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Abstract. When partitioning the variation of univariate or multivariate ecological data
with respect to several submodels of spatial eigenfunctions (e.g., Moran’s eigenvector maps,
MEM) acting as explanatory data, a problem occurs: although the submodels are constructed
to be orthogonal to one another, the partitioning based on adjusted R2 statistics produces
nonzero values in the intersections between spatial submodels. This phenomenon is described
and two solutions are proposed. The first solution is to apportion the intersection fractions
proportionally to the variation explained by each submodel. The second solution consists in
creating a hierarchy among the spatial submodels, in accordance with hierarchy theory. These
solutions lead to new partitioning equations that are described in the Appendix. R functions
are provided to carry out partitioning with respect to environmental variables and spatial
eigenfunction submodels. This development is important for the correct interpretation of
spatial modeling results implying explanatory environmental data as well as submodels of
spatial eigenfunctions involving two or more spatial scales.

Key words: adjusted R2; asymmetric eigenvector maps (AEM); hierarchical partitioning; Moran
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INTRODUCTION

A general method for partitioning the variation of a

response data matrix with respect to two or more

matrices of explanatory variables in linear models was

proposed by Borcard et al. (1992). That method is well-

known among ecologists: variation partitioning Venn

diagrams, derived from set theory, and drawn using

different styles (overlapping bars, rectangles, circles,

squares, and so on), are now found in many papers in

community ecology and other fields.

In early papers, the partitioning was carried out by

adding and subtracting R2 statistics computed from

models each involving a single explanatory matrix. For

two matrices of explanatory variables for example, the

fractions of variation were computed as follows:

1) First, compute the R2 statistic associated with three

linear models of a single explanatory matrix, computed

using multiple regression if there is a single response

variable, or canonical redundancy analysis (RDA) for a

multivariate table of response variables containing, for

example, community composition data:

R2ðY jX1Þ is the R2 of Y

analyzed with respect to explanatory matrix X1 ð1aÞ

R2ðY jX2Þ is the R2 of Y

analyzed with respect to explanatory matrix X2 ð1bÞ

R2ðY j ½X1;X2�Þ is the R2 of Y

analyzed by X1 and X2 bound together in a single matrix:

ð1cÞ

2) Then, compute the fractions of variation:

½a� ¼ R2ðY j ½X1;X2�Þ � R2ðY jX2Þ ð2aÞ

½b� ¼ R2ðY jX1Þ þ R2ðY jX2Þ � R2ðY j ½X1;X2�Þ ð2bÞ

½c� ¼ R2ðY j ½X1;X2�Þ � R2ðY jX1Þ ð2cÞ

½d� ¼ residual variation ¼ 1� R2ðY j ½X1;X2�Þ: ð2dÞ
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The notation (Y jX) refers to the analysis (regression or

RDA) of Y by X and R2(Y jX) is the R2 of that analysis.

Fraction identifiers [a] to [d] are shown in Fig. 1a. That

method of calculation can be extended to more than two

explanatory matrices, as shown in the Appendix.

In 2006, Peres-Neto et al. showed that the R2 statistic

computed in RDA is a biased estimator of the explained

variation, producing increasingly high values as explan-

atory variables are added to the analysis, even though

these variables are not linearly related to the response

data under study. This phenomenon had already been

shown for the R2 statistic computed in multiple

regression (Ohtani 2000). Peres-Neto et al. also showed

that unbiased estimates of the fractions computed in

variation partitioning require that the partitioning

equations be based on adjusted R2 statistics (R2
a ; Ezekiel

1930) instead of simple R2. To obtain R2
a for an

explanatory matrix containing random variables, i.e.,

variables whose values result from measurements on

some types of random processes, the R2 must be

corrected using its degrees of freedom, which depend

in turn on the number of objects (n) and the number of

variables (m) contained in the explanatory matrix. The

adjustment is based on the fact that R2
a must be near 0

for explanatory variables that are random (i.e., no

effect) with respect to the response data Y. As a result of

the Peres-Neto et al. (2006) paper, the variation

partitioning equations (Eqs. 2a–2d) are now based on

the calculation of R2
a statistics. In the R language, the

method is implemented in function varpart( ) of the

vegan package (available online).4

Spatial eigenfunction analysis is a method of growing

interest for multiscale spatial analysis of ecological data.

Spatial eigenfunctions produced by these methods are

called by the general name Moran’s eigenvector maps

(MEM; Dray et al. 2006); distance-based MEM

(dbMEM), which were formerly called PCNM eigen-

functions (Borcard and Legendre 2002), belong to that

group. Asymmetric eigenvector maps (AEM; Blanchet

et al. 2008a, 2009) are also spatial eigenfunctions

belonging to the same family. This family of methods

was developed during the past 10 years. Spatial

eigenfunctions can be computed for points located at

regular or irregular intervals along transects or on maps.

They have the properties of modeling the spatial

variation at all scales encompassed in the sampling

design and of being orthogonal to one another. The

construction and practical use of spatial eigenfunctions

is described in Chapter 7 of Borcard et al. (2011) and in

Chapter 14 of Legendre and Legendre (2012).

In many studies, the eigenfunctions are divided into a

number of submodels corresponding to different spatial

scales of interest in a study. The eigenfunction sub-

models can be used as explanatory data in linear

modeling, including variation partitioning. These sub-

models are orthogonal to one another, meaning that the

scalar product of two submodels produces a null matrix.

Therefore, one expects to obtain linearly independent

linear models from the eigenfunction submodels, the

submodels having no shared explained variation. It

turns out, however, that the presently available equa-

tions for variation partitioning, based on R2
a , create

small non-null intersection values between submodels

constructed from linearly independent groups of spatial

eigenfunctions. These small intersection values are most

often negative. That problem is revisited in the present

paper.

FIG. 1. Venn diagrams of variation partitioning results for (a) two matrices of random variables X1 and X2 (e.g., environmental
variables, or a matrix of random variables X and one of MEM spatial eigenfunctions); identifiers of the fractions [a] to [d] are
shown; (b) two matrices of spatial MEM submodels between which a hierarchy was created. The fractions of variation explained by
MEM matrices are in gray.

4 http://cran.r-project.org/package¼vegan
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METHOD

How does a nonzero shared fraction of variation (e.g.,

fraction [b] in Fig. 1a) originate? Fraction [b] is not

estimated from a linear model of the data but computed

by addition and subtraction of previously computed

fractions, as shown in Eq. 2b. When this equation is

computed using R2 statistics, the value of [b] is 0 for two

perfectly orthogonal explanatory matrices, e.g., two

matrices of spatial eigenfunctions corresponding to

models at different scales; values of [b] different from

0 indicate correlations between the two matrices, e.g.,

two matrices of environmental variables. With adjusted

R2, however, addition and subtraction of R2
a values in

Eq. 2b does not produce 0 for two matrices of

orthogonal variables, but small positive or negative

values.

How often are these fractions negative and how small

is small? For example, after 10 000 repeated and

independent simulations, the variation of spatially

structured response variables simulated along a regular

transect with 30 points, partitioned between two MEM

submodels (broad-scale, fine-scale), produced 9815

negative fractions [b] (identified in Figs. 1a and 2a) out

of 10 000, hence only 185 positive. The values of [b]

computed from R2
a were in the range [–0.0997, 0.0227].

In another experiment, a spatially structured response

variable simulated on a regular grid with 8 3 12 ¼ 96

points was partitioned among three MEM submodels

(broad-scale, middle-scale, fine-scale); the simulations

produced 9959 negative fractions [d], 9651 negative

fractions [e], and 9880 negative fractions [f] in 10 000

simulations (see Fig. 2a for the fraction identifiers).

Fractions [d ] were in the range [–0.0236, 0.0012],

fractions [e] were in the range [–0.0169, 0.0014], and

fractions [f] were in the range [–0.0235, 0.0012].

The problem is actually not limited to matrices of

spatial eigenfunctions. R2
a statistics are not additive, so

the sum of the R2
a statistics of models computed from

explanatory matrices X1 and X2 is never strictly equal to

the R2
a of the model computed from the union of

matrices X1 and X2 even when the variables in X1 and X2

are orthogonal among the groups. This problem is,

however, especially annoying in studies where the

variation of response data is partitioned among eigen-

function submodels corresponding to different spatial

scales because these submodels are orthogonal to one

another by construction.

How can we remediate this problem? In other words,

using adjusted R2, how can we obtain a partitioning of

the variation of the response matrix by a combination of

matrices of spatial eigenfunctions and environmental

variables, without producing fractions of shared varia-

tion different from 0 between the matrices representing

spatial eigenfunction submodels?

A first idea that comes to mind would be to refrain

from using R2
a statistics in analyses involving explanato-

ry matrices containing spatial eigenfunctions. However,

the logic of the correction for number of variables prior

to the calculation of the fractions of variation applies to

spatial eigenfunctions as well: the R2 statistic increases

with the number of variables in each matrix for spatial

eigenfunctions, just as they do for matrices of random

variables (e.g., environmental), independently of their

capacity to explain the variation of the response data, so

that the resulting R2 statistic overestimates the amount

of explained variation.

Proportional apportioning of the shared fractions

A first solution is to apportion the intersection

fractions proportionally to the variation explained by

each submodel. The total variation explained by the

combined submodels is entirely accounted for in the

partition. This solution is interesting in, and applicable

to, studies where no hierarchy among the spatial

processes is recognized. As an example, a vegetation

study where broad-scale spatial structures are consid-

ered as proxies for climatic constraints, and fine-scale

patterns represent edaphic conditions, would be well

served by this approach since the two classes of

constraints are not conceptually nested. Calculation

details for proportional apportioning are shown in the

Appendix. The results are illustrated in Figs. A1–A3.

Hierarchical partitioning of the shared fractions

A second solution is to create a hierarchy among the

orthogonal eigenfunction submodels in the analysis

according to the scales they represent. In the two-

submodel case, for example, we can state that the broad-

scale (BS) submodel has priority over the fine-scale (FS)

submodel. The consequence of that decision on the

calculations is that the BS submodel is served first in the

variance resource and secures for itself the small

fractions found in the intersection with the FS sub-

model. As a result, the intersection in explained

variation between the two submodels, which is of

interest in partitioning involving two matrices of

random variables or one matrix of random variables

and a matrix of spatial eigenfunctions (Fig. 1a),

disappears in Fig. 1b where two matrices of orthogonal

spatial eigenfunctions (MEM) are used as explanatory

variables.

The logic behind the second approach is the

following: in most analyses of the spatial variation of

communities, we expect environmental control processes

to be at work, and we know from hierarchy theory

(Simon 1962, Allen and Starr 1982, O’Neill et al. 1991)

that broad-scale environmental processes, like orogenic

and geomorphological processes on land or currents and

winds in fluid environments, often generate broad-scale

signatures in the response data. What is more difficult is

to identify the signatures of smaller-scale processes like

the action of biotic interactions and other forms of
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neutral processes. One must have a conservative attitude

in assessing small-scale signatures of processes in order

to only focus on those that are likely to be really present

in data. A conservative strategy is to allow broader-scale

MEM spatial models to explain variation without

allowing smaller-scale submodels to interfere. The

hierarchy is established on a priori grounds. The

previously shared fractions become irrelevant, as are

the signs that these shared fractions would have had

with specific data sets. If our ecological hypothesis

makes us think that we are in this kind of situation, this

authorizes us to create such a hierarchy among the

spatial MEM submodel matrices prior to variation

partitioning. The advantage of this solution is that the

R2
a of the dominant MEM submodel is perfectly

represented in the partition result, as shown in the

example. If the researcher does not have a hierarchical

hypothesis, he/she may use the proportional apportion-

ing method described two paragraphs above, or simply

use the traditional partitioning results that have small

shared, but un-interpretable fractions.

In a study involving three explanatory matrices, one

expects to find intersection fractions, which are of

interest, when using either three matrices of environ-

mental variables, or two matrices of environmental

variables and a matrix of spatial eigenfunctions (Fig.

2a). If there are three matrices of spatial eigenfunctions,

one can apply the hierarchy described in the previous

paragraphs between eigenfunction models representing

decreasing spatial scales: the broad-scale (BS) submodel

may be given priority over the middle-scale (MS)

submodel, which in turn has priority over the fine-scale

(FS) submodel. The BS submodel is served first in the

variance resource and secures for itself the small

fractions found in the intersection with the MS and FS

submodels. Then the MS submodel is served before the

FS submodel (Fig. 2c). When there is a matrix of

environmental variables and two matrices of spatial

eigenfunctions, a hierarchy is created only between the

two matrices representing spatial submodels (Fig. 2b):

the environmental variables have shared variation with

FIG. 2. Venn diagrams of variation partitioning results for three explanatory matrices: (a) classical partitioning, (b, c) results of
hierarchical partitioning.
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both spatial submodels, but then the BS submodel has

priority over the fine-scale (FS) submodel.

The results are fairly simple to compute. For the two

explanatory matrix case, consider the fractions comput-

ed by Eq. 2, now used with R2
a instead of R2: for the two

spatial eigenfunction case (Fig. 1b), add the value

computed for [b] in Fig. 1a with the value of [a] and

use the sum as the new [a] value in the hierarchy shown

in Fig. 1b. For the three explanatory matrix case, Fig. 2b

is obtained by adding fractions [d] and [g] of Fig. 2a to

obtain the new value of [d] in Fig. 2b, and adding [b] and

[e] of Fig. 2a to obtain the new value for [b] in Fig. 2b.

For the three spatial submodel case shown in Fig. 2c, [a]

is obtained by adding [a], [d], [f] and [g] from Fig. 2a; [b]

is obtained by adding [b] and [e] from Fig. 2a; and [c] has

the same value as in Fig. 2a.

The same calculations can be extended to the four

explanatory matrix situation. The Venn diagrams are

harder to draw (Appendix: Fig. A4), but the logic is the

same. Note that in all cases, the residuals remain

unchanged.

The calculation details for hierarchical partitioning

involving two, three, and four explanatory matrices are

given in the Appendix. The results are illustrated in Figs.

1, 2, and A4.

Software

Functions varpart2.MEM( ), varpart3.MEM( ), and

varpart4.MEM( ) in R can be used to carry out the

calculations. They are provided in a Supplement. These

functions offer the hierarchical or the proportional

methods as options. In the output tables of these

functions, the variation corresponding to the fractions

that have disappeared is left blank although the proper

notation would be the empty set (Ø). These functions rely

upon function varpart( ) of the vegan package (see

footnote 4). Functions print.varpart( ) and plot.varpart( )

of the vegan package can be applied to the output of

these functions to print partition tables and produce

Venn diagrams.

Tests of significance of the fractions of variation

explained by the eigenfunction submodels can be carried

out as usual with function anova.cca( ) of vegan, using

all other explanatory matrices in the analysis as

covariables. The choice of the partitioning method

(hierarchical or proportional) for spatial eigenfunction

submodels does not matter and has no influence on the

results of the tests.

EXAMPLE ON REAL DATA

We exemplify the new procedures by applying them to

the well-known oribatid mite data set that has been used

in many papers dealing with variation partitioning and

spatial analysis (e.g., Borcard et al. 1992, 2004, 2011,

Dray et al. 2006). The data are available in the vegan

and ade4 R language packages as well as with the

Borcard et al. (2011) book. The mite community

composition data (70 sites and 35 species) were

Hellinger-transformed prior to variation partitioning

(Legendre and Gallagher 2001). The three explanatory

matrices involved are (1) an environmental matrix

containing two quantitative variables (water content in

percent and substrate density in grams per liter of dry

uncompressed matter) and two matrices of dbMEM

eigenfunctions that were forward-selected using the

Blanchet et al. (2008b) double stopping criterion. We

first selected the hierarchical solution for this example

because the hypothesized processes correspond to the

general framework exposed above: most environmental

constraints are of the same kind, vary at broad scale,

and are expected to impose coarse patterns on the

community structure, while more local substrate varia-

tion and biotic interactions are expected to induce fine-

scale structure within the main patterns. The broad-scale

MEM submodel contains MEM 1 to 4 whereas the fine-

scale submodel comprises MEM 6 to 11 and 16.

Fig. 3a shows the result of a classical partitioning and

Fig. 3b the result of the hierarchical partitioning

procedure. The comparison shows how giving priority

to the broad-scale MEM submodel makes the interpre-

tation easier. Note that since fractions [e] and [g] of the

classical partitioning were negative (a common occur-

rence), the final amount of variation explained by the

broad-scale MEM submodel, as well as the fraction

common to the environmental variables and the broad-

scale MEM submodel, are lower than in Fig. 3a (the

fraction identifiers [a] to [h] are the same as in Fig. 2a).

The total amount of explained variation remains the

same, however, to within rounding errors of the

numbers displayed in the figure.

Fractions [a], [c], and [f] are unaffected by the

hierarchical approach since they involve only the pure

contributions of the environmental and fine-scale MEM

matrices and their jointly explained variation. The

hierarchy affects the broad-scale MEM submodel in

that this submodel now completely incorporates frac-

tions [e] and [g] that, otherwise, would be common to the

broad- and fine-scale MEM submodels. In the hierar-

chical partitioning result, the R2
a of the broad-scale

MEM submodel is perfectly represented in the partition

result.

To make the numerical example complete, Fig. 3c

illustrates the result of the proportional apportioning

method. The intersection fractions are apportioned

proportionally to the variation explained by each

submodel, that is, fraction [b þ d] of Fig. 2a for the

broad-scale submodel and fraction [c þ f] for the fine-

scale submodel. The numerical artifacts represented by

fractions [e] and [g] were not taken into account in

calculating the relative importance of the submodels

because they are the quantities that must be apportioned

between [b þ d] and [c þ f].
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CONCLUSION

The development described in this paper sheds a new

light on the interpretation of spatial modeling results

implying explanatory environmental variables as well as

submodels of spatial eigenfunctions involving two or

more scales. Ezekiel’s adjustment of the R2 statistic

yields an unbiased estimate of the explained variance,

but when used in the context of variation partitioning it

has the side effect of generating spurious nonzero joint

fractions between orthogonal explanatory matrices. Two

solutions are proposed, and the choice between them

requires users to decide first if the processes underlying

the spatial fractions are of a hierarchical nature or not.

The nonhierarchical solution translates into the propor-

tional apportioning of the joint fractions to the spatial

submodels. Invoking hierarchy theory to put the two or

more spatial submodels in a logical order of importance

allows one to ascribe each of these fractions to one and

only one spatial scale. This clarifies the interpretation of

the spatial components of the response data variation.

The common fractions resulting from the analysis of

environmental explanatory matrices are not involved in

this hierarchical operation because these matrices are

not a priori linearly independent of one another or of the

spatial eigenfunction submodels. For explanatory envi-

ronmental variables, Peres-Neto et al. (2006) have

shown that partitioning based on adjusted R2 statistics

(R2
a) produces unbiased estimates of all fractions of

variation: unique (e.g., [a] and [c] in the two explanatory

matrices case) and shared (e.g., [b]). The partitioning of

univariate or multivariate response data, e.g., commu-

nity composition data, between environmental explan-

atory variables and spatial submodels is of great interest

since it allows ecologists to discover structures in the

response data that are explainable by both the environ-

mental variables and spatial models at different scales.

FIG. 3. Venn diagrams of the partitioning results for the oribatid mite data: (a) classical, nonhierarchical partitioning; (b)
hierarchical partitioning of the fraction shared by the two MEM submodels, taking into account the priority of the broad-scale
submodel over the fine-scale submodel; (c) proportional apportioning.
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Some points in linear variation partitioning remain to

be investigated. The use of categorical variables in

variation partitioning is still a subject of discussion.

Random categorical variables such as the type of soil

observed at sites may be treated as a set of binary

variables and included as such in an environmental

matrix, but fixed ANOVA factors (e.g., in a manipula-

tive field ecological experiment) are clearly of a different

nature, and Ezekiel’s adjustment should not be applied

to them. Indeed, Healy (1984) pointed out that Ezekiel’s

(1930) adjusted R2 makes sense and should be used

when explanatory matrix X contains observed values of

random variables, but not for ANOVA factors. There-

fore, the procedure developed in this Note should not be

applied to cases involving fixed ANOVA factors, only to

orthogonal models of spatial eigenfunctions. Although

they are called ‘‘spatial,’’ eigenfunction models can also

be used for multiscale analysis of time series.
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SUPPLEMENTAL MATERIAL

Appendix

Variation partitioning formulas, hierarchical and proportional methods (Ecological Archives E093-106-A1).

Supplement

Functions in R language to compute hierarchical and proportional variation partitioning for eigenfunction submodels
(Ecological Archives E093-106-S1).
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Legendre, P., D. Borcard and D. W. Roberts. 2012. Variation partitioning 
involving orthogonal spatial eigenfunction submodels. Ecology 93: 1234–1240. 

Appendix A. Variation partitioning formulas, hierarchical and proportional methods 

This Appendix presents formulas for the calculation of fractions following the hierarchical and 
proportional variation partitioning methods for eigenfunction submodels (MEM or AEM). 
Classical variation partitioning (Borcard et al. 1992, Peres-Neto et al. 2006) only involves 
matrices of random variables. Different situations, involving different combinations of matrices 
of random (e.g. environmental) variables and spatial eigenfunction submodels, are described in 
Tables A1 to A3.  

 Venn diagrams illustrating the results of proportional apportioning of the shared fractions in 
variation partitioning are presented in Figs. A1 to A3. Figures illustrating the results of 
hierarchical partitioning of the shared fractions for two and three explanatory matrices are shown 
in the main paper, Figs. 1 and 2, and in Fig. A4 for four explanatory matrices. 



  2 

Table A1. Variation partitioning for two explanatory matrices containing eigenfunction 
submodels. Fractions identifiers: see Figs. 1 and 2a. Notation: Ø is the empty set; in the present 
table, is denotes the absence of a value. Indications about the logic involved in the computation 
of some fractions follow the sign #. 

_________________________________________________________________________ 

Hierarchical partitioning of the shared fraction 
[a] = [a] + [b] 
[b] = Ø # Transferred to [a] 
[c] = [c] 
[d] = [d]  # Residual fraction 
 
Proportional apportioning of the shared fraction 
[a] = [a] + ([b] × [a] / ([a] + [c])) 

[b] = Ø # Transferred to [a] and [c]  
[c] = [c] + ([b] × [c] / ([a] + [c])) 

[d] = [d]  # Residual fraction 
_________________________________________________________________________  

 

 

Fig. A1. Venn diagrams illustrating the result of proportional apportioning of the shared fractions 
in variation partitioning involving two matrices of spatial eigenfunctions (MEM). Alternative 
graphical solutions are proposed. In gray, the fractions of variation explained by MEM.



  3 

Table A2. Variation partitioning in the 3-matrix case. Matrix 1 may contain random explanatory 
variables. (a) The last two, or (b) all three matrices, contain eigenfunction submodels. Fractions 
identifiers: see Fig. 3a. Notation as in Table A1. 

(a) Matrix 1 contains random explanatory variables, matrices 2 and 3 contain eigenfunction 
submodels 

______________________________________________________________________________ 

Hierarchical partitioning of the shared fractions (Fig. 3b) 
[a] = [a] 
[b] = [b] + [e] 
[c] = [c] 
[d] = [d] + [g] 
[e] = Ø # Transferred to [b] 
[f] = [f] 
[g] = Ø # Transferred to [d] 
[h] = [h]  # Residual fraction 
______________________________________________________________________________ 

Proportional apportioning of the shared fractions 
e.to.b = [e] × (([b] + [d]) / ([b] + [d] + [c] + [f]) # Portion of [e] transferred to [b] 

e.to.c = [e] × (([c] + [f]) / ([b] + [d] + [c] + [f])  # Portion of [e] transferred to [c] 

g.to.d = [g] × (([b] + [d]) / ([b] + [d] + [c] + [f])  # Portion of [g] transferred to [d] 

g.to.f = [g] × (([c] + [f]) / ([b] + [d] + [c] + [f])  # Portion of [g] transferred to [f] 

[a] = [a] 
[b] = [b] + e.to.b 
[c] = [c] + e.to.c 
[d] = [d] + g.to.d 
[e] = Ø # Transferred to [b] and [c] 
[f] = [f] + g.to.f 
[g] = Ø # Transferred to [d] and [f] 
[h] = [h]  # Residual fraction 
______________________________________________________________________________ 



  4 

(b) Three matrices of eigenfunction submodels 

______________________________________________________________________________ 

Hierarchical partitioning of the shared fractions (Fig. 3c) 
[a] = [a] + [d] + [f] + [g] 
[b] = [b] + [e] 
[c] = [c] 
[d] = Ø # Transferred to [a] 
[e] = Ø # Transferred to [b] 
[f] = Ø # Transferred to [a] 
[g] = Ø # Transferred to [a] 
[h] = [h]  # Residual fraction 
______________________________________________________________________________ 

Proportional apportioning of the shared fractions 
d.to.a= [d] × ([a] / ([a] + [b]) # Portion of [d] transferred to [a] 

d.to.b= [d] × ([b] / ([a] + [b]) # Portion of [d] transferred to [b] 

e.to.b= [e] × ([b] / ([b] + [c]) # Portion of [e] transferred to [b] 

e.to.c = [e] × ([c] / ([b] + [c]) # Portion of [e] transferred to [c] 

f.to.a = [f] × ([a] / ([a] + [c])  # Portion of [f] transferred to [a] 

f.to.c = [f] × ([c] / ([a] + [c])  # Portion of [f] transferred to [c] 

g.to.a = [g] × ([a] / ([a] + [b] + [c])  # Portion of [g] transferred to [a] 

g.to.b = [g] × ([b] / ([a] + [b] + [c])  # Portion of [g] transferred to [b] 

g.to.c = [g] × ([c] / ([a] + [b] + [c])  # Portion of [g] transferred to [c] 

[a] = [a] + d.to.a + f.to.a + g.to.a 
[b] = [b] + d.to.b + e.to.b + g.to.b 
[c] = [c] + e.to.c + f.to.c + g.to.c 
[d] = Ø # Transferred to [a] and [b] 
[e] = Ø # Transferred to [b] and [c] 
[f] = Ø # Transferred to [a] and [c] 
[g] = Ø # Transferred to [a], [b] and [c] 
[h] = [h] # Residual fraction 
______________________________________________________________________________ 



  5 

 

Fig. A2. Venn diagrams illustrating the result of proportional apportioning of the shared fractions 
in variation partitioning involving (a) one matrix of random (e.g. environmental) variables and 
two matrices of spatial eigenfunctions (MEM), or (b) three matrices of spatial eigenfunctions 
(MEM). Alternative graphical solutions are proposed in each case. The fractions of variation 
explained by MEM matrices are in gray. 



  6 

Table A3. Variation partitioning in the 4-matrix case, for matrices of random explanatory 
variables or matrices of eigenfunctions. Fractions identifiers: see Fig. A4a. Notation as in Table 
A1.  

(a) Matrices 1 and 2 contain random explanatory variables, matrices 3 and 4 contain 
eigenfunction submodels 

______________________________________________________________________________ 

Hierarchical partitioning of the shared fractions (Fig. A4b) 
[a] = [a] 
[b] = [b] 
[c] = [c] + [j] 
[d] = [d] 
[e] = [e] 
[f] = [f] + [m] 
[g] = [g] + [n] 
[h] = [h] 
[i] = [i] 
[k] = [k] 
[l] = [l] + [o] 
[j] = Ø # Transferred to [c] 
[m] = Ø # Transferred to [f] 
[n] = Ø # Transferred to [g] 
[o] = Ø # Transferred to [l] 
[p] = [p]  # Residual fraction 
______________________________________________________________________________ 
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Proportional apportioning of the shared fractions (Fig. A3a) 
j.to.c = [j] × [c+f+g+l] / ([c+f+g+l]+[d+h+i+k])  # Portion of [j] transferred to [c] 

j.to.d = [j] × [d+h+i+k]/ ([c+f+g+l]+[d+h+i+k])  # Portion of [j] transferred to [d] 

m.to.f = [m] × [c+f+g+l] / ([c+f+g+l]+[d+h+i+k]) # Portion of [m] transferred to [f] 

m.to.i = [m] ×  [d+h+i+k]/ ([c+f+g+l]+[d+h+i+k]) # Portion of [m] transferred to [i] 

n.to.g = [n] ×  [c+f+g+l] / ([c+f+g+l]+[d+h+i+k]) # Portion of [n] transferred to [g] 

n.to.h = [n] ×  [d+h+i+k]/ ([c+f+g+l]+[d+h+i+k]) # Portion of [n] transferred to [h] 

o.to.k = [o] ×  [d+h+i+k]/ ([c+f+g+l]+[d+h+i+k]) # Portion of [o] transferred to [k] 
o.to.l = [o] × [c+f+g+l] / ([c+f+g+l]+[d+h+i+k]) # Portion of [o] transferred to [l] 

[c] = [c] + j.to.c 
[d] = [d] + j.to.d 
[f] = [f] + m.to.f 
[g] = [g] + n.to.g 
[h] = [h] + n.to.h 
[i] = [i] + m.to.i 
[k] = [k] + o.to.k 
[l] = [l] + o.to.l 
[j] = Ø # Transferred to [c] and [d] 
[m] = Ø # Transferred to [f] and [i] 
[n] = Ø # Transferred to [g] and [h] 
[o] = Ø # Transferred to [k] and [l] 
[p] = [p]  # Residual fraction 
______________________________________________________________________________ 
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(b) Matrix 1 contains random explanatory variables, matrices 2, 3 and 4 contain eigenfunction 
submodels 

______________________________________________________________________________ 

Hierarchical partitioning of the shared fractions (Fig. A4c) 
[a] = [a] 
[b] = [b] + [f] + [i] + [m] 
[c] = [c] + [j] 
[d] = [d] 
[e] = [e] + [k] + [l] + [o] 
[g] = [g] + [n] 
[h] = [h] 
[f] = [i] = [j] = [k] = [l] = [m] = [n] = [o] = Ø # Transferred to other fractions 
[p] = [p] 
______________________________________________________________________________ 
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Proportional apportioning of the shared fractions (Fig. A3b) 
f.to.b = [f] × [b+e] / ([b+e]+[c+g])  # Portion of [f] transferred to [b] 
f.to.c = [f] × [c+g] / ([b+e]+[c+g])  # Portion of [f] transferred to [c] 
i.to.b = [i] × [b+e] / ([b+e]+[d+h])  # Portion of [i] transferred to [b] 
i.to.d = [i] × [d+h] / ([b+e]+[d+h])  # Portion of [ji] transferred to [d] 
j.to.c = [j] × [c+g] / ([c+g]+[d+h])  # Portion of [j] transferred to [c] 
j.to.d = [j] × [d+h] / ([c+g]+[d+h])  # Portion of [j] transferred to [d] 
k.to.e = [k] × [b+e] / ([b+e]+[d+h])  # Portion of [k] transferred to [e] 
k.to.h = [k] × [d+h] / ([b+e]+[d+h])  # Portion of [k] transferred to [h] 
l.to.e = [l] × [b+e] / ([b+e]+[c+g])  # Portion of [l] transferred to [e] 
l.to.g = [l] × [c+g] / ([b+e]+[c+g])  # Portion of [l] transferred to [g] 
m.to.b = [m] × [b+e] / ([b+e]+[c+g]+[d+h])  # Portion of [m] transferred to [b] 
m.to.c = [m] × [c+g] / ([b+e]+[c+g]+[d+h])  # Portion of [m] transferred to [c] 
m.to.d = [m] × [d+h] / ([b+e]+[c+g]+[d+h])  # Portion of [m] transferred to [d] 
n.to.g = [n] × [c+g] / ([c+g]+[d+h])  # Portion of [n] transferred to [g] 
n.to.h = [n] × [d+h] / ([c+g]+[d+h])  # Portion of [n] transferred to [h] 
o.to.e = [o] × [b+e] / ([b+e]+[c+g]+[d+h])  # Portion of [o] transferred to [e] 
o.to.g = [o] × [c+g] / ([b+e]+[c+g]+[d+h])  # Portion of [o] transferred to [g] 
o.to.h = [o] × [d+h] / ([b+e]+[c+g]+[d+h])  # Portion of [o] transferred to [h] 
[b] = [b] + f.to.b + m.to.b + i.to.b 
[c] = [c] + j.to.c + f.to.c + m.to.c 
[d] = [d] + j.to.d + i.to.d + m.to.d 
[e] = [e] + k.to.e + l.to.e + o.to.e 
[g] = [g] + l.to.g + n.to.g + o.to.g 
[h] = [h] + k.to.h + n.to.h + o.to.h 
[f] = [i] = [j] = [k] = [l] = [m] = [n] = [o] = Ø # Transferred to other fractions 
[p] = [p]  # Residual fraction 
______________________________________________________________________________ 
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(c) Four matrices of eigenfunction submodels 

______________________________________________________________________________ 

Hierarchical partitioning of the shared fractions (Fig. A4d) 
[a] = [a] + [e] + [g] + [h] + [k] + [l] + [n] + [o] 
[b] = [b] + [f] + [i] + [m] 
[c] = [c] + [j] 
[d] = [d] 
[e] = [f] = [g] = [h] = [i] = [j] = [k] = [l] = [m] = [n] = [o] = Ø # Transferred to other fractions 
[p] = [p] ]  # Residual fraction 
______________________________________________________________________________ 

Proportional apportioning of the shared fractions (Fig. A3c) 
e.to.a = [e] × [a] / ([a]+[b])  # Portion of [e] transferred to [a] 
e.to.b = [e] × [b] / ([a]+[b])  # Portion of [e] transferred to [b] 
f.to.b = [f] × [b] / ([b]+[c])  # Portion of [f] transferred to [b] 
f.to.c = [f] × [c] / ([b]+[c])  # Portion of [f] transferred to [c] 
g.to.a = [g] × [a] / ([a]+[c])  # Portion of [g] transferred to [a] 
g.to.c = [g] × [c] / ([a]+[c])  # Portion of [g] transferred to [c] 
h.to.a = [h] × [a] / ([a]+[d])  # Portion of [h] transferred to [a] 
h.to.d = [h] × [d] / ([a]+[d])  # Portion of [h] transferred to [d] 
i.to.b = [i] × [b] / ([b]+[d])  # Portion of [i] transferred to [b] 
i.to.d = [i] × [d] / ([b]+[d])  # Portion of [i] transferred to [d] 
j.to.c = [j] × [c] / ([c]+[d])  # Portion of [j] transferred to [c] 
j.to.d = [j] × [d] / ([c]+[d])  # Portion of [j] transferred to [d] 
k.to.a = [k] × [a] / ([a]+[b]+[d])  # Portion of [k] transferred to [a] 
k.to.b = [k] × [b] / ([a]+[b]+[d])  # Portion of [k] transferred to [b] 
k.to.d = [k] × [d] / ([a]+[b]+[d])  # Portion of [k] transferred to [d] 
l.to.a = [l] × [a] / ([a]+[b]+[c])  # Portion of [l] transferred to [a] 
l.to.b = [l] × [b] / ([a]+[b]+[c])  # Portion of [l] transferred to [b] 
l.to.c = [l] × [c] / ([a]+[b]+[c])  # Portion of [l] transferred to [c] 
m.to.b = [m] × [b] / ([b]+[c]+[d])  # Portion of [m] transferred to [b] 
m.to.c = [m] × [c] / ([b]+[c]+[d])  # Portion of [m] transferred to [c] 
m.to.d = [m] × [d] / ([b]+[c]+[d])  # Portion of [m] transferred to [d] 
n.to.a = [n] × [a] / ([a]+[c]+[d])  # Portion of [n] transferred to [a] 



  11 

n.to.c = [n] × [c] / ([a]+[c]+[d])  # Portion of [n] transferred to [c] 
n.to.d = [n] × [d] / ([a]+[c]+[d])  # Portion of [n] transferred to [d] 
o.to.a = [o] × [a] / ([a]+[b]+[c]+[d])  # Portion of [o] transferred to [a] 
o.to.b = [o] × [b] / ([a]+[b]+[c]+[d])  # Portion of [o] transferred to [b] 
o.to.c = [o] × [c] / ([a]+[b]+[c]+[d])  # Portion of [o] transferred to [c] 
o.to.d = [o] × [d] / ([a]+[b]+[c]+[d])  # Portion of [o] transferred to [d] 
[a] = [a] + e.to.a + g.to.a + h.to.a + k.to.a + l.to.a + n.to.a + o.to.a 
[b] = [b] + e.to.b + f.to.b + i.to.b + k.to.b + l.to.b + m.to.b + o.to.b 
[c] = [c] + f.to.c + g.to.c + j.to.c + l.to.c + m.to.c + n.to.c + o.to.c 
[d] = [d] + h.to.d + i.to.d + j.to.d + k.to.d + m.to.d + n.to.d + o.to.d 
[e] = [f] = [g] = [h] = [i] = [j] = [k] = [l] = [m] = [n] = [o] = Ø # Transferred to other fractions 
[p] = [p] ]  # Residual fraction 
______________________________________________________________________________ 
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Fig. A3. Venn diagrams illustrating the result of proportional apportioning of the shared fractions 
in variation partitioning involving (a) two matrices of random (e.g. environmental) variables and 
two matrices of spatial eigenfunctions (MEM), (b) one matrix of random (e.g. environmental) 
variables and three matrices of spatial eigenfunctions (MEM), or (c) four matrices of spatial 
eigenfunctions (MEM). The fractions of variation explained by MEM matrices are in gray. 
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Fig. A4. Venn diagrams of variation partitioning results for four explanatory matrices. 
(a) Classical partitioning; the number of lines underneath the fraction identifiers corresponds to 
the number of explanatory matrices X they intersect. (b, c, d) Result of hierarchical partitioning. 
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