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Acoustic seabed classification: improved
statistical method

Pierre Legendre, Kari Elsa Ellingsen, Erik Bjørnbom, and Philippe Casgrain

Abstract: Huge amounts of money will be spent by industrialized nations during the next decades to obtain detailed
maps of continental shelf seabeds. These maps, which will allow a more rational exploitation of the sea floor, are
needed to assess the impact of anthropic activities. The statistical method of analysis of echosounder backscatter data
described in this paper presents several improvements over existing techniques. The steps are as follows. (i) The
backscatter data are decomposed mathematically into a number of quantitative variables, which are subjected to
principal component analysis (PCA). (ii) Principal components representing 95–99% of the variation are used in a K-
means partitioning procedure. A statistical criterion indicates what the number of groups is that best reflects the
variability of the data. (iii) The groups are then plotted on maps of the survey area. Insofar as the mathematical
decomposition produces variables that reflect the variations of the physical nature and composition of the seabed, the
classes of the partition will correspond to different seabed types. Free software (The Q Package) implementing this
method is available at http://www.fas.umontreal.ca/biol/legendre/.

Résumé : Au cours des prochaines décennies, des sommes considérables seront consacrées par les nations industriali-
sées à la cartographie détaillée des plateaux continentaux. Ces cartes, qui permettront une exploitation plus rationnelle
des fonds marins, sont nécessaires pour évaluer l’impacts des activités anthropiques sur ces mêmes fonds. La méthode
statistique d’analyse de l’onde réfléchie secondaire des sonars décrite dans cet article propose plusieurs améliorations
par rapport aux méthodes actuellement sur le marché. Les étapes sont les suivantes : (i) l’onde réfléchie secondaire du
sonar est décomposée en une série de variables quantitatives qui sont soumises à l’analyse en composantes principales
(ACP). (ii) Les composantes principales représentant de 95 à 99 % de la variance sont utilisées pour obtenir une
partition des points de sondage en groupes. Un critère statistique permet de déterminer quel est le nombre optimal de
groupes pour rendre compte de la variabilité des données. (iii) La classification est reportée sur une carte de la région
à l’étude. Si la décomposition mathématique de l’onde réfléchie secondaire produit des variables qui reflètent les
variations de la nature et de la composition physique du fond, les classes de la partition correspondront à différents
types de fond. Un programme d’ordinateur (The Q Package) est gratuitement à la disposition des utilisateurs à
l’adresse http://www.fas.umontreal.ca/biol/legendre/.
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Introduction

The future of ecology as a partner for economic develop-
ment lies in the ability of ecologists to develop means, tools,
and methods for rapid assessment of impacts over broad
expanses, such as whole embayments, gulfs, or continental
shelves in aquatic ecosystems. This paper concerns remote

sensing of coastal seabed using an acoustic bottom classifica-
tion system for habitat mapping. Acoustic techniques allow
managers to quickly map extensive seabed surfaces; they may
eventually be used to map whole continental shelves. This in-
formation is urgently needed to assess the impact of coastal
urban and industrial developments.

Classification method

This paper presents a method of statistical analysis of
echosounder backscatter data, which includes several im-
provements over existing techniques. The (free) software im-
plementing this method is described at the end of this paper.
Our test data consist in a file of first echosounder returns
(Fig. 1) decomposed into 166 variables using the QTC
VIEWTM acoustic bottom classification system (Prager et al.
1995). Alternative methods (and software) for decomposing
backscatters into sediment-related variables have been pro-
posed, for example, by Chivers et al. (1990) and Clarke and
Hamilton (1999). Software for statistical processing of the
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QTC variables is also available from the Quester Tangent
Corporation (QTC 1999, 2000). The steps of our analysis
follow.

Step 1: reduction of data dimensionality
The 166 QTC variables are very highly collinear; in our ex-

ample data, the mean of the absolute values of the correlation
coefficients was 0.41 with values of r ranging from –0.9999
to +0.9999. For highly collinear data, a commonly used
method to condense the variance into a small number of
variables, prior to classification, is principal component
analysis (PCA); this is the method also used in the QTC
software. PCA computes a smaller set of new, linearly inde-
pendent variables, called principal components (PCs), that
account for most of the variance in the original data. The re-
mainder of the variance is considered the error portion of the
data (noise). We carried out a detailed comparison of classi-
fication results based on the whole data set, on the one hand,

and on a small number (2–8) of PCs accounting for most for
the variance, on the other hand. Comparable K-means parti-
tioning results (see below) were obtained by using a number
of PCs accounting for 95–99% of the total variance in the
data. So, variance condensation into a small number of PCs
is a good method if a sufficient number of PCs are used for
classification. For the test data, the first three PCs accounted
for 96.2% of the total variance. Using seven PCs would have
accounted for 99.2% of the variance. For other QTC data
sets (J.E. Hewitt, S.F. Thrush, P. Legendre, J. Ellis, and M.
Morrison, National Institute of Water and Atmospheric Re-
search (NIWA), P.O. Box 11-115, Hamilton, New Zealand,
unpublished data), the first three PCs accounted for 90–97%
of the variance of the 166 QTC variables; 3–5 PCs were nec-
essary to reach 95% of the variance, and 6–10 to reach 99%.

Step 2: K-means partitioning
A (crisp) partition is a division of the “objects” under

Fig. 1. (a) Data acquisition: the echosounder signal is decomposed mathematically into a number of variables that will be used for
classification. Each acoustic record is geo-referenced for mapping. (b) Analogue signal from the echosounder. The first backscatter
portion of each “ping” is analysed in the present paper.
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study into nonoverlapping subsets. Agglomerative clustering
methods produce nested partitions, whereas partitioning
methods produce partitions into a predetermined number of
groups (K). For n objects, most agglomerative clustering
algorithms require the computation of a (n × n) similarity or
distance matrix; this is impractical for large data sets like
sonar data. Hence, we turned to partitioning methods. K-
means is the most widely used numerical method for parti-
tioning data. The K-means problem consists of dividing a set
of multivariate data into nonoverlapping groups in such a
way as to minimize the sum (across the groups) of the sums
of squared residual distances to the group centroids; this sta-
tistic is also called the sum of within-group sums-of-squares,
the error sum-of-squares, or the sum of squared errors
(SSE). SSE is the global optimality criterion, or objective
function, implemented in K-means algorithms. Hundreds of
algorithms have been proposed in the literature to solve the
K-means problem.

We implemented the following two-step iterative least-
squares algorithm: (i) compute cluster centroids and use
them as new cluster seeds; and (ii) assign each object to the
nearest cluster seed. This algorithm is described in several
books; for example, Legendre and Legendre (1998).

Since K-means is a NP-hard problem (a category of very
hard problems in computer science), no algorithm can guar-
antee that it will find the optimum partition every time. To
increase the likelihood of finding this partition, two features
have been added to the basic algorithm. (i) The program was
made to proceed in a cascade, finding first a partition into a
number of groups larger than what is needed (e.g., starting at
10 groups). It is easier to find the best partition for a large
number than for a smaller number of groups. When this par-
tition has been found, the two groups whose centroids are
the closest in multivariate space are fused and the algorithm
iterates again to optimize the SSE function. This is repeated
as far as the user wants it to go (e.g., until a partition into
two groups is found). (ii) The whole classification process
(e.g., from 10 to two groups) can be repeated a number of
times (e.g., 25 or 50 times, as specified by the user) using
different random starting configurations. For each number of
groups (e.g., for K = 10, K = 9,…,K = 2 groups), the solu-
tion where SSEK is minimum is retained and written to the
output file.

Step 3: how many acoustic classes?
How to decide on the optimal number of acoustic classes?

A large number of criteria have been proposed in the statisti-
cal literature to decide on the correct number of groups in
cluster analysis. A simulation study by Milligan and Cooper
(1985) compared 30 of these criteria. The best one turned
out to be the Calinski and Harabasz (1974) criterion, called
C-H in the present paper. C-H is simply the F-statistic of
multivariate analysis of variance and canonical analysis. F is
the ratio of the mean square for the given partition divided
by the mean square for the residuals. To help users decide
on the best number of groups present in a data set, our K-
means program computes the C-H criterion; the number of
classes for which C-H is maximum is the best one in the
least-squares sense.

One cannot assume that the best number of groups is
small in acoustic sediment classification. Using the C-H cri-

terion, J.E. Hewitt, S.F. Thrush, P. Legendre, J. Ellis, and
M. Morrison (NIWA, P.O. Box 11-115, Hamilton, New Zea-
land, unpublished data) found cases where the best number
of groups was from K = 2 to K = 19, depending on the data
set.

Step 4: other computation modules
A drawing module allows users to produce simple maps

from the K-means partitioning results and the geographic co-
ordinates of the individual acoustic records. Figure 2 pres-
ents examples of these maps (printed here in black only);
they may include colour, symbols, 95% confidence ellipses
around groups, etc. The maps can be copied and pasted in
one’s favourite drawing program and saved as standard EMF
(Enhanced MetaFile) format.

Another module of the package computes the “geographic
consistency” of the K-means solutions. We want to know if
the groups obtained by partitioning consist of geographic
neighbours; if they do not, we want to know how close they
are to a “geographically consistent” solution in which each
group would only contain points that are contiguous in
space. First, one computes a matrix of geographic contiguity
among points, using one of a number of connection net-
works described, for instance, in Legendre and Legendre
(1998). The type of connection most often used is the
Delaunay triangulation. Our “Links” module, which can plot
the connection network on a map of the data points, is based
upon a Delaunay algorithm by Shewchuk (1996). Then, one
employs the “GeoConsist” module: using the list of connec-
tions between geographic neighbours, this program subdi-
vides each group obtained by K-means partitioning into
geographically connected subsets of points, using a simpli-
fied constrained clustering algorithm (Legendre and
Legendre 1998). One obtains a new partition into a larger
number of groups that are nested into the groups of the K-
means partition. The Rand index (Rand 1971) between the
original and spatially constrained partitions is computed as
an index of geographic consistency. The closer this index is
to 1, the greater is the geographic consistency of the original
K-means solution. Membership of the points in the geo-
graphically constrained groups is also available for mapping.

Example data

On 16 August 1999, acoustic data were collected in the
Forty Baskets Beach area of Sydney Harbour, Australia
(33°48′S, 151°16′ E). We used a Navisound 50 echosounder
at frequency 50 kHz (transducer beam width 13.5°) con-
nected to the QTC VIEW™ acoustic seabed classification
system (CAPS version 3.25, QTC IMPACT™ version 1.0
Beta of Quester Tangent Corporation), which was used to
decompose the backscatter waves mathematically into 166
variables (Fourier analysis of the response wave, 64 vari-
ables; wavelet analysis, 64 variables; 38 other variables de-
scribing the shape of the first acoustic backscatter based
upon the original and cumulative forms) (Fig. 1). The trans-
ducer was mounted on an over-the-side strut on the survey
vessel. The positioning equipment was a differential GPS
(Global Positioning System). The recorded data were cor-
rected and validated using a “Parser” procedure, which is
part of our software. The test data set consisted of 1478 data
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lines (objects, or records) and 166 QTC variables, plus geo-
graphic positions and depths. Since three of the QTC vari-
ables did not vary at all, they were eliminated from the data
set, which was thus reduced to 163 variables.

K-means divided the acoustic data into a series of bands
that follow the depth gradient (Fig. 2). Unfortunately, we do
not have geographically localized visual observations to vali-
date the classification results, but divers reported that the
sediment changed along this gradient and that seagrass
formed a bed parallel to the coast. The C-H criterion indi-
cated that the partition into three groups was the best one in
the least-squares sense. As a statistical model, this partition
explained 79.8% of the variance in the first three PCs, or
76.7% of the variance in the 163 original QTC variables.
Acoustic classification results should be subjected to ground
truthing, which consists of relating the acoustic classes to vi-
sually observed data describing the seabed. J.E. Hewitt, S.F.
Thrush, P. Legendre, J. Ellis, and M. Morrison (NIWA, P.O.
Box 11-115, Hamilton, New Zealand, unpublished data) have
done such a validation study, using underwater video data, of
an acoustic seabed classification obtained from QTC variables
analysed by our software.

Program and report

A computer package (The Q Package) has been developed,
with the financial help of NIWA of New Zealand, to implement
the seabed classification method described in this paper and an-
alyze large data sets. In its present state of development, it can
handle 10 000 data points in real time and 100 000 points with
a small delay, using a recent Windows-based operating system.
Any computer capable of running Microsoft Windows 95 or
later versions (including Windows NT and Windows 2000) can
be used to run the Q Package. A low-end Pentium with 32 Mb
of RAM and Windows 95 is powerful enough to run the pro-
gram, and is perfectly adequate in most cases. The package,
which comes complete with a user’s manual, is available free
of charge at http://www.fas.umontreal.ca/biol/legendre/.

A report, available from the first author, presents a user’s
comparison of the method described in this paper with that of
the QTC VIEW™ CAPS and QTC IMPACT™ software of
Quester Tangent Corporation. The report shows that PCA fol-
lowed by K-means partitioning produces statistically better re-
sults than the classification method implemented in the QTC
software with which we experimented during the SCALE EX-
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Fig. 2. Map of the Forty Baskets Beach sampling area (Sydney Harbour, Australia: 33°48′S, 151°16′ E) showing the K-means partition
of the acoustic records into 2–5 groups (symbols) based upon the first three principal components (96.2% of the variance in the data).
These partitions explain 58.4, 76.7, 81.4, and 84.1%, respectively, of the variance in the data. The partition into three groups is the one
for which the Calinski-Harabasz (C-H) criterion is maximum.
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PERT workshop (Spatial Comparisons Across Large Estu-
aries: EXPerimental Evaluation of Recent Technologies)
organized and hosted by Professor A.J. Underwood at the
University of Sydney, Australia, 2–22 August 1999.
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