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ANALYZING OR EXPLAINING BETA
DIVERSITY? COMMENT

Pierre Legendre,1,3 Daniel Borcard,1 and Pedro R.
Peres-Neto2

In 2005, we published a paper (Legendre et al. 2005;
hereafter referred to as LBP) explaining the ecological

and statistical basis for the analysis of the variation in
species composition among sites (this is one operational

definition of beta diversity), a subject of great impor-
tance for the understanding of the generation and
maintenance of beta diversity and the establishment of

ecologically sound ecosystem conservation policies.
Tuomisto and Ruokolainen (2006) (hereafter referred

to as TR) pointed out several issues in our 2005 paper.
As a response, this note seeks to clarify the issues behind
this contention.

Our major point of disagreement concerns the links
between (1) the ecological predictions derived from

neutral theories of beta diversity, (2) the statistical
hypotheses derived from these predictions, and (3) the
statistical methods used to test these hypotheses. In

LBP, TR, and the present Comment, distance-based
methods refer to statistical methods where the geo-

graphic relationships among sites are represented by a
distance matrix. These methods include the Mantel test
and the derived method of regression on distance

matrices. The raw-data approach refers to multiple
regression and canonical analysis, where the spatial

relationships among sites are represented by a rectan-
gular table containing geographic coordinates, a poly-
nomial of the geographic coordinates, principal

coordinates of a neighbor matrix (PCNM) (Borcard
and Legendre 2002), or derived forms.
The purpose of this Comment is to show that (1) some

predictions of Hubbell’s neutral theory, especially the
presence of positive autocorrelation, can be stated and

tested using the raw-data approach, (2) the distance
approach as proposed by TR (partitioning on distance
matrices) is statistically flawed, and (3) when a raw-data

hypothesis is translated into distances, the correspond-
ing statistical test lacks power; therefore, whenever a

hypothesis can be formulated in terms of raw data

instead of distances, it should be tested using the raw-

data approach.

TR (p. 2698) devoted a large section to three levels of

abstraction that were proposed and defined in LBP (pp.

437–438). Level-1 questions concern alpha diversity, or

the variation in the species identity of organisms at

individual sites. For example: What are the soil

conditions associated with the presence and identity of

10 tree species in a 1-ha plot of temperate mixed-wood

forest? Level-1 questions are irrelevant for the present

Comment. For levels 2 and 3, which are the concern of

LBP and TR, the questions asked are the same in the

two papers. Level 2 concerns the variation in community

composition among sites in a region of interest, which is

beta diversity (community composition encompasses

species composition and species abundances); canonical

variation partitioning is adequate to address questions

pertaining to that level (LBP, p. 438; and TR, p. 2705).

For example: Is the variation in community composition

among sites due to variation in environmental condi-

tions or to neutral community dynamics? Level-3

questions concern the variation in beta diversity among

groups of sites; questions related to that level may be

addressed by the distance-based approach (LBP, p. 438;

and TR, p. 2705), provided that the technical and

statistical uncertainties raised below are settled; see also

point 2 in the section Other points. Note that TR restrict

the level-3 questions to pairs of sites, whereas LBP use

level-3 questions to investigate the differences among

larger groups of sites; for example, adjacent geographic

regions with several sites in each. For example: The

public garden in town A is surrounded by identical

flower beds, each one containing seven species. The beta

diversity (variation in species composition among beds)

in that garden is zero. In town B, the public garden was

designed with flower beds that are all different in species

compositions. Beta diversity is high among the flower

beds. One may wonder why there is such a big difference

in flower bed composition between the two towns. Is it

cultural? Financial? Or is it due to the limited

availability of suitable flowers in town A due to soil or

climate? This question does not focus on the identities of

the flower species, but on the variance in community

composition between the two towns: Are the multispe-

cies dispersion matrices homogeneous when comparing

the two towns, and if not, why? This would be a level-3

question.

Spatial autocorrelation in community composition data

‘‘We argue that S. P. Hubbell’s neutral theory can

only be tested using the distance approach, because its

testable predictions are stated in terms of distances, not

in terms of raw data’’ (TR, Abstract: details on p. 2703).

The section Can we test Hubbell’s neutral theory using the

raw-data approach? will show that spatial autocorrela-

tion can and should be tested using the raw-data
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Montréal, C.P. 6128, Succursale Centre-ville, Montréal,
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2 Département des Sciences Biologiques, Université du
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approach. Several other aspects and predictions of

neutral theory can also be tested without recourse to

distance matrices; see McGill et al. (2006) for a recent

review. Here are a few examples. First, spatial variance

can be used to test neutrality: Under random walk in

species abundances (‘‘ecological drift’’ sensu Hubbell

2001), variance is expected to increase with time (Clark

and McLachlan 2003). Second, the compensatory

dynamics hypothesis of neutral theory can be tested by

assessing the statistical hypothesis that species covary

negatively within communities; Houlahan et al. (2007)

tested this hypothesis on 41 natural communities. Third,

neutrality can be tested by an evolutionary approach, by

studying extinction rates and the ages of species

(Ricklefs 2006). Finally, the relative importance of

environmental control and neutrality can be tested using

variation partitioning by canonical analysis, as shown in

LBP.

Tests of autocorrelation in the distance world.—Hub-

bell’s neutral theory predicts the presence of positive

autocorrelation in community composition due to

dispersal limitation. In this section and the next, we will

show that spatial autocorrelation can be tested both in

the distance and raw-data worlds, but that the raw-data

approach is more powerful and has better-known

statistical properties. Let us review the distance ap-

proach first.

The procedure proposed by Nekola and White (1999),

and used by Hubbell (2001) to detect spatial autocor-

relation, is to plot ecological similarity as a function of

geographic distance. Tuomisto et al. (2003) developed

this idea further by log-transforming the geographic

distances to make the relationship linear, and measured

the fit using a squared matrix correlation (R2
M), which is

the square of the Mantel correlation between distance

matrices. We agree with them that this is one way of

describing the relationship in this simplified form of

correlogram, and we mentioned it in LBP (Abstract and

p. 442). The squared matrix correlation is then

interpreted as an overall coefficient of spatial autocor-

relation.

A Mantel correlogram is another form of analysis

based on distance matrices (Legendre and Legendre

1998: section 13.1.5). It provides a more detailed

analysis than an overall Mantel correlation. A critical

point of logic is that a significant value for a distance

class in a Mantel correlogram does not mean that spatial

autocorrelation is present in the response data; it only

means that there is a significant spatial structure in the

data. Users of both raw-data and distance methods

should be aware of that and be cautious about the

interpretation of the results of correlogram analysis. A

spatial structure can have different origins (Fortin and

Dale 2005: chapter 5): It may indicate spatial depen-

dence induced by the environmental factors, or spatial

autocorrelation resulting from the stochastic demo-

graphic processes described by Hubbell (2001). The

algebraic equation describing the spatial variation of a

variable y at sampling locations i is: yi¼ f (Xi)þ SAiþ ei
(Legendre et al. 2002). Because of their spatial struc-

tures, the environmental variables in table X may induce

spatial dependence in the response y; that effect is

separate from spatial autocorrelation proper (SA) which

results from the spatial dynamics of y; ei is the ‘‘local

innovation,’’ or error term, at location i. For example, if

there is an environmental effect in the species data and

the forcing environmental variable has a broad-scale

spatial structure, this will cause similarity decay plots to

show monotonically decreasing similarity as geographic

distance increases. A significant negative relationship

(RM) in a similarity decay plot or a significant value in a

Mantel correlogram does not allow one to conclude

about neutrality because it may be due to unmeasured

environmental variables that are spatially autocorrelated

and that influence the species distributions; it can be

interpreted in terms of neutrality only if other factors

were logically excluded or partialed out.

Can we test Hubbell’s neutral theory using the raw-data

approach?—In this section, we will show by simulations

that the raw-data approach is the method that should be

used to test hypotheses about positive spatial autocor-

relation in neutral communities, one of Hubbell’s

predictions. We conducted a new Monte Carlo study

akin to the one in our original publication (LBP). In that

paper, canonical variation partitioning had proved to be

the most powerful method to detect spatial autocorre-

lation in simulated community composition data, when

compared to Mantel tests, whatever the method used to

represent the spatial relationships in the two forms of

analysis (see LBP: Table 1, columns with headings [b þ
c]). This was especially true when the spatial structure

was modeled using PCNM variables, which are directly

related to spatial autocorrelation functions (Dray et al.

2006). In the new study reported here, we simulated

spatially patterned communities along a transect fol-

lowing Hubbell’s neutral model with migration. Our

Monte Carlo study was based on the following steps: (1)

Generate a neutral metacommunity distribution of

relative species abundances using Hubbell’s algorithm

(Hubbell 2001: Fig. 9.1, p. 291). The algorithm is based

on two parameters: Jm is the number of individuals in

the metacommunity, and h is the fundamental biodiver-

sity number. The metacommunity starts with a single

individual ( j¼ 1) of a single species and individuals are

added until the metacommunity reaches Jm individuals.

As each individual is added to the metacommunity, the

individual is assigned to either an already existent

species or to a new species (which is then added to the

metacommunity). The probability of the jth individual

being assigned to a new species is h/(hþ j� 1). If the jth

individual was not assigned to a new species, then it was

added to a previously existent species with a probability
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equal to the species’ proportion of individuals in the

metacommunity. (2) Once the neutral metacommunity

was created, we randomly populated lc local communi-

ties with individuals from the metacommunity. Each

local community was populated with the exact same

number of individuals J (i.e., J ¼ Jm/lc), randomly

sampled with replacement from the metacommunity.

Again, each species was sampled according to the

species’ proportion of its individuals in the metacom-

munity. (3) We then set out a death and immigration

process, following McGill (2003), in a simulation based

on 10 000 time steps as follows: First, local communities

in step 2 were spatially distributed along a transect.

Then, the simulation started, and at each time step, a

randomly chosen individual from each local community

was killed (deleted). Next, a random uniform number

was generated: If smaller than m (migration rate), a

randomly chosen individual was copied (i.e., birth with

migration) from one of the two nearest-neighbor local

communities along the transect, with equal chances, to

replace the deleted individual; if larger than m, an

individual from the local community was randomly

chosen and duplicated (i.e., birth without migration).

The probability of an individual belonging to a

particular species was equal to the species’ proportion

of individuals in the local community (without migra-

tion) or in the chosen adjacent local community (with

migration). (4) When the migration dynamics was

completed after 10 000 time steps, we tested whether

the community distribution was spatially structured

using both the raw-data and distance approaches.

The two analytical approaches were identical to those

followed in LBP. The raw-data analyses used canonical

redundancy analysis (RDA) of the Hellinger-trans-

formed response species table by a table of principal

coordinates of neighbor matrices (PCNM). For simplic-

ity, n/2 PCNM variables with positive eigenvalues were

used (i.e., no selection of the best PCNMs), providing a

conservative test since a large number of degrees of

freedoms are lost to the PCNMs. The PCNMs used in

the tests only modeled patterns related to positive spatial

autocorrelation, which was the kind predicted by

Hubbell’s theory. The distance approach was based on

a Mantel test of the correlation between a Hellinger

distance matrix among sites, representing the species

data, and a geographic distance matrix D(XY ) comput-

ed from the X and Y geographic coordinates (i.e.,

positions along the transect); this is the way spatial

relationships are represented in most instances in Mantel

tests. Significance tests were based on 999 random

permutations. Using combinations of h, J, lc, and m, we

generated 1000 metacommunities for each combination,

and each was tested using the raw-data and distance

approaches. Results are presented in Table 1; they

clearly show that the raw-data approach is a far more

powerful method than the distance approach for

detecting spatial autocorrelation in neutral communi-

ties.

In the last paragraph of page 2703, TR argued that

An existing spatial pattern in community composition

can be described a posteriori, especially by such

powerful methods as PCNM [. . .]. However, doing so

does not test the neutral model, because the neutral

model did not predict that this was the particular spatial

pattern that was expected to emerge in this particular

case. Any specific spatial pattern in community

composition is just as much in accordance with the

neutral model as any other, as long as the degree of

spatial autocorrelation is similar.

The last statement is true for distance as well as raw-

data methods and does by no means invalidate the latter

in favor of the former. This is why we issued a warning

about the various origins of spatial structure in the

section Tests of autocorrelation in the distance world

above. This being said, if other sources of variation have

been logically or technically excluded, PCNM analysis

(which is closely related to autocorrelation functions;

Dray et al. 2006) is far more powerful at detecting raw-

data structures emerging as a consequence of autocor-

relation, than the distance approach is at detecting

distance patterns emerging from autocorrelation. There-

fore, we advocate the raw distance (PCNM) approach.

TR argued on page 2705 that, because Hubbell’s

neutral theory’s ‘‘testable predictions are stated in terms

TABLE 1. Rates of rejection of H0 at significance level a¼ 0.05
for the raw-data and distance approaches, each based on
1000 simulations, for detecting spatial structures due to
migration in simulated neutral communities.

h m lc

J ¼ 1000 J ¼ 10 000

Raw data Distance Raw data Distance

10 0.1 20 0.940 0.215 0.137 0.069
10 0.1 30 0.992 0.201 0.200 0.043
10 0.1 50 1.000 0.170 0.194 0.053
10 0.2 20 1.000 0.450 0.277 0.077
10 0.2 30 1.000 0.430 0.401 0.077
10 0.2 50 1.000 0.397 0.545 0.066
20 0.1 20 0.998 0.286 0.165 0.055
20 0.1 30 0.999 0.276 0.228 0.066
20 0.1 50 1.000 0.221 0.296 0.047
20 0.2 20 1.000 0.652 0.424 0.101
20 0.2 30 1.000 0.620 0.571 0.094
20 0.2 50 1.000 0.544 0.776 0.088
30 0.1 20 1.000 0.385 0.196 0.075
30 0.1 30 1.000 0.332 0.306 0.065
30 0.1 50 1.000 0.311 0.412 0.057
30 0.2 20 1.000 0.759 0.541 0.088
30 0.2 30 1.000 0.759 0.725 0.101
30 0.2 50 1.000 0.674 0.902 0.099

Note: Here, h is the fundamental biodiversity number; m is
the migration rate; lc is the number of local communities; and J
is the number of individuals in the local community.
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of distances, not in terms of raw data,’’ only a method

involving distances would be valid for testing the theory.

They went on and wrote that ‘‘attempting to test this

ecological hypothesis using the raw-data approach may

give quite misleading results.’’ Contrary to the simula-

tions reported by LBP, autocorrelation in all commu-

nities analyzed in the present simulations was strictly

generated under Hubbell’s neutral model. Table 1 shows

that the distance decay method was not nearly as

powerful as the raw-data approach in detecting spatial

autocorrelation in the data. Our new simulations show,

therefore, that the raw-data approach is actually the

most appropriate for testing this aspect of the theory.

Partitioning on distance matrices

Tuomisto et al. (2003) proposed to partition the

variation of the ecological resemblance matrix using

multiple regression on distance matrices: ‘‘More recent-

ly, variation partitioning has been extended to the

distance approach by using multiple regression on

distance matrices (Duivenvoorden et al. 2002, Tuomisto

et al. 2003)’’ (TR, p. 2698). We developed that regression

method for phylogenetic analysis (Legendre et al. 1994)

and implemented it in the computer program (Casgrain

2001) that was used by Duivenvoorden et al. (2002),

Tuomisto et al. (2003), and other authors who followed

in their footsteps. A technical problem arises with the

extension that they proposed. They combined by

subtraction the coefficients of determination of three

matrix regressions (R2
M) to compute linearly independent

fractions of variation allegedly corresponding to: (a) the

nonspatially structured variation explained by the

environmental distance matrix, (b) the spatially struc-

tured species variation explained by the environmental

distance matrix, and (c) the spatially structured species

variation not explained by the environmental distance

matrix. We argue that variation partitioning cannot be

computed in that way from distance matrices even if the

ecological hypotheses are stated in the distance world.

The problem here is not ecological in nature but

mathematical (application of variation partitioning to

distance matrices) and statistical (low power of the

distance approach when compared to the raw-data

approach). These points are discussed below.

TR have indeed proposed to carry out variation

partitioning using distance-based R2
M, but for this

method to be demonstrated to be valid, one should first

show (1) that it produces approximately correct

estimates of the fractions of variation; (2) that the

fractions of variation thus isolated are additive; (3)

whether families of variables (e.g., environment) should

be represented by a single synthetic distance matrix or

by one matrix per variable, two procedures which lead

to very different results; and (4) how the R2
M coefficients

and the fractions of variation should be interpreted. The

rationale presented by TR for their methodological

extension of variation partitioning solely relies on the

Legendre et al. (1994) paper. This is insufficient: The

validity of multiple regression on phylogenetic distance

matrices does not warrant the extension to variation

partitioning on ecological distance matrices. TR would

provide an extremely constructive element to this debate

by producing simulations giving clear answers to the

four questions above.

Assuming that TR could answer the four questions

about their partitioning method, the question of power

remains acutely important. It motivated our compara-

tive simulation study of the two partitioning methods. In

both LBP and the present paper (previous section), we

showed that the Mantel test had extremely low power in

spatially explicit simulations. This means that it was

unlikely to detect a species–environment relationship or

a spatial structure when such an effect was present in the

data. Considering the high cost of good ecological data,

we felt it was our responsibility to explain to ecologists,

who sought variation partitioning results to support

their theories, what the most appropriate statistical

method was to achieve their aims.

There are several statistical reasons for the low power

of the Mantel test. The reasons revolve around (1) the

fact that the R2
M statistic is inappropriate for questions

about variation of community composition among sites

in a region of interest (level-2 questions in LBP, TR, and

in the section Other points below); (2) the difficulty of

computing an adjusted form of R2
M; and (3) the lack of

additivity of R2
M, which is crucial for variation parti-

tioning.

Incorrect statistic.—The recent literature shows that

many researchers still use the distance approach to solve

level-2 questions, which is incorrect. LBP and TR agree

on this point (TR: Fig. 2). Some examples are listed in

LBP (pp. 438–439). It is thus urgent to warn researchers

against this confusion. The technical reason is that the

quantity which is partitioned in partitioning on distance

matrices is the sum-of-squares of the distances, SS(D),

and this quantity is not equivalent and cannot be

reduced to the total sum-of-squares of the response data

matrix SS(Y) (LBP: Eq. 2). Hence, the Mantel statistic

R2
M is not equivalent to the canonical R2. The simulation

results reported in LBP were crucial in showing that this

makes a big difference for interpretation of the results.

Adjusted coefficient of determination.—We now know

that in regression, the R2 statistic is a biased estimate

of the true population R2. Adjustments for this bias

exist: Ohtani (2000) showed that, under certain

assumptions, Ezekiel’s (1930) adjusted coefficient of

determination (R2
a) is an unbiased estimator of the

contribution of a set of explanatory variables X to the

explanation of the variance of a single response

variable y: R2
a ¼ 1 � a(1 � R2), where a ¼ (n � 1)/(n �

m� 1) for models with an intercept; n is the number of

observations, and m is the number of explanatory
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variables in the model. Peres-Neto et al. (2006) have

shown that the adjusted canonical R2
a , obtained by

applying Ezekiel’s correction to the canonical R2

obtained in RDA, also produces unbiased estimates

of the real contribution of the variables in X to the

explanation of a response matrix Y, and that it is these

values of R2
a that must be used to obtain unbiased

estimates of the fractions in variation partitioning.

This conclusion is important for variation partitioning

based upon distance matrices. No equation has been

proposed to compute an adjusted R-square (R2
Ma) in

Mantel-type regression. In Ezekiel’s equation, should

we use m ¼ 1 for a single explanatory matrix X in the

regression, or should we make m equal to the number

of original variables that were included in the

calculation of the distances leading to X? Should n be

the number of original objects (sites) or the number of

distances in half or the whole distance matrix? In any

case, the very idea of an adjusted R2 is suspicious in

matrix regression because R2
M should be interpreted as

a measure of fit of a model to pairwise distances and

not in terms of the proportion of variation of a

response matrix D1 explained by an explanatory

matrix D2.

Additivity.—One final point concerns the additivity of

the fractions resulting from variation partitioning. We

now know how to partition the variation of a response

matrix Y with respect to several explanatory matrices X

using RDA. In raw-data partitioning, an identical total

fraction of explained variation is obtained, whether all

explanatory variables are put in a single table X or they

are divided into any number of sub-tables (environmen-

tal, spatial, and so on). The effects of the explanatory

variables are thus additive. This is not the case in

partitioning on distance matrices: Different total

amounts of explained variation for the response Y are

obtained if one includes all explanatory variables in a

single distance matrix or if separate distance matrices are

computed for the various explanatory variables. This

clearly shows that variation partitioning based on

distances lacks the essential property of additivity,

which is the basis for interpretation of variation

partitioning results. TR are well aware of this fact, as

they mention that in the distance approach ‘‘R2 values

will change depending on [. . .] whether all environmental

variables are combined into a single distance matrix or

used in separate matrices’’ (p. 2707).

The debate about the R2 does not concern the

statistical tests themselves (Mantel test for two

matrices, or global test in a multiple regression on

distance matrices). It only concerns the use of the

squared Mantel coefficient, or the R2 of the multiple

regression on distance matrices R2
M, as a measure of the

fraction of explained variation, and following that as

the basis for computation of the fractions in variation

partitioning.

Question levels

We agree with TR that Mantel tests should be

restricted to level-3 questions, described in the Introduc-

tion, whereas canonical variation partitioning addresses

level-2 questions: We spelled that point out in LBP.

However, TR’s last paragraph of their section Testing

ecological hypothesis C (p. 2704) claims that the

hypothesis of environmental control of species distribu-

tions (a level-2 question) ‘‘is testable with the distance

approach.’’ They simply restate a level-2 question (the

effect of environmental variables on species distribu-

tions) in level-3 terms (correlation between environmen-

tal distances and community distances). TR’s

recommendation is thus in blatant contradiction to our

simulation results; distance-based methods must be

avoided for level-2 questions. The simulations reported

in Table 1 (sections B–E, column [a þ b]) of LBP have

clearly shown that Mantel tests were highly inefficient at

detecting species–environment relationships when such

relationships were present in data. It is therefore

counterproductive to restate a level-2 question in

distance terms.

Canonical variation partitioning is perfectly adequate

to test predictions under TR’s hypotheses A, B, and C

(p. 2703). The low power of the Mantel approach to

detect environmental relationships or spatial structures

in community composition data where these relation-

ships were present, as demonstrated by the simulations

of LBP (Table 1, A–C), is a sufficient reason to avoid the

distance approach to answer questions related to these

hypotheses. Neutral processes generate spatial autocor-

relation in community data, and PCNM analysis is very

efficient at detecting it. This is shown by the simulation

results reported in Borcard and Legendre (2002), in

LBP, and in Table 1 of the present paper. These

simulations also demonstrate that the Mantel test is very

inefficient at detecting spatial autocorrelation in data. In

all cases investigated here, the Mantel test is inadequate

for level-2 questions reformulated in terms of distances,

due to its extremely low statistical power; hence, the

ecological hypotheses related to level-2 questions must

be tested in the world of the raw data whenever that is

possible.

Other points

1) In their section The difference between ‘‘analyzing’’

and ‘‘explaining’’ beta diversity,’’ TR (p. 2701) propose

that any pairwise comparison of sites is a level-3

question. This is an incorrect statement: Pairwise

comparisons can be made in the raw-data as well as in

the distance world. It is therefore not surprising that,

from this incorrect premise, they derived the incorrect

conclusion that all the examples we cited as misuses of

the Mantel test were in fact legitimate.

2) TR agreed with LBP that level-3 questions concern

the variation in beta diversity among pairs or larger
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groups of sites. Let us concentrate on larger groups of

sites found in different sub-areas of the region under

study: Establishing that there is variation among sub-

areas can be translated into testing a hypothesis of

homogeneity/heterogeneity of dispersion matrices

among regions, each containing a group of sites. This

can be done by the classical test of homogeneity of

multivariate dispersion matrices (which compares the

full within-group multivariate variance-covariance ma-

trices; Kullback 1959), or the new test of homogeneity of

within-group dispersions (ANOVA of distances of

individual multivariate observations to their group

centroid) described by Anderson (2006). More than

two sites per group should be available for these

analyses in order to obtain reliable estimates of the

mean and variance parameters. The Mantel-based

approach should be compared, by numerical simula-

tions, to homogeneity analysis in order to determine

which of the two approaches is the most powerful to

detect heterogeneity in data.

Conclusion

The main argument presented by TR is that the

predictions of Hubbell’s model are formulated in terms

of distances; hence, tests of significance should be

conducted in the distance world. We have shown (1)

that the presence of autocorrelation predicted by the

neutral model is a level-2 question, which can and

should be tested by canonical analysis using raw-data

tables; (2) that the Mantel test should not be extended to

variation partitioning on distance matrices until the very

serious technical issues about that extension have been

settled; and (3) that important level-2 hypotheses, for

instance, those about environmental control determin-

ing community structure, should imperatively be tested

in the world of raw data due to the extremely low power

of the Mantel test.

The method of partitioning the variation of multivar-

iate community composition data tables between envi-

ronmental and spatial components (Borcard et al. 1992,

Borcard and Legendre 1994), based on RDA, has now

been generalized to several explanatory data matrices; a

statistical function is freely available in the R language

‘‘vegan’’ library (Oksanen et al. 2007) to compute the

results for up to four such matrices. Its domain of

application as a method for spatial analysis was greatly

improved by the development of PCNM analysis

(Borcard and Legendre 2002, Borcard et al. 2004). We

did the theoretical and the simulation work necessary to

demonstrate the statistical correctness and usefulness of

our method. Likewise, we developed regression on

distance matrices for phylogenetic studies (Legendre et

al. 1994), but we did not interpret R2
M as anything but the

adjustment of a model to data, for the reasons developed

in the section Partitioning on distance matrices above.

The proponents of partitioning on distance matrices are

invited to provide the same in-depth work to demon-

strate the soundness of their approach.
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