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Community surveys through space and time:
testing the space–time interaction in the absence of replication
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Abstract. In order to test hypotheses about changes in the environment induced by man,
including climatic change, ecologists are sampling portions of the environment repeatedly
across time. This paper describes a method for testing a space–time interaction in repeated
ecological survey data, when there is no replication at the level of individual sampling units
(sites). This methodological development is important for the analysis of long-term
monitoring data, including systems under anthropogenic influence. In these systems, an
interaction may indicate that the spatial structure of community composition has changed in
the course of time or that the temporal evolution is not the same at all sites. This paper
describes ANOVA models corresponding to the steps leading to a solution to the problem,
which is based on the representation of space and time by principal coordinates of neighbor
matrices (PCNM eigenfunctions) in the ANOVA. Numerical simulations showed that
ANOVA Model 5 was the model of choice for the analysis of the space–time interaction
because it always had correct rates of Type I error, and its power was always equal to or higher
than those of other possible models of analysis. If the hypothesis of absence of interaction is
not rejected, one cannot conclude that a change has occurred in the spatial structure of the
response data across time; one should follow the ordinary rules of two-way ANOVA if testing
the significance of the main factors is of interest. If the hypothesis of absence of interaction is
rejected, one should model the spatial structure of each time period in a separate way. One can
also conduct a single test involving a separate model of the spatial structure for each time
period. This paper presents two applications to real ecological data.

Key words: ANOVA, analysis of variance; Barro Colorado Island permanent forest plot; canonical
redundancy analysis; climate change; ecological surveys; numerical simulations; principal coordinates of
neighbor matrices (PCNM); space–time interaction; Trichoptera.

INTRODUCTION

In order to test hypotheses about changes in

ecosystems induced by man, including climatic change,

ecologists sample portions of the landscape repeatedly

across time. Selected portions of the landscape are set

aside for long-term studies; these may be transects or

surfaces of different sizes. Research of this kind is

conducted, for example, at the 26 sites belonging to the

Long Term Ecological Research (LTER) network in the

United States (available online).2 The mission of that

network is to develop knowledge and predictive

understanding to conserve, protect, and manage ecosys-

tems, their biodiversity, and the services they provide.

The best indicator variables available to monitor such

changes are multispecies ecological communities; the

data tables are thus multivariate. Different types of

communities can be monitored; some types (e.g.,

zooplankton) are known to react to short-term changes,

whereas other communities (e.g., forests) respond more

slowly and are studied in order to monitor longer term

changes.

In long-term monitoring, the available resources

(manpower, time, money) are used to cover as much

ground as possible during each sampling campaign.

Sampling designs for transects and surfaces are made to

contain as many different sampling units (sites) as

possible. Fine-scale replication is sacrificed in the

process. Space–time sampling conducted in that way

produces an unreplicated repeated-measures design,

which is a type of two-way factorial design. According

to classical statistical theory, the lack of replication

means that one is able to test the variability along space

and time if one can reasonably assume that the

interaction is zero, but a test of the space–time (S–T)

interaction is impossible (Zar 1999). Within the classical

statistical testing procedure, one can circumvent the

problem of lacking replicates by defining strata formed

of neighboring sampling units; the strata thus contain

replicates (Legendre and McArdle 1997). When an

impact can be clearly located in space and time, the

Before/After – Control/Impact (BACI) sampling de-

signs, introduced in the seminal book of Roger Green

(1979), can be implemented. In this type of design, a

significant result for the test of the interaction between
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the two crossed factors (before-after impact times and

control-impact areas) is the statistical indication that a
significant impact has occurred (Green 1979:42).

In the no-replication situation, ecologists would still
like to test the space–time interaction for two reasons: (1)

because a significant interaction would indicate that the
temporal structures differ from site to site, and that the

spatial structures differ from time to time; and (2)
because estimating an interaction sum-of-squares allows
one to partial out its effect in statistical tests of the main

effects. A significant S–T interaction in the structure of
communities is the first statistical indication ecologists

should look for to detect changes in ecosystems resulting
from natural or man-made causes: an interaction

indicates that the spatial structure of the community
has changed through time, and we can infer from that

finding that some process must be at work that has
caused the change. The implication for analysis is that if

the interaction is significant, one should carry out
separate analyses of the temporal variance for the

different points in space, or separate analyses of the
spatial variance for the different times. Overall tests of

separate spatial or temporal structures are also possible.
The absence of a significant interaction, on the contrary,

would indicate either that the differences among times
can be modeled in the same way at all points in space –
and conversely, or that the analysis did not have enough

power to detect a significant interaction. Hence, alterna-
tive ways to cope with space–time interaction are needed.

A procedure was proposed by Tukey (1949) to test for a
multiplicative effect in two-way ANOVA models. That

procedure, however, only tests for multiplicative main
effects using a single degree of freedom. Tukey developed

it mostly to determine if data ought to be transformed
prior to two-way ANOVA. The procedure described here

tests for more general forms of interaction.
In this paper, we will first describe five mathematical

models for ANOVA of space–time data. Three of these
models involve coding the space and/or time factors

using a different coding scheme (principal coordinates
of neighbor matrices [PCNM] eigenfunctions), which is

more economical in degrees of freedom than binary or
Helmert coding, thus allowing a test of the interaction to

be performed. That method only applies to spatially or
temporally structured response variables. We will use

numerical simulations to check if that new form of
coding leads to tests of significance for the interaction
that have correct levels of Type I error. We will also

verify the power of these tests using simulated data sets
designed to contain S–T interactions. Following that, we

will address the question of how to test the main factors
in different circumstances. Finally, we will apply the new

method to real ecological examples.

MATERIALS AND METHODS

Models to test the space–time interaction

Consider a study design with s sampling units across

space and t sampling campaigns at different times. Let

us start with the well-known classical two-factor

ANOVA model with interaction, assuming that there

are r replicates for each combination of space unit and

sampling campaign. From that starting point, we will

move to new models developed to solve the problem

described in the Introduction (Fig. 1).

Model 1: Two-way ANOVA crossed design with

interaction.—In this model, the observations are repli-

cated within each group (balanced design, r replicates

per experimental condition):

yijk ¼ lþ ai þ bj þ abij þ eijk : ð1Þ

In the equation, yijk is the response variate for the kth

replicate in the ith spatial unit during the jth sampling

campaign, l is the overall mean, ai is the effect of the ith
spatial unit, bj is the effect of the jth sampling campaign,

abij is the effect of the interaction between ai and bj, and

eijk is the error term. The total sum-of-squares, SSTot,

and the corresponding degrees of freedom are parti-

tioned in the following way:

SSTot ¼ SSðlÞ þ SSSpce þ SSTime þ SSInt1 þ SSRes1 ð2aÞ

s 3 t 3 r ¼ 1þ ðs� 1Þ þ ðt � 1Þ þ ðs� 1Þ3ðt � 1Þ

þ s 3 t 3ðr � 1Þ: ð2bÞ

There is one degree of freedom attached to the

estimation of the overall mean using the data. The

sum of squares corresponding to the interaction term,

SSInt1, captures all nonadditive effects of space and time.

Contrary to the following models, there is no power

decrease in Model 1 due to lack of fit since we estimate

the residual SS from replicated values in the same

experimental conditions (i.e., the expected value for the

residual mean square is r2). However, if there are no

replicates, r¼ 1; this leaves no degrees of freedom (s 3 t

3 (r� 1)¼ 0) to estimate the residual SS. That explains

why, in the classical statistical framework, the S–T

interaction cannot be tested in space–time studies

without replication.

Model 2: Two-way crossed ANOVA design without

interaction.—If we do not have replicates and we are

willing to assume that the interaction is nonexistent, we

may choose to move its SS to the residuals. This yields

the following model:

yij ¼ lþ ai þ bj þ eijk ð3Þ

where the decompositions of SS and degrees of freedom

are

SSTot ¼ SSðlÞ þ SSSpce þ SSTime þ SSRes2 ð4aÞ

and

s 3 t ¼ 1þ ðs� 1Þ þ ðt � 1Þ þ ðs� 1Þ3ðt � 1Þ: ð4bÞ

In this model, one cannot estimate a separate sum-of-

squares for the interaction because there is a single

observation in each group. If there were replicates, the
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residual sum-of-squares SSRes2 would actually be the

sum of SSInt1 and SSRes1 of Model 1. If an interaction

truly exists (i.e., if abij 6¼ 0 for some i and j

combination), then there will be a lack of model fit,

SSLOF2 ¼ SSInt1 where LOF designates lack of fit. The

residual mean square will be overestimating r2 and the

tests for significant overall spatial and temporal

variation will lose power. In other words, using Model

2, the tests of significance for space and time will have

correct Type I error only if the interaction is negligible

(i.e., if abij ¼ 0 for all i and j ). Hence we see that

analyzing the interaction is interesting both for testing

its possible significant effect and for partialling its effect

out in statistical tests of the main effects.

The approach adopted here for testing a space–time

interaction considers the analysis of variance as a

multiple regression problem using a design matrix, as

described for example by Shaw and Mitchell-Olds

(1993). Among the various forms of dummy variable

coding, we select Helmert contrasts (Chambers and

Hastie 1992, Venables and Ripley 2002), also called

‘‘orthogonal dummy variables’’ (see Appendix C in

Legendre and Anderson 1999). In balanced crossed

sampling designs (i.e., when the same number of sites are

surveyed during each sampling campaign), the Helmert

contrast coding variables are orthogonal to one another

(i.e., their scalar products are zero) and each one sums to

zero. They are also orthogonal to the column of ‘‘ones’’

representing the overall mean effect. The s sites require s

– 1 Helmert contrast variables for coding (design matrix

Xs–1). Similarly, the t sampling campaigns require t – 1

Helmert contrast variables for coding (design matrix

Xt–1). The interaction term is obtained by multiplying

each of the s – 1 contrast variables coding for sites by

each of the t – 1 contrast variables coding for times,

producing (s – 1) 3 (t – 1) new variables (design matrix

XInt). These product variables are orthogonal to one

another and have zero sums. They are also orthogonal to

the main effect Helmert contrasts. As a consequence, the

interaction can be tested as a term that is linearly

independent of the variables coding for space and for

time.

Model 1, re-expressed as a multiple regression model

with design matrices, is the following using matrix

notation:

y ¼ 1lþ Xs�1aþ Xt�1bþ XIntðabÞ þ e ð5Þ

FIG. 1. Sum of squares partitioning for the six models of space–time analysis. Light shading corresponds to model lack of fit;
these quantities are added to the residual sum of squares (dark shading). Models 6a and 6b (to test the significance of a spatial effect
in the presence of a space–time interaction) are described in Appendix C.
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where 1 is a column vector of ones; a, b, and (ab) are
vectors of regression coefficients for the spatial, tempo-
ral, and interaction terms respectively, and e is the vector
of error terms. We will also change our notation for the

sum-of-squares decomposition (Fig. 1, Model 1):

SSTot1 ¼ SSð1Þ þ SSðXs�1Þ þ SSðXt�1Þ þ SSðXInt1Þ

þ SSRes1: ð6Þ

The degrees of freedom are the same as in Eq. 2b and are

equal to the numbers of Helmert contrast variables used
to express the various terms in the regression model.

In the case of Model 2 (Fig. 1, Model 2), our inability

to test the interaction comes from the fact that s – 1
Helmert contrasts are necessary to code for space, and t

– 1 for time. The same number of variables would be
necessary using any other coding scheme (e.g., ordinary

binary dummy variables) where the codes simply

indicate that all s sites are different from one another,
and likewise for time. As in the ANOVA model, when

all explanatory variables are considered and there is no

replication, one ends up with no degree of freedom for
the error term. Therefore, we need a coding system for

space and time that is more economical in the number of

coding variables, in order to keep some degrees of
freedom to estimate the residuals and their sum-of-

squares. The trade-off is that the resulting model will
produce a lack of fit, which will reduce power compared

to an analysis with replication.

Model 3: Two-way ANOVA crossed design with space
under-fitted.—Instead of not estimating a separate term

for the interaction, as in Model 2, we may choose to risk

underfitting other terms. For instance, if we fit the
spatial structure using u variables, where u , (s – 1), we

end up with the following regression model:

y ¼ 1lþ Xuaþ Xt�1bþ XInt3ðabÞ þ e ð7Þ

where design matrix Xu codes now for the spatial
fraction and XInt3 contains u 3 (t – 1) variables now

coding for the space–time interaction fraction. For a

discussion of the nature of the u variables used to code
for the spatial relationships see the Encoding space and

time using PCNM eigenfunctions section. The total sum
of squares partitioning is now (Fig. 1, Model 3)

SSTot ¼ SSð1Þ þ SSðXuÞ þ SSðXt�1Þ þ SSðXInt3Þ

þ SSRes3: ð8aÞ

Compared to Model 1, this model changes not only

SS(Xs�1) by SS(Xu), but also SS(XInt1) by SS(XInt3).
Matrix XInt3 is obtained by multiplying each of the

variables in Xu by each of the variables in Xt�1. The

partitioning of the degrees of freedom is

s 3 t ¼ 1þ uþ ðt � 1Þ þ u 3ðt � 1Þ þ ðs� u� 1Þ3 t:

ð8bÞ

If we compare them to the degrees of freedom of Model
1, we see that, since u , (s – 1) and u3 (t – 1) , (s – 1)3

(t – 1), this model saves some degrees of freedom that

can be used to estimate the residual error. As a

drawback, SS(Xu) can be lower than SS(Xs�1), and

SS(XInt3) can be lower than SS(XInt1). The lack of fit of

the model, SSLOF3, contains the lack of fit for the space

and interaction terms with respect to Model 1. That is,

SSLOF3 ¼ ½SSðXs�1Þ � SSðXuÞ� þ ½SSðXInt1Þ � SSðXInt3Þ�:
ð9Þ

SSLOF3 is part of the residual sum-of-squares: SSRes3 ¼
SSLOF3þ SSRes1. The larger SSLOF3 is, the less power will

the statistical tests have in Model 3. Furthermore,

parametric tests will have a correct Type I error only when

space and interaction effects are nonexistent (i.e., whenai¼
0 for all i and abij ¼ 0 for all ij ). In the absence of an

interaction effect, permutation tests for the time fraction

can be made exact (i.e., with a correct Type I error) by

restricting thepermutations towithin the samespatial units

(Anderson and ter Braak 2003). That is, in permutation

tests based on this model, we can handle the lack of fit of

the spatial fraction but not that of the interaction.

Model 4: Two-way ANOVA crossed design with space

and time under-fitted.—A similar situation arises when

using fewer explanatory variables to express both the

space and time factors:

y ¼ 1lþ Xuaþ Xvbþ XInt4ðabÞ þ e ð10Þ

where Xv codes now for the time fraction using v , (t –

1) variables, and XInt4 contains u 3 v variables now

coding for the space–time interaction, obtained by

multiplying each of the variables in Xu by each of the

variables in Xv. The total sum-of-squares partitioning is

as follows (Fig. 1, Model 4):

SSTot ¼ SSð1Þ þ SSðXuÞ þ SSðXvÞ þ SSðXInt4Þ þ SSRes4:

ð11aÞ

The corresponding partitioning of the degrees of

freedom is

s 3 t ¼ 1þ uþ vþ u 3 vþ ½s 3 t � ðuþ vþ u 3 vÞ � 1�:
ð11bÞ

Analogously to the previous models, SSRes4¼ SSLOF4þ
SSRes1. Here, SSLOF4 contains the model lack of fit for

the space, time, and interaction terms with respect to

Model 1; that is,

SSLOF4 ¼½SSðXs�1Þ � SSðXuÞ� þ ½SSðXt�1Þ � SSðXvÞ�

þ ½SSðXInt1Þ � SSðXInt4Þ�: ð12Þ

Under this model, parametric statistical tests will have a

correct level of Type I error only when all effects are

nonexisting and the data only contains random error

(i.e., when ai¼ 0 for all i, bj¼ 0 for all j, and abij¼ 0 for

all ij ). Permutation tests for the main factors can be

made exact only when the interaction is absent. Besides

the fact that SSLOF4 will always be larger than SSLOF3,

more degrees of freedom are saved for the residuals in
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Model 4 than in Model 3. As a consequence, significance

tests are not necessarily less powerful for Model 4 than

they are for Model 3.

Model 5: Two-way ANOVA crossed design with

interaction under-fitted.—An interesting last possibility

is to use Helmert contrasts for both space and time, as in

Models 1 and 2, and use the u and v coding variables to

generate the interaction variables and (under-) fit the

interaction term as in Model 4, still saving degrees of

freedom for the residuals:

y ¼ 1lþ Xs�1aþ Xt�1bþ XInt4ðabÞ þ e: ð13Þ

The total sum of squares partitioning is as follows (Fig.

1, Model 5):

SSTot ¼ SSð1Þ þ SSðXs�1Þ þ SSðXt�1Þ þ SSðXInt4Þ

þ SSRes5 ð14aÞ

where SSRes5¼ SSLOF5þ SSRes1¼ [SS(XInt1) – SS(XInt4)]

þ SSRes1. The corresponding decomposition of degrees

of freedom is

s 3 t ¼ 1þ ðs� 1Þ þ ðt � 1Þ þ u 3 v

þ ½ðs� 1Þ3ðt � 1Þ � u 3 v�: ð14bÞ

For example, in the absence of replication (r¼ 1), if t¼ s

¼ 10 and we choose a coding system such that u¼ v¼ 5,

then the residual df will be [(s – 1)3 (t – 1) – u3 v ]¼81 –

25¼56. This model presents two advantages: (1) it would

allow testing the interaction in the absence of replication,

and (2) the test of the interaction would have a correct

rate of Type I error, which is a rejection rate of H0 equal

to the significance level when the interaction is nonexist-

ing (i.e., when abij¼0 for all ij ); this is precisely what the

null hypothesis states for the effect of the interaction

term. Model 5 is thus probably the best model to test the

interaction in the absence of replication. It may,

however, be slightly less powerful than Model 4 because

fewer degrees of freedom can be assigned to the residuals.

Summarizing this section, if one has replicates, Model

1 is the correct choice. If not, then space–time

interaction can safely (in terms of Type I error rate) be

tested using Model 5. If interaction turns out to be

nonsignificant, one can test for the main effects using

Model 2. The absence of a significant interaction

indicates either (1) that the differences among times

can be modeled in the same way at all points in space,

and conversely, or (2) that an interaction was present

but the number of observations was insufficient to

obtain a significant result (n too small, lack of power;

Type II error). In contrast, if the interaction is

significant, one should perform separate spatial analyses

for the different sampling campaigns and/or separate

time series analyses for the different spatial units.

The F statistic

When the response is univariate, the F statistic is

constructed in the usual way. Using the representation

of ANOVA as a multiple regression problem, as in the

previous subsections, the equation for the F statistic is

F ¼ SS; factor of interest=m

SS; residuals=ðn� 1� m� qÞ ð15Þ

where m is the number of variables coding for the factor

of interest in the analysis, n is the number of

observations, and q is the number of variables coding

for any other factor or the interaction in the analysis,

besides the factor of interest.

When the response table is multivariate with p

columns, Miller (1975) has shown that the F statistic

has the following form:

F ¼ SS; factor of interest=pm

SS; residuals=pðn� 1� m� qÞ : ð16Þ

The multiplication of the degrees of freedom by p in the

numerator and denominator is due to the fact that each

parameter is computed p times during the calculations

when there are p response variables. Using numerical

simulations, Miller (1975) also showed that in canonical

redundancy analysis (RDA), in the special case where

(1) the response variables are all standardized to mean¼
0 and variance ¼ 1, and (2) the error is normal, the F

statistic constructed in that way can be tested using the

Fisher–Snedecor F distribution with degrees of freedom

pm for the numerator and p(n � 1 � m – q) for the

denominator. If these two conditions are not met, the F

statistic must be tested by permutation.

We will use that same F statistic for our tests of

significance in the multivariate case. We will not carry

out parametric tests of significance, though, because

typically community composition data are not stan-

dardized, and the error is certainly not normally

distributed. We will be using permutation tests to

alleviate the problems associated with the error distri-

bution. Even though degrees of freedom do not really

matter in permutation tests, it is still recommended to

use an F statistic for such tests because F is pivotal (a

pivotal statistic is a statistic whose distribution, under

the null hypothesis, does not depend on the value of the

measured effect or unknown parameters). For the

calculation of F, Eq. 16 simplifies to Eq. 15 because p

is present in both the numerator and denominator.

Eq. 15 for the F statistic can be used for the tests of

the main factors and the interaction when space and

time are considered to be fixed factors (Model I

ANOVA; Zar 1999). This is not always the case. When

the two factors are considered random (Model II

ANOVA), the denominator of the F statistic contains

the interaction mean square for the tests of the two main

factors. In a mixed model with a fixed and a random

factor (Model III ANOVA), the denominator of the F

statistic contains the interaction mean square for the test

of the fixed factor. The STI package provided in the

Supplement provides options for space and time being

treated as fixed or random factors.
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Encoding space and time using PCNM eigenfunctions

In a previous section, different regression models have
been presented for testing the significance of space, time,

and interaction, along with their advantages and
drawbacks. We have not yet described, however, a

coding system for space and time that would be more
economical in coding the main factors. The purpose here

is to replace binary or Helmert contrast coding by
continuous explanatory variables without losing too

much model fit. We will make use of the extra
information that we possess about the physical relation-

ships among the sampling units in space and time. For
example, if we are willing to assume that the sampling

units through time form a linear gradient, we could
replace the t – 1 variables coding for sampling times by a

single continuous ‘‘time’’ variable containing dates (e.g.,
sampling years). That would be a rather strong

assumption; it would limit the ability of the test to
identify significant variation if the response is not linear
with time.

A less restrictive form of coding is to represent the

spatial and temporal relationships among the sampling
units by principal coordinates of neighbor matrices
(PCNM eigenfunctions; Borcard and Legendre 2002,

Borcard et al. 2004), which are a form of Moran’s
eigenvector maps (MEM; Dray et al. 2006). PCNM

eigenfunctions represent a spectral decomposition of the
spatial (or temporal) relationships among sampling sites

(or times). They are orthogonal to one another, and may
be used to fit many distinct nonlinear situations. PCNM

eigenfunctions are a more parsimonious representation
of the spatial and temporal relationships among

observations than ordinary dummy variables or Helmert
contrasts. How PCNM eigenfunctions are computed

from the sampling locations and time positions (hence
not from the response data), and used in ecological

analysis, has been described in detail in recent papers
cited above; these points will not be repeated here to

save space. Note that these eigenfunctions are limited to
modeling spatial and temporal relationships. Indeed,
space and time are the continuous bases in which

contagious spatial and temporal processes occur, which
can create spatial and temporal structures in response

data. PCNM eigenfunctions cannot be used to model
regular factors encountered in experimental designs.

To model the space and time variation, we are
proposing to use s/2 or t/2 PCNM functions; s/2 and

t/2 are rounded down to the closest integer value. More
eigenfunctions could be used, but this would leave fewer

degrees of freedom for the estimation of the error mean
square in the test of the interaction. For example, 10

equispaced sampling times can be modeled by five
PCNM functions representing sine functions of decreas-

ing periods. The references mentioned previously have
shown that PCNM functions can model spatial or

temporal variation having any shape, as long as the size
of the structures to be modeled is larger than the period

of the smallest PCNM variables used in the analysis.

Sampling each point in space (S) during each

sampling campaign (T) creates an orthogonal design.

For that reason, the PCNM functions, which are

orthogonal within each set (S, T), are also orthogonal

between sets. In space–time analysis, the S–T interaction

can be modeled by creating variables that are the

products of each S–PCNM by each T–PCNM. The S–T

interaction variables are orthogonal to the S–PCNMs

and the T–PCNMs. Orthogonality of the variables

representing space, time, and interaction allows the

analysis of each factor without interference (linear

dependence) on the part of the other factors, just like

in ordinary ANOVA.

NUMERICAL SIMULATIONS

Numerical simulations were conducted to assess the

Type I error rate of ANOVA Models 3, 4, and 5

described in Fig. 1 and to determine which model had

the highest power to test the S–T interaction in the

absence of replication. The generation of the simulated

data and the simulation scenarios are described in

Appendix A. The results, reported in detail in Appendix

B, are summarized here.

Simulations under Scenario 1 (random data) showed

that in the absence of a spatial or temporal structure, all

tests of the S–T interaction had correct rates of Type I

error.

Simulations under Scenario 2 (surfaces with no S–T

interaction, no temporal structure, and a spatial

autocorrelated structure common to all sampling times)

and Scenario 3 (surfaces with spatial and temporal

structures but without space–time interaction) showed

that the rejection rate of the S–T interaction was much

lower than the nominal 5% significance level in ANOVA

Models 3 and 4. It was, however, near the significance

level for ANOVA Model 5.

We will now focus on the test of the space–time

interaction under simulation Scenario 4 (surfaces with

spatial and temporal structures as well as space–time

interaction) using ANOVA Models 3, 4, and 5. This is

the most interesting case in the present study. The

rejection rates displayed in Appendix B (Table B4a–c)

were first analyzed by ANOVA to detect effects of the

simulation factors: the use of univariate or multivariate

simulated response data, the amounts of spatial and

temporal autocorrelation in the data, the number of

spatial and temporal units in the simulated data, and the

ANOVA model. The ANOVA results (not shown)

indicated that interactions were present among the

simulation factors. As a consequence, the univariate

results were treated separately from the multivariate

results, and the two combinations of spatial and

temporal autocorrelation were also treated separately,

resulting in four separate analyses. In the separate

ANOVAs, the two factors ‘‘ANOVA model’’ and ‘‘sum

of the numbers of spatial and temporal units’’ were

significant in nearly every case (differences among

ANOVA models were not significant only in univariate
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data, spatial autocorrelation ¼ 20 combined with

temporal autocorrelation¼ 5). The results are illustrated
in Fig. 2; they summarize the raw results shown in

Appendix B (Table B4). To facilitate comparisons
between methods, the rejection rates, on a scale from 0

to 1, are represented on a modified scale from �0.5 to
0.5, with negative values represented by white squares
and positive values by black squares. The following

observations can be made on Fig. 2. (1) Multivariate
response data (b, d: more black squares) provided higher

power to the S–T interaction test than univariate data
(a, c: more white squares). (2) Power of the S–T

interaction test under ANOVA Model 5 was similar to
that of Model 4 for equal amounts of spatial and

temporal autocorrelation (a, b: same number ofþ signs
for Models 4 and 5), but power was higher in Model 5

for unequal amounts of autocorrelation in the data (c, d:
more þ signs for Model 5). (3) When spatial and

temporal autocorrelation were identical (a, b), the S–T
interaction test was less powerful under Model 3 (more –

signs) than under Models 4 and 5 (moreþ signs). Model
3 was, however, equal to or more powerful than Model 4

for unequal amounts of autocorrelation (c, d), although
Model 5 remained the most powerful (more þ signs).

In summary, our simulation results indicate that in
the absence of replication, ANOVA Model 5 is
preferable to test S–T interactions: the rate of Type I

error corresponds to the nominal significance level and
that model provides maximum power in all situations.

The simulation results are in agreement with and
support the conclusion reached from theoretical consid-

erations at the end of the section Models to test the
space–time interaction.

When the hypothesis of no interaction is not rejected
and one has strong reasons to believe that the

interaction is zero, one possibility (but see the first
recommendation in the Conclusion section) is to analyze

the spatial and temporal structures using the classical
test of S and T without replication, which is our

ANOVAModel 2. We had to consider that model in our
simulations because this is how most researchers have

analyzed space–time data without replication until now.
The simulation results discussed in Appendix A indicate

that when there was truly no S–T interaction in the data,
Model 2 was the most powerful, followed by Model 5

and, finally, Models 3 and 4. In Scenario 4, when an
interaction was present in the data but was not detected
(Type II error), Model 4 was the most powerful to detect

significance of the main factors, followed by Models 3
and 5, and finally Model 2.

APPLICATIONS TO REAL ECOLOGICAL DATA

Trichoptera data

A transect of 22 ‘‘week’’ model emergence traps
(LeSage and Harrison 1979), 0.25 m2 in capture area,

was laid along the outflow stream of Lac Cromwell
(4585901300 N, 7385904700 W) on the territory of Station de

Biologie des Laurentides (Université de Montréal). The

stream was surveyed during a period of 100 days; the

traps were set on 24 May and visited daily from 25 May

to 1 September 1984. The number of emerging adults

belonging to 56 Trichoptera (Insecta) species was noted

every day. Insect counts within each 10-day period were

pooled in order to avoid an excess of zero values. The

data set to be analyzed thus comprises 22 sites, 10 time

periods (each one pooling 10 days of captures), and 56

species. Our aims in this application were to (1) check

for the presence of space–time interaction in the data,

and (2) if an interaction is present, describe it by

identifying groups of points that were homogeneous in

space-by-time space.

We first transformed the Trichoptera abundance

values using the y0 ¼ log(y þ 1) transformation. The

multivariate log-transformed data was then used as the

response table for testing for the presence of a space–

time interaction using Model 5, which was shown to be

the most powerful for that test in the simulation study.

The space–time interaction was highly significant (R2 ¼
0.205, P ¼ 0.0001 after 9999 permutations).

After a Hellinger transformation of the raw abun-

dance values (Legendre and Gallagher 2001), the 220

data points (22 sites, 10 time periods) were analyzed by

K-means partitioning in order to visualize the interac-

tion. The ‘‘cascadeKM’’ function of the ‘‘vegan’’

package (Oksanen et al. 2007) in the R statistical

language was used to perform this analysis. The simple

structure index (ssi ) was called upon to identify the best

partition; the index was maximum for five groups. A

spatiotemporal map of the partition is presented in Fig.

3. Group 2 (triangles) dominated the emergences during

the first two 10-day periods, but group 1 (circles)

dominated the next three periods. During time periods

6–7, a well-defined spatial pattern appeared with blocks

of traps belonging to different groups: groups 3 (plus),

then 5 (diamonds), then 1 (circles), then 5 (diamonds),

then 3 (plus), then 5 (diamonds), then 4 (3), then 2

(triangles), then 4 (3), then 5 (diamonds). Time period 8

(3–12 August) served as a transition to the last two time

periods where groups 2 (triangles), 3 (plus), and 4 (3)

became dominant.

Indicator species were identified for each group using

the ‘‘duleg’’ function of the ‘‘labdsv’’ library (Roberts

2006), which implements the IndVal method of Dufrêne

and Legendre (1997). The IndVal method is now part of

a larger framework described by De Cáceres and

Legendre (2009). After Holm correction for multiple

testing (56 simultaneous tests had been performed), 17

species were identified as significant indicators of the five

groups of space–time points. The results are discussed in

Appendix D.

Barro Colorado Island permanent forest plot

We reanalyzed the Barro Colorado Island (BCI)

permanent forest plot data in order to learn about the

temporal stability of the spatial distribution of trees in

that famous forest plot. We used the stem-based plot
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data covering four censuses (1982–1983, 1985, 1990, and

1995) and counted the trees with 10 mm diameter at

breast height (dbh) or more, by species, in grid cells of 20

3 20 m. For each census, we obtained a data table

containing 1250 rows (cells). The four data tables were

merged into one large data table with 5000 rows and 315

species. We used a variant of Model 5 to test the space–

time interaction. The interaction term was modeled

using PCNM variables for space, whereas Helmert

contrasts were used to code for the four sampling

campaigns. We first tested the space–time interaction on

each of the 315 tree species separately, after log-

transforming their abundances (y0 ¼ log(y þ 1)). We

used a ¼ 0.05 and 999 permutations for the analysis of

each species. According to our results, about 43% of the

tree species had significantly changed their spatial

structures across the four censuses. Changes in the

spatial distribution of a species could result from an

FIG. 2. Simulation results for three ANOVA models used to test space–time interaction. Values of rejection rates (see
Numerical simulations) are represented on a scale from�0.5 (large white squares) toþ0.5 (large black squares). The signs indicate
which symbol in a row represents the smallest (�) and the largest (þ) value; there are more than one ‘‘smallest’’ or ‘‘largest’’ value in
some rows. The results are divided into four panels by the simulation factors: univariate data (a, c) or multivariate data (b, d), and
importance of spatial and temporal autocorrelation (panels a, b vs. c, d). In each panel, three columns give the rejection rates for
ANOVA Models 3, 4, and 5. The rows correspond to the sum of the numbers of spatial and temporal units in the simulated data.
Each point is the result of 1000 independent simulations. On the ordinate, p equals the number of variables (columns) in the
response data tables.
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invasive process. However, while Drypetes standleyi

(Euphorbiaceae) is considered to be invading the plot

from the east (Harms et al. 2001), we found that its

spatial structure did not change significantly during the

study period (P ¼ 0.498). Other spatial changes may

have originated due to strong perturbations or climatic

change. Condit (1998) reported a decline in nearly all

BCI tree and shrub species associated with moist

microhabitats due to a reduction in rainfall and a

lengthening of the dry seasons. We found that among

the 31 species associated with slope habitats (Harms et

al. 2001), which are moister than the plateaus in BCI, 23

(74%) had significantly changed their spatial distribu-

tions. Examples are the crash of dominant moisture

specialists like Poulsenia armata (Moraceae, P ¼ 0.001)

and the displacement of the population of Beilschmiedia

pendula (Lauraceae, P ¼ 0.001) towards areas of higher

slope (Fig. 4).

We also carried out a space–time interaction test on

the multivariate Hellinger-transformed abundance data,

which turned out to be highly significant (P¼ 0.001 after

999 permutations). Hence, the changes at the species

level were strong enough to allow the detection of

changes in the spatial distribution of species composi-

tion at the community level.

In another application, Laliberté et al. (2009) studied

the space and time factors, as well as the space–time

interaction, in a temperate forest understory where tree

seedling abundances had been monitored during a 9-yr

period at 40 permanent plots.

CONCLUSION

The testing procedure described in this paper allows

ecologists to study the presence of an interaction in

univariate or multivariate (e.g., community structure)

response data without sampling replication. This was

not possible using classical analysis of variance for

unreplicated space–time data.

Regarding the comparison of ANOVA models for

testing the space–time interaction, we found that Model

5 had a better Type I error rate than Models 3 and 4: in
the presence of main factor effects, the Type I error of

Model 5 was always correct for univariate response data

and asymptotically correct for multivariate data, while

those of Models 3 and 4 were too low. Our results

indicate that Model 5 is the model of choice for the

analysis of the S–T interaction because its power was
always equal to or higher than those of Models 3 and 4.

Our recommendation is thus to perform first a test of the

S–T interaction using ANOVA Model 5, and then

proceed as follows.

(1) If the hypothesis of no interaction is not rejected,

one cannot conclude that a change has occurred in the

spatial structure of the response data across time. In that
case, one should follow the ordinary rules of two-way

ANOVA if testing the significance of the main factors is

of interest. (a) In ANOVA Model II (two random

factors) or III (mixed model with a fixed and a random

factor), if the interaction is not significant at a very high

significance level (e.g., a ¼ 0.25; Underwood 1997:
section 9.7), the interaction and residual mean squares

may be pooled following the rules stated in Underwood

(1997: section 11.7). That decision is subject to the

possibility that a Type II error occurred during the test

of the interaction. Our ANOVA Model 2 is an
unweighted version of post hoc pooling. This should

never be done in Model I ANOVA (two fixed factors).

(b) A more generally conservative attitude is to always

stick to the ANOVA model chosen a priori. Always use

that option in Model I ANOVA (two fixed factors).

(2) If the hypothesis of no interaction is rejected, the

user is allowed to model the spatial structure of each

time period in a separate way (Underwood 1997: section

FIG. 3. Spatiotemporal map showing the K-means partition of the emergence trap observations into five groups. Abscissa: trap
line with traps numbered 1 (upstream) to 22 (downstream). Ordinate: 10-day time periods numbered 1 to 10. Symbols for groups: 1,
circle; 2, triangle; 3, ‘‘plus’’ sign (þ); 4, ‘‘times’’ sign (3); 5, diamond.
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10.8). The test can be carried out separately for each

sampling time (Appendix C: Model 6a: one-factor

ANOVA model). One can also conduct a single test

involving a separate model of the spatial structure for

each time period (Appendix C: Model 6b: stacked one-

factor ANOVA model). The temporal structure of each

sampling point can be analyzed in the same way by

interchanging space and time.

A test of an interaction without replication has, of

course, less power than a test conducted using replicated

data. The problem challenged in this paper is, however:

What can one do to test an interaction in the absence of

replication? This question is of interest to all researchers

who conduct spatial ecological surveys repeated across

time. Identifying an interaction in the community

composition data is a clear signal that the community

has reacted to changing environmental conditions (or

other causes) by modifying its spatial structure. The new

test should prove useful to detect natural or man-made

changes in ecological communities and ecosystems.
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APPENDIX A

Numerical simulations for Type I error and power of the five ANOVA models: method and results (Ecological Archives E091-
019-A1).

APPENDIX B

Tables of simulation results (Ecological Archives E091-019-A2).

APPENDIX C

Tests of S and T in the presence of a significant interaction (Ecological Archives E091-019-A3).

APPENDIX D

Indicator species of the Trichoptera example (Ecological Archives E091-019-A4).

SUPPLEMENT

The STI package (source code and compiled libraries for Windows and Mac OS X), an R language library for the analysis of the
main factors space and time and the interaction in space–time studies using permutation tests (Ecological Archives E091-019-S1).
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