of information possessed by both I and J is 
calculated in the usual way, by applying the formula 

1 

H[I. 
J] = 

P- 
p[I. Jh] * 

log2 
(p 

[.19 
Jh]) 

g=I 
h=i 

The value of H[I J J] in the example is 2.27251. 
There is another, easier way to calculate the total amount of information 

possessed jointly by I and J. The intuitive concept of information space has 
to be introduced in order to visualize it. The information space corre- 
sponds to all the information possessed by the set S of objects under study 
and can be represented as a rectangle. The information possessed by each 
character corresponds to a subset of this space, represented by a circle in 
this rectangle. Such a representation is known as a Venne diagram: 

-information in a character 

-information space 

Characters I and J have some information in common, as shown above. 
They can be represented as follows: 

information in 

character I 

.information in 

character J 
A (B) C 
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The amount of information in common is labelled B, and the letters A 
and C are attached to the part of the information held exclusively by I 
and J, respectively. The total amount of information possessed jointly by 
I and J is then, obviously, A+B+C. In the example, A = 1.o08478, C = 
.44994 and B, the amount of information shared by I and J, is .73779, as 
shown at the beginning of this section. The total A+ B + C is then equal to 
2.2725 I, that is the value H[I - J] found above. 

The independence of the characters I and J can now be calculated by using the expres- 
sion above, the formal expression of which is 

H(J/I) + H(I/J) 
D(I,J) = 

H[I. 
J] 

Its value for the example is 

.44994 + I.o8478 D(I,J) 
- 

.67534 
2.27251 

It is easy to see that when the value of D is o, the two characters contain exactly the 
same information. When it is I, the characters are completely independent. D(I,J) can be 
understood as a function of the two variables I and J that associates with these variables 
a value, called the distance between I and J, that has the following properties: 

D(I,J) 2 o (= o if and only if I = J) 
D(I,J) = D(J,I) 
D(I,J) + D(J,K) > D(I,K) 
Because of these properties, function D is called a metric. 

The two first properties have been explained above. The third one can be 
illustrated by the following example, which considers characters I and J 
as above, and also a character K that has no information in common with 
I, but some with J: 

A C D A 

F 

K 

J 
D 

E 

F 

K 

A+D+E A+C+E+F)= C+D+F 
D(IJ)=A+C+D+E (I, K)= A+C+E+F= D(JK)= C+D+E+F 

It is easy to show that D(I,J) + D(J,K) is larger than or equal to i, then 
larger than or equal to D(I,K). It will be equal to i e.g. in the trivial case 
where C, D and F contain no information, A and E being non-void, that is 
the case where I and J have already no information in common and K is the 
same as J. The resulting picture can be represented by a triangle, the sides of 
which are equal to the measure of the distance between the characters: 
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J 

A+D+E C+D+F 
D(IJ) A+C+D+E D(J, K CD+E+F 

I 1K 

D(1, K) = A+C+E+F=I A+C+E+F 

This distance value can be easily converted into a measure of the similarity 
of the two characters, by defining it as the complement of the distance, or 

S (I,J) = I - D 

In other words, the similarity between I and J is equal to the amount of 
information in common divided by the total amount of information held 
in the two characters, since 

A+B C 
S (I,J) = I - D = I - A+B+C A+B+C 

This similarity value is however not a metric, since there are cases where 
it does not satisfy the third property of a metric. For example, in 

I K J 

it is obvious that S(I,J) + S(J,K) is not larger than or equal to S(I,K), 
since S(I,J) and S(J,K) are both null. However, the value of similarity will 
always be included between o and I. In the example, the value of S is 

S(I,J) = i - .67534 = .32466 

Actual form of the printout 

After presenting a listing of the state of each character that has been 
attributed to each object in the study, as in Table II, the printout presents a 
complete comparison of all the pairs of characters, performing for each pair 
all the calculations explained above. As example, the printout of the com- 
parison of characters I= i and J=2 of the example is presented in figure i. 

The printout is divided in two main parts: study of the information left in 
character I after observing character J, and study of J after observing I. 

Before these comparisons, the title of the page shows what pair of char- 
acters is compared and how many states are in each. The next line shows 
for how many - if any - objects the information is missing regarding one 
or the other of the characters in the pair under study. As explained above, 
these objects are eliminated from the comparison. Those remaining are called 
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CHARACTER I = x (6 STATES) COMPARED WITH CHARACTER J = 2 (5 STATES). D(r,2) 
= .67534 S(r,2) = .32466 

OBJECTS NOT IN THE COMPARISON = NONE PROBABILITY OF GOOD OBJECTS = 
1.ooooo 

PROBABILITIES OF THE STATES OF CHARACTER x, GIVEN THE GOOD OBJECTS ENTROPY IN CHARACTER I = 
--.2257 

I(l) I(2) 1O) 1(4) I(5) 

.0oo00 48333 .30000 .08333 .03333 

CONDITIONAL PROBABILITY DISTRIBUTIONS CONDITIONAL ENTROPIES 
I(,) I(2) I(3) 1(4) I(W) 

J() 1.ooooo 0.00000 o.ooooo oooooo o0ooooo -0o0ooooo 

J(z) o.ooooo 0 .ooooo 0.00000 ooooo o 0.00000 -o.ooooo 

J(3) .o02222 .57778 .37778 .02222 0.00000 o.23199 
J(4) o.ooooo o.ooooo .14286 54743 .18571 

I.37878 ENTROPY REMAINING IN CHARACTER r 
AFTER OBSERVING CHARACTER 2 = 1.o8478 

FRACTION OF INFORMATION IN CHAR. r 
INFO. COMMON TO BOTH CHARACTERS = 

-73779 ALSO CONTAINED IN CHAR. i = 
.4o481 

PROBABILITIES OF THE STATES OF CHARACTER 2, GIVEN THE GOOD OBJECTS ENTROPY IN CHARACTER 2 = 
1.18773 

J(W) J(2) J(3) J(4) 
.08333 .o5ooo .7500ooo0 .667 

CONDITIONAL PROBABILITY DISTRIBUTIONS CONDITIONAL ENTROPIES 
J() J(2) J(3) J(4) 

I() .83333 o0.00000 .6667 0.00000 .600oz 
I(2) o.ooooo00000 .io345 .8965 o.oo0oo .47983 

I(3) 0.00000 0.00000 

.94444 
-05556 

.30954 1(4) o.oo00000 o.ooooo .20000 .80000o .7293 
I(5) o.ooooo o.ooooo o.ooooo .ooooo -o.ooooo 

ENTROPY REMAINING IN CHARACTER 2 
AFTER OBSERVING CHARACTER = -44994 

FRACTION OF INFORMATION IN CHAR. 2 
INFO. COMMON TO BOTH CHARACTERS = .73779 ALSO CONTAINED IN CHAR. = .62x 7 

Fig. I: Facsimile printout of the comparison of characters I=- and J=2 of the example, 
made by CHARANAL. 

. number of good objects the "good objects" and their frequency = number of objects 
total number of objects 

is written down after the sentence "probability of good objects =". In this 
case, no information was missing about characters i and 2, and the prob- 
ability of good objects is I.ooooo. Above this line, the distance D(I,2) and 
similarity S(I,2) values are given for the pair of characters under study, 
I= and J=2. 

The second part of the printout is the one for which the most extensive 
calculations have been done before. The explanations given for this part 
apply, of course, also to the first one. It starts with the sentence "prob- 
abilities of the states of character 2, given the good objects". The values 
given under it are the values p(Jh) that have been shown in the right hand 
part of Table III. The value of "entropy in character 2", that occupies the 
right part of this same line, is the one that has been calculated at the end 
of the section on unconditional entropy. 

The matrix called "conditional probability distributions" has been shown 
in Table V. The "conditional entropies" represent the amount of information 
contained in the distribution, on character J=2, of the objects to which 
each of the states of character I= has been attributed. These values were 
presented in the first column of Table VI. The "entropy remaining in 
character 2 after observing character i" is the value of H(J/I) calculated at 
the end of Table VI. 

The "information common to both characters" is the total entropy in 
character 2 = 1.18773 minus the value of H(J/I) - -44994, that is .73779. 
The "fraction of information in character 2 also contained in character i" is 
the ratio of the information common to both characters divided by the total 
entropy in character 2. These two values were calculated at the beginning 
of the section on the interdependence of characters. 
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Exercise 

Taking a pair of 3- to 6-states characters observed on about 5o objects 
(the data can also be invented for the purpose of the exercise), perform the 
various calculations explained above and write the results according to the 
format of the printout shown in figure I. 

Interpretation 

A biologist is looking for correlations that will give the structure of the 
resulting classification. What it means is that if many characters define the 
same partition of the objects into subgroups, these characters can be said 
to give rise to the same classification, then they are coherent with each other. 
But some attention has to be given also to the relative weight of the various 
characters. 

Much emphasis has been given in the past to the question of weight. Some 
biologists argue that, in order to obtain a "natural" classification, one 
should not create artificially a difference in the importance attributed to 
the various characters. However, the competent biologist knows very well 
that all the characters do not have the same classificatory value. Characters 
built on single allele differences do not have the same importance as the 
characters related to structural or numeric differences between chromo- 
somes, that characterize the species category since they are the basis for 
intrinsic reproductive isolation. 

The task of attributing the weight of the various characters is the most 
difficult part of the work of the taxonomist. After the structure of the 
information has been established, the resulting classification can be obtained 
by a process largely automatic, as will be seen in the next section. There are 
two ways by which the proper weighing can be accomplished. 

The first one will please the tenants of the non-weighing philosophy. 
Considering three characters I, J, K that are partially correlated as follows: 

I J 
E IC F 

A 
B D 

G 

K 

the area A represents information common to the three characters. If the 
three are used in making the classification, A will be weighed three times. 
Similarly, B, C and D will be weighed twice. This differential weighing 
reflects the biological structure of the study and results in a "natural" 
classification. But accordingly, no classification using correlated characters 
can be said to be of the non-weighed type. 

The weighing of the characters can be modified also by changing the 
number of states. Each character makes its contribution to the resulting 
classification by dividing the group of organisms into subgroups. The more 
states per character, the smaller and more numerous are the subgroups 
formed by the character. Consequently, a character with few states will 
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contribute to a major partition of the organisms, and will have more weight 
in the resulting classification. This can be understood in yet another way: 
the amount of entropy in a character is proportional to the number of states 
of the character. A character with two states can have no more than log2(2) 
= i unit of entropy, but an eight-states character can have up to log2(8) = 

3 units of entropy. This, however, does not change the intrinsic amount of 
taxonomically significant information carried by the character. So, by 
increasing the number of states of a given character, without biological 
reasons, one diminishes the value of the fraction (intrinsic information)/ 
(total entropy) and adds more mathematical "noise" to the contribution of 
this character to the classification. The extreme situation would be a charac- 
ter for which one state is attributed to each object; its total entropy would be 
equal to log2 (number of objects) but its contribution to the resulting clas- 
sification would be almost nil. 

For the worker, the criteria for the number of states to attribute to each 
character are: I) how much importance he attaches to the diversity expressed 
by the character, and 2) how well the character classifies the objects under 
study. Also, he will tend to restrain the number of states of the most im- 
portant characters (those applicable for the species, genus or other higher 
categories). 

The first things to look at, on the printout, are the value of distance 
D(I,J) between the two characters, and also the values of the total entropy 
in each character and of the amount of information in common. The value 
of similarity S(I,J) can be used instead of the distance, since it carries the 
same information. Only the scale in which this information is presented has 
been changed by the passage from D to S. The figures of entropy remaining in 
each character after observing the other, and the fraction of information in 
common, carry the same type of information to the worker. Generally 
speaking, the following classification can be used (Hawksworth et al., 1968): 

the characters are very highly correlated if D < .5 and S > .5 
highly correlated if .5<D<.7 or .5> S>.3 
correlated if .7< D<<i.o or .3 >S> >o 
unrelated if D is almost i.o or S is almost o 

No rigidity is attached to this nomenclature, however. 
If the characters are found to be correlated, the matrices can be looked 

at, in oder to see the correlation more clearly. Table VIII presents the same 
data as Table V, but the values of entropy are written in boldface, in the 
conditional probability distribution matrix, when they are equal to or higher 
than the corresponding value in the unconditional probability distribution 
of character J, above. 

In order to make easier the interpretation of the frequency values given in 
the matrices, it is possible to obtain a printout page showing the number of 
objects coded into the various states of each character. This can be done by 
entering the proper code on one of the parameter cards preceding the data 
deck. In the example for instance, it can help to know that the distribution 
of the objects on the various states of character I is 6, 29, 18, 5 and 2, and 
that there are 5, 3, 45 and 7 objects in the various states of character J, 
respectively. 

Theboldface figures of Table VIII have the following meaning: for the one 
in the upper left hand corner, for instance, it means that to observe state I 
of character I tells us io times more, about the probability of an object to 
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TABLE VIII. Data of table V, presenting the conditional probability distributions of 
character J=2, modified (see explanations in the text). 

States of Unconditional probability distribution of J 
character p(J1) = p(J2) = p(J) = p(J4) = 
I= .08333 .05000 .75000 . 11667 

11 .83333 0.00000 .16667 0.00000 
12 0.00000 .10345 .89655 0.00000 
Is 0.00000 0.00000 .94444 

.o5556 14 0.00000 0.00000 .20000 .80000 
15 0.00000 0.00000 0.00000 1.00000 

be in state i of character J, than we knew only from the knowledge of the 
unconditional probability distribution of character J. The correlation is 
clear in this example: the characters are highly correlated, as was already 
known by the observation of the value of D(I,2), that is .67534 in this case. 
Referring to what these characters are (Table I), it means that as the value 
of the ratio head length/standard length increases, also the ratio orbit length/ 
standard length increases; that is, a relation depending only upon growth, 
and not something that gives any indication on the taxonomic structure 
of the objects under study. 

When a correlation is found, two possibilities exist: either it is a valuable 
correlation between two characters, corresponding to a genetic correlation, 
in which case both characters should be kept, since good taxa are based on 
correlated characters; or the correlation is due to an undesired redundancy, 
as a consequence of the same structure being unintentionally described 
twice. A variation of this unintentional redundancy can be found in cases 
where the correlation depends on the determination of the correlated pat- 
tern by external factors such as ecology or growth, as it is the case in the 
example. This illustrates the contribution that has to be made by the 
biological knowledge of the material under study, in sorting out the un- 
significant variations. 

Another variation of the same phenomenon is found in the case where a 
character is a refinement of the other. If, for instance, the first character 
partitions the objects in two groups, and the second character divides each 
group into a number of subgroups, the working taxonomist will have to 
question the significance of each of these partitions, and eliminate the less 
significant one. Of course, if he considers the information described by these 
two characters as very important for his classification, he can keep the two, 
as he could use the most significant one twice, or three times, in making the 
classification. 

If only one or a few objects do not participate in the general correlation 
between two characters, it usually means that an error has been introduced 
during one of the steps of the work of transmission of the information, from 
the actual observation of the specimen to the transcription on computer 
cards. If it is not the case, the character states may be redefined in order to 
improve the correlation, although this is not necessary in a multi-character 
study. 

Different types of correlation can be involved. The value of the distance 
D(I,J) does not say everything about the type of correlation, since it does 

NOVEMBER 1972 587 

This content downloaded from 132.204.124.197 on Wed, 18 Sep 2013 15:51:44 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


not refer to the relative amount of information present in each of the 
characters compared. The following picture is the illustration of the cor- 
relation in the example: 

information in 

character I = I 

information in 

character J=2 

information in - 
character I 

- information in 

character J 

where D(I,J) has a fairly high value, but the correlation is better represented 
by the fraction of information in character J also contained in character I, 
that is I.ooooo. 

If a character shows very little correlation with most of the other charac- 
ters, and if it is considered as an important character, it will simply 
contribute to the resulting classification in a different way. It probably 
means also that not enough characters have been considered in this study. But 
if such a character represents a property of marginal interest, it is better to 
eliminate it. 

The printout indicates also the necessity of redefining some character 
states. By looking at the column "conditional entropies" on the printout, it 
is easy to spot the values that are higher than the total amount of entropy in 
the character (there is no such value in the printout of figure i). It means 
that, say, the observation of state 3 of character 5 gives less information 
about character 8 than what was already known from the frequency distri- 
bution in the various states of this character. If the same situation is found 
also, say, in characters 3, 6 and 7, where the observation of state 3 of charac- 
ter 5 gives less information than what was already known from the prob- 
ability distribution of these characters, it would be recommended to divide 
this state 3 into more states; a revision of all the states can also be necessary, 
especially if this situation is found in many of the states. On the contrary, 
if the worker wishes to have fewer states in a character, he can group the 
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states that create the less conditional entropy in most of the other characters, 
except if these states have a special biological significance. 

A classification can be considered itself as a character, since it consists in a 
partition of the objects under study. The states of this character are of the 
type: "is a member of taxon X". So, after a classification is reached, 
CHARANAL can be used in order to calculate the amount of information in 
each character that the classification has preserved. This gives a measure 
of the "goodness" of the division of the characters in character states, ac- 
cording to the given classification. If the taxonomist has various classi- 
fications in mind, or if he wishes to compare various published classifica- 
tions, he can calculate, by this method, which of the classifications preserves 
best the information contained in the various characters. 

Still another way to accomplish this - that is limited to ordered characters, 
however - is to perform a discriminant function analysis, that calculates 
the optimum weight that has to be attributed to each character in order to 
obtain the best separation of the taxa. This optimum weight can be compared 
with the total entropy calculated by CHARANAL for each character, and 
the characters can be redefined accordingly. 

Finally, it is possible to use CHARANAL for the establishment of the 
classification itself. This can be accomplished by choosing the character that 
represents best all the other characters, and partitioning the objects according 
to the various states of this character. Next, each of the groups thus obtained 
is run again in a separate CHARANAL, from which the first character 
chosen is eliminated. In each of the groups then, the character that represents 
best the classificatory power of all the others is chosen again, and its states 
are used to partition the objects into sub-groups, and so on, until a satis- 
factory classification is reached. 

This can be done easily by asking for a special printout page that gives two values, 
called SUMRAT and SAMRAT, for each character. This page can be called by entering 
the proper code on one of the parameter cards preceding the data deck. 

The term SUMRAT has been coined from 'sum of ratios'. SUMRAT (I) is actually the 
sum of the fractions representing the amount of information that I has in common with 
each of the other characters, divided by the amount of information of the character with 
which I is compared in the given ratio. Formally, 

n 

SUMRAT (I) = H(I) -H(I/J) 
H (Ji) 

where n is the number of characters other than I in the study. Or in other words, 
n 

SUMRAT (I) = (fraction of information of character Ji also contained in character I) 

The term SAMRAT designates a closely related type of sum of ratios. This is why 
the name coined is also very similar. The difference is that the denominator of the various 
ratios that are summated is always the same, that is the amount of information in I, 
instead of the amount of information in the various Jl. So, 
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n 

SAMRAT (I) H(I) - H(I/Jj) SAMRAT (I) - H (I) 

J=I 

n 

or in other words, SAMRAT (I) = (fraction of information of character I also 

j=I 

contained in character Ji). 

SUMRAT (I) and SAMRAT (I) are both large when much of the information in I is 
shared with that of other characters. If there is a one character that represents the 
classifying power of the other characters much better than any other, then the values 
of SUMRAT and SAMRAT of this character should be the largest. However, the values 
taken by SUMRAT (I) and SAMRAT (I) are also influenced by the amount of infor- 
mation in I. If I contains a large amount of information, like in a character with many 
states, that will tend to make SUMRAT (I) larger, but SAMRAT (I) smaller. This factor 
must be considered when there is a conflict between the indications given by SUMRAT 
and SAMRAT about which character represents best all the others. The conveniency of 
the classification obtained with each of the two characters in conflict can also be taken 
into account, in such a case. 

SUMRAT and SAMRAT can also be used to find the best characters to be used for 
the clustering procedure. However, in this case, they have to be supplemented with 
biological judgment. 

SECTION II: CLUSTERING ANALYSIS 

Once the information about the objects has been properly structured 
(formed into characters and character states), it is relatively simple to obtain 
a clustering of the objects that will be used by the biologist as an indication 
or a basis for his classification. The main problem is to choose the proper 
model on which the grouping of the objects will be based. A model, in this 
case, is a series of definitions and rules of inference which reflect as closely 
as possible what one wants a classification to be. From these, equations are 
derived that allow one to calculate, from the structured information about 
the objects, results that will be in accordance with the model. 

The computer-aided method explained here is a clustering technique based 
on a model in graph theory developed at the Taximetrics Laboratory under 
the direction of the junior author. It is intended to follow as closely as 
possible the mental process of the classical taxonomist. The reader may refer 
to Wirth, Estabrook and Rogers (1966), Estabrook (i966) and Estabrook 
and Rogers (1966) for a different presentation of parts of this method. A 
flow-chart-like presentation of the algorithm can be found in Estabrook 
(1966). 

The premises of the model on which this technique is based are the 
following: 

i) A classification for a collection of objects is a hierarchical, two-di- 
mensional partitioning of the objects. A partition of the objects is a subdivi- 
sion of the collection into sub-collections, such that each object is in one and 
only one sub-collection, for the given partition. The hierarchial partitioning 
is said to be two-dimensional because it can be represented in a plane, or a 

590 TAXON VOLUME 21 

This content downloaded from 132.204.124.197 on Wed, 18 Sep 2013 15:51:44 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


sheet of paper: on one of the axes are presented the various sub-collections 
of each partition, the various partitions being ordered on the other axis 
according to their hierarchy. The following example illustrates this defi- 
nition, with the partitions into genera and into species. 

hierarchical presentation 
of 2 partitions Objects 

Genus I Species I 7, 12 
the various Species 2 3, 5, I 
sub-collections Species 3 i, 2, 6 
of each Genus 2 Species 4 4, 9 
partition Species 5 8, 10, 13, 14 

2) For any given partition, two objects at least as similar as the degree 
considered for this partition should not be placed into different sub-col- 
lections (this can be modified later by the taxonomist if, from his knowledge 
of the evolution of the group, he considers the similarity relation as sec- 
ondary, for instance in the case of cryptic species). 

3) The sub-collections of a given partition should be isolated from one 
another: that is, there should be some discontinuity between the members 
of different sub-collections, found in the structure of the information avai- 
lable about the objects. 

From these three widely accepted principles will be derived the graph 
theory model in the section on the clustering technique. 

Various techniques for clustering biological objects have been developed 
in the past. After comparing four of them, Prance et al. (1969) concluded 
that the one explained hereafter gave the most useful results and presented 
them in the most informative way. Furthermore, the experience of the 
Taximetrics Laboratory has shown that this method leads to valuable results 
in botany as well as in zoology, with lower as well as higher organisms, 
with cultivated as well as wild plants, and in classifications in the fields of 
ecology, anthropology, geology, psychology and sociology. 

The method consists of two main steps. First, a similarity measure is 
calculated between all the pairs of objects in the study. Second, in decreasing 
similarity order, the objects that are similar at least to the considered level, 
or degree of similarity, are connected in various clusters. The clusters become 
more and more inclusive as the similarity level drops and the procedure 
stops when all the objects form a single cluster. Useful measures of con- 
nectedness and isolation, calculated for each of the intermediate clusters, 
help the taxonomist to interpret the results. 

Example 

For the sake of clarity, the example introduced here will be carried through the fol- 
lowing sections. Rogers and Fleming (1972) used fifteen characters to describe specimens 
of the cultivated species Manihot esculenta, and through the use of the taximetric 
methods here explained, they arrived at a classification into 'groups', which correspond 
to phenons of this widely cultivated crop. Five objects were chosen from each of their 
groups I and 14 to serve here as an illustration of the clustering technique. The des- 
criptions are given in Table IX. 
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TABLE IX. Description of the objects used in the example (from: Rogers and Fleming, 
1971). Each object is described by listing which state of each character has been at- 
tributed to it. 

Object Characters 
number 

I 2 3 4 5 6 7 8 9 10 I 11 12 13 14 15 

io8 2 2 I 2 2 4 2 6 I 4 3 2 2 4 3 
114 I 4 I I 2 3 2 6 2 2 4 2 I 4 3 

I3I I 5 I I 2 3 2 6 2 2 4 3 2 4 3 
132 I 3 I I 2 3 1 6 2 2 4 2 I 4 3 
242 i 3 I I 2 2 3 6 2 3 4 3 I 3 3 
281 2 2 I 5 2 2 3 5 I 4 3 2 2 4 3 
284 2 2 I 5 2 3 2 6 I 4 3 2 2 I 3 
330 2 2 I 5 I 2 3 2 I 4 3 I 2 I I 

377 2 2 I 5 2 4 3 5 I 4 3 2 2 I I 

454 I 3 3 I 2 2 2 5 2 2 4 3 I 4 2 

Similarity measure 

Various similarity measures have been discussed extensively by Sokal and 
Sneath (1963), chapter 6. The one chosen here is very "natural" in its most 
simple form: the similarity S(a, b) attributed to the pair of objects a and b 
will be the number of characters for which the same state has been attri- 
buted to objects a and b, divided by the total number of characters. For 
example, the similarity S(io8, 281) is calculated as follows: the states of the 
fifteen characters attributed to each of these objects are: 

IO8: 221224261432243 
281: 221522351432243 

then for eleven of the fifteen characters, the same state has been attributed to 
the two objects. S(io8, 281) is then equal to II/I5 or 0.733. 

This measure of similarity has the following properties: 
I) 

o 
< S(a, b) < I. 

2) S(a, b) = I implies that a and b are maximally similar (identical). 
3) S(a, b) > S(c, d) implies that the pair (a, b) is more mutally similar 

than is the pair (c, d). 
4) S(a, a) is always equal to i. 
5) S(a, b) = S(b, a). 
With only characters of type i (see below), it is easy to see that in this 

simple form, the measure of similarity could not engender more than N + I levels of similarity, where N is the number of characters in the study. In the 
example, N I then only I6 levels could be produced: S - 

15/I5, S - 
14/15, . . ., S = 1/15, S = O/15. 

Two sophistications have been added to this measure of similarity, how- 
ever. The first one considers that the taxonomist might wish to say that two 
objects in different states of a character are partially similar, instead of 
completely different according to this character. 

The character for which a pair of objects in two different states is not 
necessarily more similar than any other pair of objects in any two different 
states, is the one for which the simplified equation above is directly ap- 
plicable. This character is said to be of type i (simple character). 

A character of type 2 (ordered character) is one in which the states form 
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SYMBOLS USED IN THIS SECTION 

a, b: names of two objects 
S(a, b): similarity attributed to the pair of objects a and b 
K: name of a character 
K1, Kj: two of the states of character K 
i, j: designate two of the states of character K, and also, in the case of an ordered char- 

acter, the placement of Ki and Kj in the ordered sequence of character, states 
Ko: state of character K attributed to the objects on which the character was not observ- 

able, practically; Ko is never included in a partial similarity measure 
n(Ki, Ki): similarity value calculated, on character K only, for a pair of objects to 

which states i and j of character K have been attributed, respectively 
n(K(a), K(b)): similarity value attributed, for character K only, to the pair of objects 

a and b; K(a) and K(b) are the states of character K attributed to the objects a and 
b respectively 

f(d, k): function of d and k 
d: 'distance' between state Ki and state Ki, in an ordered character, that is equal to 

i - j 
k: parameter set by the worker, when he uses the partial similarity formula, to indicate 

the largest 'distance' ii - j| between character states in the sequence, for which he 
wishes to make a non-o assignment of partial similarity 

M: number of states of a character 
N(a, b) (K): a character K of which state Ko has been attributed to object a, or object b, 

or both 

a logically well ordered sequence, and the similarity for any pair of objects 
in different character states depends on how far apart in the sequence the 
two states in question occur. Such a character may also be treated as a type 
3 character, as will be seen below. However, whenever the states of a char- 
acter can be logically ordered in such a way that this ordering reflects a 
continuous or semi-continuous gradation from state to state along the 
sequence, an equation of partial similarity can be applied. The following 
empirical equation is included in the computer program: 

z (k+I - d) 
n(Ki, Ki) = f(d, k) 

-- 
k+ d -whenever d4<k 2k+2+dk 

= o when d>k, 

where n(Ki, Kj) is the similarity value calculated for a pair of objects to 
which states i and j of character K have been attributed respectively. The 
subscripts i and j indicate also the placement of Ki and Kj in the ordered 
sequence of character states. This similarity value, between o and I, is a 
function f(d, k) of the "distance" d between state Ki and state Kj, expressed 
by the absolute value Ii - j = d, and of the parameter k, set by the tax- 
onomist for each character in one of the computer cards that indicate the 
largest "distance" Ii - jI between character states in the sequence, for which 
the worker wishes to make a non-o assignment. Whenever the taxonomist 
wishes to state that a given character is of type i (see above), he makes k 
equal to o. The properties of this formula are the following: 

i) When d is larger than k, the objects a and b in the pair of character states K1 and 
Kj are considered as not similar at all for this character, i.e., n(Ki, Kj) = o, or in 
another formulation n(K(a), K(b)) = o where K(a) and K(b) are the states of character 
K attributed to the objects a and b. 
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2) When d = o, the value n(Ki, Kj) is found and it is equal to I, as expected. 
3) f(d, k) decreases as d increases for fixed k. 
4) f(d, k) increases as k increases for fixed d. 
Even if this formula is empirical, it reflects the judgments made by those workers who 

used this method, and it has been proven useful. The values of f(d, k) for the most com- 
monly used values of k are given in Table X. 

TABLE X. The values of f(d, k) for the most commonly used values of k (see equation in 
the text). 

k 
d- 

I 2 3 4 5 6 (etc.) 

I .40 0.00 0.00 0.00 0.00 0.00 0.00 
2 .50o .20 0.00 0.00 0.00 0.00 0.00 

3 .55 .28 .12 0.00 0.00 0.00 0.00 

4 .57 .33 .18 .0o8 0.00 0.00 0.00 

5 .59 .36 .22 .13 .05 0.00 0.00 

A few remarks can be made about this equation. First, if M is the number 
of states of a character that form an ordered sequence, it is advised not to 
make k larger than M - 2: since the largest "distance" d is M - i, if k is 
made equal to M - i, no pair of states will receive the assignment o and this 
character will not differentiate objects as adequately as it could. M is of 
course the number of real states of the character, at the exclusion of state K0, 
which is never considered in a partial similarity measure. 

A discontinuous gradation can be shown in ordered or semi-ordered 
characters. An example of a semi-ordered character would be the dimension 
of the eggs produced by various fishes, in which k is made equal to I: 

K1 = up to .7 mm in diameter, incl. 
K.2 = larger than .7, up to 1.3 mm incl. 
Ks = larger than 1.3 up to 1.5 mm incl. 
K4 = larger than 1.5 mm 
K1 = (void state) 
K6 = not logically applicable because it is a male 
Ko = eggs not observable (young specimen or not in season). 

Note the difference between K6 and Ko. The state o of a character, which 
means "no information available", is never included in the computation of 
a partial similarity, that is to say that n(Ki, Kj) = o if either i or j is o. 
Accordingly, an exception has to be made to rule 2 above: when d = o and 
i = o, then n(Ki, Kj) = o, instead of i. The introduction of a void state K5 
was necessary because K6 should not be made partially similar to K4. With 
a void state in K5 and k = i, the partial similarity measure will be calculated 
only between states i and 2, 2 and 3, and 3 and 4. If k had been 2, two void 
states would have had to be created. The same trick can be used whatever 
the reason is to limit the partial similarity to certain states. Another method 
to obtain the same result would be to consider this character as one of type 3 
below. 
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The general formula for the similarity measure between objects a and b now becomes 

I 
n (K(a), K(b)) 

all characters K 
S(a, b) = total number of characters 

where n(K(a), K(b)) is the similarity value calculated between objects a and b for 
character K. 

A partial similarity was defined on character 6 of the example, with k = I; k = o 
for the other characters. The similarity S(284, 377) between objects 284 and 377 of the 
example would be calculated as follows: 

Characters Objects n(K(z84), K(377)) 
284 377 

I k = o 2 2 I.0 
2 k = o 2 2 I.0 

3 k = o I I .oo 
4 k =o 5 I1.oo 

k = o 2 2 1.oo 
6 k = 3 4 0.40 
7 k = o 2 3 0.00 
8 k =o 6 o0.00 
9 k = o I I I.00 

io k = o 4 4 I.00 

I1 k o 3 3 I.00 
12 k = o 2 2 I.00 

I3 k = 0 2 2 I.OO 
14 k = 0 I I I.00 

15 k o 3 I 0.00 

S(284, 377) = 11.40 / I5 = 0.76000 

In a character of type 3 (matrix character) the states are not logically 
ordered, but some pairs of objects in non-identical states are judged by the 
worker to be more similar to each other, according to this character, than 
some other pairs of objects in another pair of states. In this instance, it is 
necessary for the worker to make a judgement and decide the value that 
n(Ki, Kj) takes for each pair of states Ki and Kj, except for the state Ko, 
"missing information", which has a similarity of o with all the other states. 
I) This value still has to be between o and I. 2) When i = j, this value has 
to be I. 3) If Ki or Kj describes the logical inapplicability of character K, 
then the assignment should be o, except when i = j. 

Character 14 of the example is a type 3 character. It describes the petiole color as 
follows: 
K1 = red 
K2 = greenish red 

K• 
= reddish green 

K4 = green 

The similarity assignment made by Rogers and Fleming (1971) for the 
various pairs of objects to which the various states of this character have 
been attributed is best represented by half of a matrix, the other half being 
symmetrical: 
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K1 K2 Ka K4 

&K I.00 

K2 .75 I.oo 
Ks .25 .75 I.oo 
K4 0.00 .25 .75 I.00 

The similarity S(I32, 242) between objects 132 and 242 of the example would be calculated 
as follows: 

Characters Objects n(K(132), K(242)) 
132 242 

I k=o type I I i I.00 
2 k=o type I 3 3 I.00 
3 k=o type I I I I.00 
4 k=o type I I I I.00 

5 k=o type I 2 2 I.0 
6 k=i type 2 3 2 0.40 
7 k=o type I I 3 0.00 
8 k=o type I 6 6 I.00 
9 k=o type I 2 2 I.00 

Io k=o type I 2 3 0.00 
ii k=o type I 4 4 1.00oo 
12 k=o type I 2 3 0.00 

13 k=o type I I I I.00 
14 k=o type 3 4 3 0.75 
15 k=o type I 3 3 I.00 

S(I32, 242) = 
i1.15 / I5 

= 0.74333 

The similarity assignments in a type 2 character can also be treated in the 
same way, if the worker considers the similarity assignments given by the 
formula, and shown in Table X, as not satisfactory. The similarity assign- 
ments in a type i character, on the other hand, can always be represented 
by a matrix in the form 

K1 K2 KK3 K4 Ks 

K1 I 
K2 o I 

Ka 0 0 I 

K4 0 0 0 I 
Ka 0 0 0 0 

It is easy to see that more than N + i levels of similarity can be engen- 
dered by a type 2 or a type 3 character, although the actual number of levels 
remains usually small. 

The second sophistication added to the formula giving the similarity value 
is one that causes the similarity value to be calculated only on the charac- 
ters for which the information is available for the two objects compared. 
Indeed, the taxonomist often has to work with preserved specimens, some of 
which may lack information about one or a few characters. If the overall 
similarity between objects is computed without taking this into account, 
every missing piece of information about an object will unduly lower the 
similarity values of comparisons involving this object. This is the problem 
with many similarity measures. Instead, it is more practical to calculate 
the overall similarity of a pair of objects only on those characters for which 
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information is present, forgetting the characters for which one or the other 
object of the pair has been coded in state Ko, "no information available". 

This can be done by establishing that N(a,b) (K) is i if and only if K(a) = 
Ko, or K(b) = Ko, or both, that is to say when the state "no information 
available" has been attributed to one of the objects a or b, and N(a,b) (K) is 
o in all the other cases. Then the modified formula describing the similarity 
between objects a and b can be written: 

I n (K(a), K(b)) 

all characters K 
S(a, b) = 

(total number of characters) - N(a, b)(K) 

all characters K 

This formula is the one used in the clustering program explained here. 
The similarity measures calculated between all the pairs of objects of 

Table IX can be represented by the half-matrix shown in Table XI. The 
other half of it is symmetrical, since S(a, b) = S(b, a). 

TABLE XI. The similarity measures calculated between all pairs of objects of table IX 
(the other half of the table is symmetrical). 

io8 114 131 132 242 281 284 330 377 454 

o108 .00000ooooo 

114 .49333 1.00000 

131 .49333 .8oooo0000 .00000 

132 .42667 .86667 .73333 1.00000 
242 .31667 .67667 .67667 .74333 1.00000 
281 .73333 .36000 .36000 .36000 .38333 I.00000 
284 .82667 .46667 .46667 .40000 .31000 .76000 i.00000 
330 .46667 .09333 .i6ooo .09333 .21667 .66667 .62667 1.oooo00000 
377 .66667 .22667 .22667 .22667 .21667 .8oooo .76000 .73333 1.00000 
454 .20000 .62667 .62667 .62667 .65ooo .26667 .16ooo .06667 .13333 1.00000 

In the listing of similarity values corresponding to this table, which forms 
the first part of the printout, the similarity value is given for each pair of 
objects in the study, followed by the number of characters used in estab- 
lishing this similarity value. 

Before proceeding to the clustering, the computer has one more inter- 
mediate step: ordering the similarity measures obtained before, in decreasing 
order of similarity. This is done for the example in Table XII. The format of 
this table is not the one followed by the computer: the presentation in a 
table is simply better adapted to this paper. If some pairs of objects are 
identical (S = I.ooooo) these pairs are presented at the beginning of the 
printout. The table does not present either the similarity between an object 
and itself, which is obviously i.ooooo. 

Clustering procedure 
A definition of the cluster concept will be given first, then it will be shown 

that this definition is in accordance with the three general principles of 
taxonomy developed in the introduction. 
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TABLE XII. Ordered similarity ratios. The data of table XI are re-arranged in decreasing 
order of similarity. 

Similarity Pairs of objects similar at the given values 
values 

.86667 (132, 114) 

.82667 (284, io8) 

.8ooo0000 (131, 114) (377, 281) 

.76000 (284, 281) (377, 284) 

-74333 (242, 132) 

?73333 
(132, 131) (281, io8) (377, 330) 

.67667 (242, 114) (242, 131) 

.66667 (330, 281) (377, ro8) 

.65ooo (454, 242) 

.62667 (330, 284) (454, 132) (454, 114) (454, 131) 

?49333 
(114, Io8) (131, Io8) 

.46667 (284, 114) (284,131) (330, io8) 

.42667 (132, 0io8) 

.40000 (284, 132) 

.38333 (281, 242) 

.36000 (281, 114) (281, 131) (281, 132) 

.31667 (242, 108) 

.31000 (284, 242) 

.26667 (454,281) 

.22667 (377, 14) (377, 132) (377, 131) 

.21667 (330, 242) (377, 242) 

.20000 (454, Io8) 

.I6ooo (330, 131) (454, 284) 

.13333 (454, 377) 

.09333 (330, 114) (330, 132) 

.06667 (454, 330) 
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A cluster is a set of connections, and of objects which are interconnected 
at any given level of similarity, i.e., a group of objects for which there exists 
at least one continuous pathway of connections joining all the objects. There 
exists a connection between two objects, at a given similarity level, if these 
two objects are at least as similar to each other as the similarity level con- 
sidered. The similarity values for the pairs of objects are determined by 
using the equation developed in the previous section. 

A cluster can be represented by placing the objects anywhere in a plane 
and drawing lines between the objects that are interconnected at this level, 
such as: 

\\/ 
4 

5_7> 

2 7 

6'--------8 

According to this definition, each object does not have to be connected to 
each of the others to be member of the cluster. This fits many biological 
cases, like a species modified along a cline, in which the extremes are not 
very similar to each other, but they are connected through a pathway of 
high similarity values. This is similar to the "single linkage" concept of 
Sneath (I956). 

A cluster can also be defined by the relation G,: for any pair of objects a 
and b in the study, 

a G- b **-S(a, b)?>c 
this is to be read: "a is connected with b at level of similarity c if, and only 
if, the over all similarity value between a and b is larger than or equal to c". 
c is a value between o and i, as previously. The properties of symmetry 
and reflexivity of Go are clear, since aGeb t+ bGea, and aGoa always. This 
is actually a reformulation of the second premise of the introduction (ref. to 
Section II, p. 591): every two objects to which a similarity value at least as 
large as c has been attributed, will be included in the same cluster. Further- 
more, all the objects at least as similar to another one as c will be partitioned 
into clusters at level c. The other objects form single-member clusters at this 
level. A group of clusters such as defined above by the relation Go applied to 
the set U of objects in the study is technically called an undirected graph 
(for more details, see a textbook of graph theory). 

The notion of a Go-chain can now be introduced. A Go-chain is said to 
exist from a to b if there is a series of points di, d2, dS, . . ., di in U such that 
aGod1 and dGod2 and d2God3 and ... and diGob. The unique equivalence 
relation Ro can now be defined: aRob if and only if there exists a Go-chain 
from a to b. This means that two objects a and b will be in relation with each 
other at level c (will be in the same cluster) if there exists a connection 
between them, a connection that can be established through other inter- 
mediate objects. In other words, Ro is a transitive Go. Ro is an equivalence 
relation since it has the following properties: 

i) it is clearly reflexive: aRoa always since a Goa always; 
2) since Go is symmetric, the Go-chains can be turned around, and then 
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the existence of a chain from a to b implies the existence of a chain from 
b to a; 

3) if a Ge-chain exists from a to b and another exists from b to d, 
then these two chains can be combined; consequently aRab and bRed implies 
that aRed, or in other words the relation is transitive. 

The result of this process is to group the objects in various clusters at any 
given level of similarity. Consequently the relation Go defines a partition of 
the objects at each level of similarity, as was required by premise i. Further- 
more, the partitioning process is hierarchical when considered along the axis 
of decreasing similarity, since the clusters will connect to each other as the 
similarity value drops. At high similarity values, there are many clusters, 
which become fewer and larger as the similarity value drops, finally at- 
taining the point where there is only one cluster which includes all the 
objects in the study. Furthermore, pairs of points which are in the same 
cluster at high similarity value remain inseparable for all the lower similar- 
ity values. 

If Go together with U is a graph, then each cluster is a connected subgraph. 
A subgraph of (U, Go) is a subset of U, called V, together with the relation 

Go restricted to the objects included in V. A subgraph (V, Go) is connected 
if there exists a Ge-chain from a to b for all pairs of points a and b, which 
are elements of V. 

The C-values that will be used in the printout as principal markers are 
defined as those values of similarity at which at least one of the clusters is 
modified by addition of at least one new object. The C-values are the only 
levels of similarity which will be considered in the clustering printout, but 
internal connections arising between two C-levels will be recorded. A 
connection is called external when it results in the addition of a new object 
to the cluster, thus modifying the composition in objects of the cluster. An 
internal connection is one that occurs, at a given similarity level, between two 
objects that were both already members of the cluster. It modifies only the 
composition in connections, by increasing the tightness of the connections 
within the cluster. At every C-level, a measure of tightness of the connections 
of each cluster will be given by a statement about the number of connections 
actually formed in the cluster at this point, and about the maximum number 
of possible connections which can be formed between the objects of the 
cluster. If a cluster has M objects, the maximum number of possible con- 
nections is (M - I) + (M - 2) + (M - 3) +.-..+ 2 + I, which is equal to 
M(M - I)/2 as can be easily proved by induction over M. The measure of 
connectedness at each C-level can then be easily calculated: it is the ratio 
of the number of connections actually formed at the given C-level, to the 
maximum possible number of connections between the objects present in the 
cluster. 

A more sophisticated mathematical discussion of the principles involved 
in the clustering process has been given by Estabrook (1966). 

Every time a cluster is modified by addition of new objects, a measure of 
isolation, called moat, is also given. It states how "long" on the axis of 
decreasing similarity the worker will have to wait before the cluster will 
be modified again by addition of new objects. The statement made on the 
printout is of the kind: "MOAT = .o6667' NEXT PAIRS TO JOIN (284, 

4 The computing machine runs out 12 decimals, but it was arbitrarily chosen to use 5 of 
them. 
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281) (377, 284)" (level 2 in figure 2) meaning that the cluster will be modified 
only after .06667 units of similarity, and then the modification will consist 
of the connection of objects 281 and 377 to object 284 that was already a 
member of the cluster. 

The moat can be thought of as a measure of stability as well as a measure 
of isolation of the clusters. It can also be seen as an indirect measure of 
isolation between the various clusters formed by each of the partitions of the 
hierarchical series, at each C-value, thus applying premise 3. 

The clustering process can now begin. The first C-level is .86667. Table 
XII says that the similarity value for the pair of objects ( 32, 14) is .8 6667. 
One cluster is formed at this level. The following data are given in the 
printout (figure 2). 

CLUSTER MEMBERSHIP: I 14, 132 
C-VALUE: .86667 
CONNECTEDNESS: 

M(M-I) 2 x I 
I connection formed / - - I possible connection 

2 2 

The G1-chain defining the equivalence relation R1 is formed by the pair (I32, 114) 
MOAT = .06667 NEXT PAIR TO JOIN (13I, 114) 

This last piece of information means that it will take .06667 units of 
similarity before this cluster gets modified. At .86667 - .06667 = .8oooo 
units of similarity (level 3 in figure 2), object 131 will form a connection 
with object I14. 

At the end of each C-value, the printout shows how many objects in the 
study have not yet been included in a cluster. In the example, at the end 
of the first level, this line is read: SINGLE MEMBER CLUSTERS (8), 
which is followed by a list of these 8 objects. 

Let us consider now level 6 of the example (figure 2). Two clusters are pre- 
sent at this level. For the first one, the following information is given: 

CLUSTER MEMBERSHIP: io8, 281, 284, 330, 377 
C-VALUE: .73333 
CONNECTEDNESS: 

M(M-I) _ 5 x 4 
8 connections formed (before, at and after the level; see below) / 
Io possible connections 

The equivalence relation R6 is established by connecting the pair (377, 330) 
INTERNAL CONNECTIONS AT (.73333) : (281, o08) 

INTERNAL CONNECTIONS AFTER (.73333) : (330, 281) (377, io8) 
MOAT = .24000 NEXT PAIRS TO JOIN (114, io8) (I3I, io8) 

The internal connections at the level, which is C6- .73333 in this case, 
are those connections happening exactly at the given similarity level, 
between pairs of objects that were already members of the cluster. The 
internal connections after the level are those also happening between pairs 
of objects that were already members of the cluster, and occurring after the 
given level of similarity (C6 .73333 here) but before the next level of 
similarity (C7 = .6500ooo here). It is interesting to know about these con- 
nections, since they increase the tightness of the connectedness of the clusters 
and can help in deciding about systematic questions. However, since the 
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taxonomist is interested, at this stage of the game, in obtaining a clear picture 
of the partitions, then C-levels are recognized only when there is a change 
in the object membership of the cluster; internal connections occurring 
between two C-levels are listed with the activity of the superior C-level. 

Internal connections occurring at or after the last C-level (C8 = .49333 
in the example) are not listed, because there are usually too many of them 
(24 of them, over a total of 45 connections, in the example: see Table XII), 
and because they are not taxonomically interesting. This is why the clustering 
process stops after all the objects in the study have been included in the 
same cluster. 

Data of figure 2 can be represented by drawing the corresponding sub- 
graphs, such as in figure 3 which shows the evolution of the clustering 
procedure for the example. The two clusters of level 7, which join at C8 = 
.49333, correspond respectively to parts of groups I and 14 in Rogers and 
Fleming (1971). 

One could draw a separate subgraph for those internal connections formed 
between two consecutive C-levels. However, it has been found more useful 
to include these connections with either the subgraph of the superior C-level, 
or the one of the inferior C-level, designating them by a symbol different 
from the one used for the internal connections formed at the C-level, or not. 
The decision is left to the worker, according to his needs, as it is the case 
with all other matters of graphical representation. 

Various graphical symbols such as circles, boxes, etc. can be used to point 
out some aspects of the data (see, for instance, Prance et al., 1969). 

By entering the proper code on one of the parameter cards, the worker 
may obtain on the printout, after the actual clustering of the objects, and 
for each object in the study, a listing of the ten objects most similar to it, 
with the corresponding similarity values. Such a listing can be useful in the 
establishment of the final taxonomic structure. A "skyline" plot, which is 
also available, summarizes the results of the clustering process by showing 
the clusters that were formed and the value of similarity at which they 
occur. This plot also shows the objects' hierarchical relationship and the 
measure of isolation (moat) of each cluster. The ordinate is the similarity 
scale, and the objects are distributed on the abscissa. 

Interpretation 
The only generally valid statement that can be made in this section is that 

the results of the clustering analysis are an aid for the worker, helping him 
to discern the taxonomic structure of the objects he studies. But it is a 
powerful aid. How he will use these results is left to him. It depends mainly 
on the group of organisms with which he is working. This section is intended 
to give some hints - and not recipes - on how to use the printout to the best 
advantage. 

Some groups of organisms will easily show their taxonomic structure, 
simply by drawing the subgraphs. No program exists yet to draw these 
subgraphs, for practical reasons like the size of the memory of the machines. 
But also it has been the experience of the Taximetrics Laboratory that I) the 
subgraphs can be drawn in very many ways, depending on the group of 
organisms under study, in order to carry the most information, and that 
2) the worker learns very much about the classification of his organisms 
simply by drawing the subgraphs and thinking about the ways to make them 
carry as much information as possible. 
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Fig. 3: Subgraphs drawn from the data of figure 2. Li: the various levels of similarity 
considered. Ci: the various C-levels, followed by the value of similarity to which they 
correspond. Each cluster drawn is cumulative of the activity of the previous levels. The 
fraction shown on each arrow indicates the degree of connectedness of the cluster. 
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It was mentioned in Section I that, depending on the attitude of the 
worker, the group of organisms under study, and the knowledge the worker 
has about the organisms he studies, it is possible to start a study by a 
character analysis followed by a clustering analysis, or vice versa. It also 
happens that only one of these analyses gives enough information to allow 
the worker to make his classification, as it happens also that none of these 
analyses are necessary. Similarly, it can happen that a skyline plot will 
give enough information by itself, when in other cases it is not necessary at 
all. Some workers have best used this pictorial visualization at the beginning 
of the analysis of the cluster formation, others at the end, as a complement. 
In all cases, however, the moat values, given on the skyline plot as well as 
in the clustering analysis, have been seen as of major importance, since they 
measure the degree of isolation of the clusters. 

In another case, the analysis of the number of connections formed between 
populations of objects, at the various C-levels, has been found to be a valuable 
complement to the study of the subgraphs, allowing to give a "distance" 
measure between the various taxonomic categories and between the taxa 
involved in the study (Legendre, Schreck and Behnke, 1972). 

Another question of interest is: how different do species, or genera, have to 
be? There is no precise answer to this question. It has been the experience at 
the Taximetrics Laboratory that congeneric species are often 500o/0 to 60o/o 
similar to each other. The species level is often found around 750/0 of 
similarity, and subspecies around 850/0 similarity. Large departures from 
these values have also been found. It obviously depends on i) the group 
of objects considered and 2) how well the information about the objects is 
structured. If the characters are chosen and subdivided into character states 
in such a way as to be consistent with each other, the partitioning of the 
objects will be much easier, and the clusters will be more isolated from each 
other, thus causing the similarity value that corresponds to each taxonomic 
category to drop. The exaggerated use of partial similarities, with the 
equation (type 2 character) or with matrices (type 3 character) produces the 
opposite effect, making more similar to each other objects that belong to 
different taxa. 

After the clustering analysis, it is always important to bring the geograph- 
ical, cytological and ecological data (when available) into the study, trying 
to correlate the preliminary taxonomic structure with these data. This is 
also the time to try to fit into the structure those objects for which a large 
amount of information is missing, or which are considered as hybrids and 
then were left out of the analysis in order to clarify the structure first. Those 
characters that were not considered in the study for various reasons, such 
as missing information for many of the objects, and also other classifications 
can be compared with the preliminary structure. This process has been 
discussed by Rogers and Appan (1969). 

One has to be a biologist to make a biological classification, or a sociologist 
to make a sociological one, since only a specialist (sensu lato) can interprete 
in the correct way the various attributes of the objects under study. An 
advantage of biology over, for instance, geology, is that one knows that 
there is a genetic basis for the similarities and dissimilarities observed, and 
thus there is hope to find a "natural" classification. But one does not have 
to be a mathematician to understand and use the methods explained here; 
by applying them, he will realize that they are intended to help him to 
work according to his own mental process as a taxonomist. 
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Availability of the programs 

Available: Fortran IV listings, CHARANAL and Graph flow-charts. 
At IBM: Graph, version of the program written for an IBM 7044 is available from 

the Program Information Department, IBM, 40 Saw Mill River Road, Hawthorne, N. Y. 
10532. Library #3501. 
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