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MODELING BRAIN EVOLUTION FROM BEHAVIOR:
A PERMUTATIONAL REGRESSION APPROACH
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Département de sciences biologiques, Université de Montréal,
C.P. 6128, Succ. Centre-Ville, Montréal, Québec, Canada H3C 3J7

Abstract. —This paper has two complementary purposes: first, to present a method to perform
multiple regression on distance matrices, with permutation testing appropriate for path-length
matrices representing evolutionary trees, and then, to apply this method to study the joint evolution
of brain, behavior and other characteristics in marsupials. To understand the computation method,
consider that the dependent matrix is unfolded as a vector y; similarly, consider X to be a table
containing the independent matrices, also unfolded as vectors. A multiple regression is computed
to express y as a function of X. The parameters of this regression (R? and partial regression
coefficients) are tested by permutations, as follows. When the dependent matrix variable y represents
a simple distance or similarity matrix, permutations are performed in the same manner as the
Mantel permutational test. When it is an ultrametric matrix representing a dendrogram, we use
the double-permutation method (Lapointe and Legendre 1990, 1991). When it is a path-length
matrix representing an additive tree (cladogram), we use the triple-permutation method (Lapointe
and Legendre 1992). The independent matrix variables in X are kept fixed with respect to one
another during the permutations. Selection of predictors can be accomplished by forward selection,
backward elimination, or a stepwise procedure. A phylogenetic tree, derived from marsupial brain
morphology data (28 species), is compared to trees depicting the evolution of diet, sociability,
locomotion, and habitat in these animals, as well as their taxonomy and geographical relationships.
A model is derived in which brain evolution can be predicted from taxonomy, diet, sociability
and locomotion (R? = 0.75). A new tree, derived from the “predicted” data, shows a lot of similarity
to the brain evolution tree. The meaning of the taxonomy, diet, sociability, and locomotion
predictors are discussed and conclusions are drawn about the evolution of brain and behavior in
marsupials.

Key words. —Behavior, brain, distance matrices, double-permutation test, evolution, Mantel test,
marsupials, multiple regression, permutation test, triple-permutation test.
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Relating brain evolution to the evolution of
behavior in a group of animals is a difficult task
for the neuroanatomist (Pirlot 1987); it is also a
classical problem in behavioral studies (Master-
ton et al. 1976a,b). However, “predicting’ brain
evolution from behavioral characteristics is even
more difficult biologically and methodologically.
It implies the use of statistical methods designed
specifically for evolutionary studies. The brain,
behavior, and evolution problem has already been
approached in several ways, either by studying
whole-brain data with encephalization quotients
(Jerison 1973) or progression indices (Stephan
1967), or by dividing the brain into a number of
components and studying their relative devel-
opment (Pirlot and Stephan 1970; Stephan and
Pirlot 1970). Different statistical solutions are
available. On the one hand, raw quantitative data

! Present address: Department of Biology, Univer-
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(whole brain, or components) may be compared
to one or several behavior variables using clas-
sical statistical tools such as correlation, regres-
sion, or canonical analysis (Baron and Jolicoeur
1980; Jolicoeur and Baron 1980; Jolicoeur et al.
1984). On the other hand, one may tackle the
more difficult problem of how the volumetric
evolution of brain components may have accom-
panied or followed the evolution of behavior (La-
pointe 1992; Lapointe and Legendre 1994)).
This second approach seems more interesting
to us because one can directly compare the evo-
lution of brain to the evolution of behavioral
characteristics. It poses some new statistical
problems, however: How to estimate brain evo-
lution? How to estimate the evolution of the be-
havioral characters? Does the brain component
data set contain phylogenetic information? Is it
possible to model the evolution of brain from
the evolution of the behavioral characteristics?
This paper has two purposes: (1) to introduce
a new modeling method based on distance ma-
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trices and appropriate for path-length matrices
representing evolutionary trees; and (2) to apply
this method to study the joint evolution of brain,
behavior, and other characteristics in marsupi-
als.

The new method basically consists of a mul-
tiple regression on distance matrices, with per-
mutation testing of the regression parameters.
When the dependent matrix variable represents
a simple distance or similarity matrix, permu-
tations are performed in the same manner as the
Mantel (1967) permutational test. When it is an
ultrametric matrix representing a dendrogram,
the double-permutation method (Lapointe and
Legendre 1990, 1991) is used. When it is a path-
length matrix representing an additive tree
(cladogram), we use the triple-permutation
method (Lapointe and Legendre 1992). The in-
dependent matrix variables are kept fixed with
respect to one another during the permutations.
Selection of predictors can be accomplished by
forward selection, backward elimination, or a
stepwise procedure.

We show that this method may be used to
model brain evolution in mammals. We estimate
the best possible regression model to “predict”
brain evolution from taxonomic and behavioral
characters and use this model to explain quan-
titative brain differences among ecologically dif-
ferent species of the same taxonomic group.

MATERIALS AND METHODS
Neurological Data

For 28 species of marsupials, Pirlot (1981) de-
termined the volume of each of 11 brain com-
ponents (in cm?): bulbus olfactorius (BO), neo-
cortex (NX), rhinencephalon (RH), schizocortex
(SZ), septum (SE), striatum (ST), hippocampus
(HI), diencephalon (DI), mesencephalon (ME),
cerebellum (CE), and medulla oblongata (MO).
Pirlot (1981) gives a full account of the labora-
tory methodology. These 28 species represent all
three living orders of marsupials (Paucituber-
culata, Polyprotodonta, and Diprotodonta) and
8 families (Caenolestidae, Didelphidae, Dasyu-
ridae, Peramelidae, Vombatidae, Macropodi-
dae, Phalangeridae, and Petauridae), following
Kirsch’s (1977) classification. Because of the large
amount of time and effort required, only a single
brain has been analyzed per species. In addition,
brain morphology data for two edentates (Pirlot
1980; Pirlot and Kamiya 1983) and two rodents
(Ouedraogo 1974) were used as outgroups in the

LEGENDRE ET AL.

phylogenetic analysis to determine the position
of the “root” of the marsupial brain tree. To
standardize the data for size, brain-component
volumes were divided by the total brain volume.
The choice of this standardization method is dis-
cussed elsewhere (Lapointe and Legendre 1995);
because we wanted to compare brain organiza-
tion, using relative brain volumes seemed ap-
propriate to our purpose.

Estimating Brain Evolution

Several methods are available for reconstruct-
ing (estimating) phylogenies, using either pres-
ence-absence or quantitative data (Felsenstein
1982; Swofford and Olsen 1990; Penny et al.
1992). In the present example, Euclidean dis-
tances were computed among species based on
the standardized brain component volumes, and
the distance-based phylogenetic tree reconstruc-
tion method of De Soete (1983a) was applied to
this matrix to obtain an additive tree. This meth-
od was preferred to other “distance methods”
for tree reconstruction (such as those of Fitch
and Margoliash or Cavalli-Sforza and Edwards),
for it had been shown to produce better results
(De Soete 1983b) because it constructs the to-
pology of the tree and optimizes branch lengths
simultaneously (Swofford and Olsen 1990). The
root of the marsupial tree is located at the point
where all marsupials separate from the members
of the outgroup on the tree; the outgroup data
will not be used any further, but the root of the
tree was added to the data set and used in the
following analysis. Notice that a phylogenetic tree
can be represented as an additive tree (see La-
pointe and Legendre 1992). It can also be rep-
resented by a path-length matrix, also called a
“patristic matrix”’; in such a matrix, the distance
between any two taxa is the sum of the character-
state changes along the path of branches con-
necting these two taxa (“‘patristic distance”). In
our example, we will analyze path-length matri-
ces of the 28 species of marsupials, plus the root
of the tree considered as a twenty-ninth taxon,;
we will consider the path-length matrix repre-
senting the brain phylogenetic tree, on the one
hand, and also path-length matrices representing
the evolution of the various types of behavior,
as described in the next paragraph.

Estimating Behavior Evolution
Data describing the evolution of four catego-
ries of behavior are used: habitat, diet, loco-
motion, and sociability (Lapointe and Legendre
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1995). Before modeling, each behavioral vari-
able had to be transformed into a tree, and then
into a distance matrix; this implies rooting the
tree, finding the sequence in which the states ap-
peared during evolution, and finally, writing a
full distance matrix for the species under study.
This was accomplished as described in the fol-
lowing three steps.

1. Each behavioral characteristic was mapped
onto a reference phylogeny of the marsupials,
using program MacClade 3.0 (Maddison and
Maddison 1992). Our reference phylogeny was
the one proposed by Kirsch (1977), and com-
pleted (as in Lapointe and Legendre 1995) to
include finer relationships proposed by various
authors. Following Eisenberg (1980), the ances-
tral states of the behavioral characters chosen
were: forest dweller, insectivore, low sociability,
and climber-walker. Notice that the reference
phylogeny has been formulated independently
from our brain data; this is important to insure
the independence of the independent (i.e., ex-
planatory) and dependent (i.e., target) variables
in our model (below).

2. The order in which the behavior states de-
scend from one another along the trees was noted
and transcribed in the form of the four following
behavior-character-state trees (Lapointe and Le-
gendre 1995):

Habitat selection: R — 1 — (2, 3); R = root; 1
= forest; 2 = ubiquitous; 3 =
prairie.
R—=1—>2,3,4—5,R=
root; 1 = insectivorous; 2 =
carnivorous; 3 = omnivo-
rous; 4 = herbivorous; 5 =
frugivorous-folivorous.
R—1—2,R =root; 1
low; 2 = high.
R—1—[2a,2b—>(3, 9]; R
= root; 1 = climber-walker;
2a = walker (American); 2b
= walker (Australian); 3 =
climber; 4 = jumper.

Diet:

Sociability:

Locomotion:

In this simple coding, the locomotion-state tree,
for instance, reads as follows: the root (R) leads
to state 1, which in turn leads to states 2a or 2b;
state 2b leads either to state 3 or to state 4.

3. The character-state trees were transformed
into full patristic species matrices for the given
behavior characteristics, using the method de-
scribed by Legendre and Lapointe (1995) and
illustrated in figure 1 for habitat selection.
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Taxonomic and Geographic Data

Marsupials are sometimes classified into three
living orders (Kirsch 1977): the Polyprotodonta,
Diprotodonta, and Paucituberculata. We will use
this marsupial classification (three orders) as an
independent (i.e., explanatory) variable in our
model. The hypothesis behind this inclusion is
that brain evolution may have been influenced
both by genetic pressures (represented by the ma-
jor adaptations found in the order lineages) and
by behavioral adaptations. To code taxonomy
(three orders) into a distance matrix, members
of the same order were given a distance of zero,
whereas members of different orders were given
a distance of one; the root of the tree was given
a distance of one to members of all three living
orders in the study.

Geographical information also will be used to
explain brain evolution. Marsupials are found
both in America and in Australia. Species found
on the same continent were given a distance of
zero, whereas species from different continents
received a one. The ancestor of all marsupials
was hypothesized in America (Clemens 1968,
1977) and distances between species and the root
of the tree were coded accordingly.

Does the Brain Component Data Set
Contain Phylogenetic Information?

Searching for relationships between brain and
behavior evolution can succeed only if there is
phylogenetic information to be found in brain
morphology data. A simple way to reassure our-
selves that such is indeed the case is to test for
a significant relationship between the phyloge-
netic tree obtained from the brain data and the
reference phylogeny of the marsupials on which
we mapped the behavioral traits (above); as al-
ready noted, these two trees have been obtained
independently. This was accomplished by way
of the triple-permutation test for relationships
between independently obtained phylogenetic
trees of Lapointe and Legendre (1992).

Modeling the Evolution of Brain from the
Evolution of the Behavioral Characteristics

As we have seen above, path-length distance
matrices can be derived from the brain as well
as from the behavior characteristic evolutionary
trees. We propose here to use a regression model,
based upon these path-length matrices, to ““pre-
dict” distances among species brains along the
evolutionary tree, from distances along the be-



Hypothesis for marsupial habitat evolution: R — 1 — (2, 3)

2 - Ubiquitous 3 - Prairie

N S

1 - Forest

Root

Behavioral data:

Species Habitat Hypothesis in coded path-length form:
Root 1 2 3
1 1 Root 0 1 2 2
12 2
15 > 1 0 1 1
16 1 2 0 2
20 3
21 1 3 0
23 3

N

Path-length matrix among species,
describing the hypothesis for the evolution
of habitat selection in marsupials

Root 1 12 15 16 20 21 23

Root 0 1 2 2 1 2 1 2
1 0 1 1 0 1 0 1
12 0 0 1 2 1 2
15 0 1 2 1 2
16 0 1 0 1
20 0 1 0
21 0 1
23 0

FiGc. 1. Coding of hypotheses of behavioral characteristic evolution (top) into path-length matrices (bottom)
is illustrated using habitat preference characteristics for 7 of the 28 species of marsupials. Path lengths are
measured by counting the number of arrows separating states in the hypothesis.
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Backward elimination

Starting set: all X variables

Compute multiple regression

and partial F (or ) probabilities
for all regression coefficients

l

Select X with highest probability

—X-e—s-l P > P-to-remove/(n. X in equation)?’

No

Delete that variable

Subset of significant X
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Forward selection

Starting set: no X variable

]

Compute multiple regression equations: add,
in turn, each X not already included.
Compute R%and associated probability for
each equation

'

Select X with lowest probability of R%
Compute prob. of partial F (or ¢) for that X

&l P < P-to-enter/(n. X in equation) "—]

No

Add that variable

Subset of significant X

Fic. 2. Backward and forward methods for selecting a subset of predictors. Selection is based on permutational

probabilities.

havioral, taxonomic, and geographic trees; “pre-
diction” has the same meaning here as in re-
gression modeling. The brain evolution path-
length matrix is the dependent ‘‘variable,”
whereas the behavior evolution path-length ma-
trices, taxonomic, and geographical distance ma-
trices play the role of the independent ‘““vari-
ables.” Since all these matrices are usually
symmetrical, the upper (or lower) half of each
matrix, diagonal excluded, contains all the usable
information, so that the computations can be
limited to the upper (or lower) triangular parts.
If this is not the case, the procedure can be per-
formed on the full square matrix, excluding the
diagonal, which contains, by definition, distances
of zero between species and themselves. As in
ordinary regression modeling, the model can be
used to predict the position of new species on
the brain evolution tree, if these species can first
be positioned on the predictive behavioral trees.

Multiple Regression and Parameter Testing

Consider a series of distance matrices of size
(p X p), p being the number of species, and as-
sume that we want to predict (model) the dis-
tances in one of them (the dependent matrix Y)
from the distances in the other matrices (the in-
dependent matrices X, X,, ..., X,). Although
similarity matrices could be used just as well, we

will restrict the following development to dis-
tance (or dissimilarity) matrices for convenience.
As we will see later, special types of distance
matrices, such as ultrametric or patristic dis-
tances, will require special treatments. Assume
also for convenience that each of these distance
matrices is unfolded, row by row (or column by
column), to form a long vector, excluding the
diagonal terms which contain, by definition, dis-
tances of zero; if all matrices are symmetric, it
is sufficient to unfold the upper (or lower) tri-
angular parts only. We can call y the dependent
unfolded matrix-variable ¥, and X the table con-
taining in successive columns the various inde-
pendent matrix-variables X, to X,. Multiple re-
gression can be computed by least squares, using
the standard equations to find the regression co-
efficients as well as the coefficient of multiple
determination R2. If the values in all matrix-
variables have been standardized before the
analysis, so that each has a mean of zero and a
variance of one, then there is no intercept in the
result; if this is not the case but standard partial
regression coefficients are needed nevertheless,
they can be computed from the conventional
partial regression coefficients (e.g., Sokal and
Rohlf 1981, chap. 16). Several authors have pro-
posed in the past to compute multiple regression
from distance matrices, and among them Hubert
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and Golledge (1981), Smouse et al. (1986), Man-
ly (1986), and Krackhardt (1988). The specific
contribution of the present paper is to show how
to test the significance of these parameters under
the null hypothesis for different types of depen-
dent matrix-variables; the corresponding per-
mutation procedures are discussed below.

We may be interested in entering in the re-
gression only the independent matrix-variables
that contribute significantly to the explanation
of the dependent matrix-variable, with due al-
lowance for collinearity. As in ordinary multiple
regression, the independent matrix-variables with
the strongest contributions can be chosen either
by forward selection or backward elimination,
the two strategies not necessarily leading to the
same selection of predictors. Here again, the pro-
cedure is complicated by the need for a permu-
tation test that takes into account the distance-
matrix nature of the data (fig. 2).

The backward elimination procedure is the eas-
iest. All variables are initially included, and at
each step, the independent matrix-variable whose
partial regression coefficient has the highest P
value is dropped, provided that this probability
(Cooper 1968; Miller 1977) is also higher than
a predetermined and Bonferroni-corrected, P-to-
remove value. How to test the significance of the
partial regression coefficients is discussed below.
A forward-selection procedure can be defined as
follows. Given an initial list of variables already
in the model, multiple-regression equations are
computed, adding each of the remaining vari-
ables in turn. The variable is selected whose mul-
tiple-regression equation provides the most sig-
nificant R? coefficient. At the beginning of the
selection process, the likelihood is high of en-
countering R? probabilities that are tied at the
lowest probability value permitted by the num-
ber of permutations of the test (e.g., P = 0.001
after 1000 permutations). In such cases, an ad-
ditional criterion is used: the variable is selected
whose partial regression coefficient has the low-
est P value. If a tie occurs again in the permu-
tation probabilities, the value of the increment
in R? is used as the final selection criterion. Se-
lection of variables stops when the probability
of the partial regression coefficient of the variable
to be added exceeds a predetermined Bonferroni-
corrected, P-to-enter value. (Notice that we can-
not use here the usual forward-selection criterion
based on the variable with the highest partial
correlation, which is computationally simpler.
The relation between the values of the partial
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correlations and their associated probabilities
may not hold, because of the special ways the
permutations are performed in matrix regres-
sion; see below.) Forward selection, however, does
not allow the removal of matrix-variables en-
tered at a previous step that may turn nonsig-
nificant at some later step following the inclusion
of some other variable. Thus, a stepwise proce-
dure should be preferred. It can be obtained by
combining the forward and backward proce-
dures: after each step of forward inclusion, the
significance of all the variables included in the
model is tested, and those that are not significant
at the Bonferroni-corrected, P-to-remove signif-
icance level are excluded before the next forward
selection step.

Testing the significance of the model param-
eters (the regression coefficients 4,, as well as the
coefficient of multiple determination R2) is the
part where regression on distance matrices differs
from ordinary multiple regression. We describe
three cases, corresponding to different types of
dependent matrix variables. In all cases, we con-
sider the relations among the independent ma-
trix-variables in the model fixed, so that they
should not be permuted with respect to one an-
other. A permutational procedure will be used.

In multiple regression on ordinary variables, the
traditional tests of significance could be replaced
by a permutation test, for instance, to solve prob-
lems of frequency distributions of the variables (lack
of normality). In that case, repeatedly randomizing
the values of the dependent variable, and recom-
puting the model and its parameters, would pro-
vide null distributions against which the signifi-
cance of the parameters of the actual model could
be tested. Notice the following computational
shortcut: since matrix y only needs to be permuted
in each iteration, while the independent vectors x;
remain fixed with respect to one another, then the
expression [X'X]~! can be computed only once, and
premultiplied to the product [X'y] after each per-
mutation of the dependent matrix to obtain vector
b of the regression coefficients (b = [X'X]~! X'y);
this shortens the computations of a permutational
test in an appreciable manner.

Matrix Case 1: Plain Dissimilarity Matri-
ces.—1In this paper, we are modeling from dis-
similarity matrices. In the first situation that we
consider, matrix variable y represents a plain
dissimilarity possessing the properties of sym-
metry, positiveness and definiteness; if it also
obeys the triangle inequality, it may be called a
“distance” or a “metric-distance” matrix. See
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Lapointe and Legendre (1992) for the properties
of dissimilarity, distance, ultrametric, and pa-
tristic matrices. Parameters of the regression
model could not be tested for significance in the
traditional parametric way because matrix-vari-
able data do not obey the most fundamental con-
dition of parametric testing, which is the inde-
pendence of the observations (distances, in the
present case). Indeed, values in a distance matrix
are not independent, but are related to one an-
other, for instance, by the triangle’s inequality
with metric distances, or by the four-point metric
with patristic distances. Therefore, a permuta-
tion test is in order. The one we propose is an
extension of the Mantel (1967) test of matrix
correspondence (e.g., for a detailed description,
see Legendre and Fortin 1989); this extension
was briefly suggested by Hubert and Golledge
(1981)and by Smouse et al. (1986). In the Mantel
test, a cross-product or correlation statistic is
computed between the values in two square ma-
trices, and its significance is tested by repeatedly
permuting the objects (e.g., species) in one of the
matrices—which amounts to simultaneously
permuting the rows and columns—and recom-
puting the statistic; the significance of the statistic
is assessed by comparing it to the distribution of
values obtained from the permutations, which
are considered as so many realizations of the null
hypothesis. Notice that the permutation set—
that is, the set of all distinguishable permutations
according to the matrix permutation rule de-
scribed above—is much smaller for the Mantel
test (p! for p species) than the set of all distin-
guishable random permutations of the p(p-1)/2
values in that distance matrix if they were free
to be moved independently from one another
between rows and columns (their number is
[b@ — 1)/21).

In the present case, the values of the independent
matrix variable are considered fixed with respect
to each other, but the dependent matrix variable
is considered random with respect to them under
the null hypothesis of exchangeability of rows
and columns in the dependent distance matrix.
Thus, a realization of the null hypothesis is ob-
tained by permuting the objects at random in the
dependent matrix variable and recomputing the
regression and its coefficients; each such realiza-
tion corresponds to the null hypothesis that the
object values that gave rise to the dependent ma-
trix variable are unrelated to the values that gave
rise to the independent matrix variables taken
together.

1493

In practice, this amounts to computing first
the real regression between matrix-variable brain
and behavior evolution path-length matrices, as
well as the F (or ?) statistics associated with the
partial regression coefficients. Then the species
are permuted at random in the brain path-length
matrix (in other words, the rows and columns of
that matrix are permuted to the new order of the
species), that matrix is unfolded again, and the
regression equation is recomputed, as well as the
partial F’s (or ¢’s). The permutation and recom-
putation steps are repeated many times (typi-
cally, 99, 999, or 9999 times), and a distribution
is constructed from the values of R? and of the
Fs (or t’s) associated with the partial regression
coefficients. Following Hope (1968), the actual
value of each statistic (R?, or F’s or ’s of the
partial regression coefficients) is added to the cor-
responding null distribution, which makes each
test slightly conservative; its significance is as-
sessed in the usual way: when a parameter value
is so extreme by comparison with its null distri-
bution that it is unlikely to have been generated
under the null hypothesis (e.g.,, if it is as extreme
as or more extreme than 95% of the randomly
obtained values), it is labeled as significantly dif-
ferent from zero. Note that the permutation test
on the R? coefficient can be conducted indiffer-
ently on the R? value itself, or on the associated
multiple F statistic; the result is the same because
F is a monotonically increasing function of R2?
for a constant number of data values and con-
stant number of independent variables in the
model. Such is not the case for the F (or ¢) sta-
tistics associated with the partial regression co-
efficients, however; this is why the probabilities
are estimated from distributions of the F (or ¢)
statistics in that case. To simplify computations,
one can choose to compute a pseudo-? statistic
at the end of each permutation, obtained by di-
viding the given partial regression coefficient by
V(1 — R?). Since all the other terms in the ex-
pression of the usual 7 statistic are constant among
permutations, the pseudo #’s are linear transfor-
mations of the usual ¢’s, which guarantees that
the statistical decision is the same.

Matrix Case 2: Ultrametric Matrices.—When
the dependent matrix-variable y is an ultrame-
tric, representing a dendrogram whose ultra-
metric nature is believed to be an integral part
of the problem, then the randomizations of ma-
trix vector y should involve not only the position
of the object labels of the dependent matrix Y,
but also its topology (or shape) as given by the
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fusion levels of the dendrogram. A double-per-
mutation procedure (proposed by Lapointe and
Legendre 1990, 1991) allows one to do that. The
two randomizations are conducted as follows:
first, the vector of fusion levels of the dendro-
gram is permuted at random and, using these
fusion levels, the new matrix is filled with values
in such a way that it is ultrametric; then the object
labels are permuted at random and repositioned
onto the rows and columns of the new ultra-
metric matrix. In the above-mentioned papers,
we have shown that this constitutes a “uniform
random-generation algorithm” sensu Furnas
(1984), which means that all distinguishable ul-
trametric matrices are generated in an equally
likely manner. After each such permutation of
y, the regression is recomputed as in the plain
dissimilarity case. For p > 4, the permutation
set of a double permutation
(size=p!'(p — /22— 1:

Frank and Svensson 1981) is larger than the set
of distinguishable permutations under matrix case
1 above because it combines a Mantel-like per-
mutation of the object labels and a permutation
of the dendrogram topology (Lapointe and Le-
gendre 1991).

Matrix Case 3: Path-Length Matrices.—The
third situation that we consider now is the case
in which the dissimilarity matrix Y is a path-
length matrix, obeying the four-point condition
(Buneman 1971; Lapointe and Legendre 1992)
and representing an additive tree (cladogram or
phylogeny). Again, if we believe that its clado-
gram nature is an integral part of the problem,
then the randomizations of matrix-vector y should
involve all aspects of its structure. Lapointe and
Legendre (1992) have shown that an equally likely
permutation algorithm can be derived because a
path-length matrix can be decomposed into an ul-
trametric and a star component; this last compo-
nent contains the different branch lengths, which
are unequal in a cladogram, leading to the various
objects labeling the additive tree. Thus, the depen-
dent matrix-vector y can be fully randomized by
decomposing it into ultrametric and star compo-
nents, separately randomizing the ultrametric com-
ponent (as described in the previous paragraph)
and the star component (which is a simple vector
of values), reassembling the two randomized com-
ponents into a new path-length matrix, to which
randomized object labels are added. After each such
permutation of y, the regression is recomputed as
in the two previous cases; the permutation prob-
abilities are obtained by comparing the actual val-
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ues of the statistics (R?, and F or ¢ statistics asso-
ciated with the partial regression coefficients) to
distributions of parameter values obtained from a
large number of these permutations. The permu-
tation set of a triple permutation is larger than the
set of distinguishable permutations under matrix
cases 1 and 2 above (size = (p!)* (p — 1)/2# 1),
because it actually combines a Mantel-like per-
mutation of the object labels with a permutation
of the star component and a permutation of the
ultrametric component.

Following the traditional use of the Mantel test
for comparing distance matrices, we have em-
phasized multiple linear regression and OLS pa-
rameter estimation as the mathematical instru-
ment for studying the relation between a
dependent distance matrix Y and several inde-
pendent matrices X, to X,. Before using this
method, however, one should check the linearity
of the relations between Y and each of the X,
matrices, because multiple linear regression is a
linear model. This can easily be done by plotting
scatter diagrams for pairs of unfolded distance
matrices. In case of nonlinearity, the present per-
mutational approach could readily be adapted to
nonparametric or nonlinear regression methods.

RESULTS

The phylogenetic tree (fig. 3) derived from the
brain volumetric data can be fully represented
by a path-length matrix, which becomes our de-
pendent matrix Y. The exercise then consists of
modeling that tree using the behavioral, taxo-
nomic, and geographic data described above,
which also represent character evolution trees.
In this example, each matrix X; contains infor-
mation about a single variable, but this need not
be the case. The root of each tree is explicitly
coded as an additional object in our data tables.
The triple-permutation algorithm of Lapointe and
Legendre (1992) does not require that, but we
believed that this was a better way of handling
the present example, and we have designed our
permutational computer program accordingly.
Selecting any other node of the tree for the de-
composition (which is done only once), instead
of the root, would lead to exactly the same prob-
abilities (Lapointe and Legendre 1992). In this
example, we are not only interested in getting a
significant forecasting model (which would put
the emphasis on the R? value only), but also in
the significance of the matrix variables in the
model; thus, a subset of predictors was selected
using the various procedures described above
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Dasyurus viverrinus

Sarcophilus harrisii

Caluromys lanatus

Marmosa murina

Metachirus nudicaudatus

Didelphis m. aurita

Philander opossum

Thylamys sp.

Marmosa domina

Sminthopsis murina

Didelphis m. marsupialis

Didelphis virginiana

Antechinus flavipes
Perameles nasuta

Isoodon obesulus

Lestoros inca

Caenolestes obscurus

Potorous tridactylus

Petaurus breviceps

Pseudocheirus peregrinus

Petauroides volans

Setonix brachyurus

Trichosurus vulpecula

Macropus eugenii

Thylogale billardierii
Macropus rufogriseus
Macropus giganteus
Vombatus ursinus

Dasypus novemcinctus
Euphractus sexcinctus
‘ Mus musculus
Mesocricetus auratus

Fic. 3. Phylogeny of marsupials derived from 11 size-
corrected brain component volumes.

Paucituberculata
and Polyprotodonta

Marsupials

Diprotodonta

Outgroup

(backward, forward, and stepwise), in the hope
of obtaining an optimal set of variables for the
evolution of brain in marsupials. All three se-
lection procedures (backward, forward, stepwise)
led to the same final selection of four variables;
this need not always be the case. The steps of the
backward selection procedure are presented in
table 1. Thus the final model in standard form
(where all matrix variables have been standard-
ized before modeling) is the following:

Brain evolution = 0.629+Taxonomy
+ 0.192+Diet + 0.200+Sociability
+ 0.153+Locomotion R*> = 0.7549

All partial regression coefficients of this model,
as well as the coefficient of multiple determina-
tion (R?), are significant. The model may then
be used to “predict” the brain phylogeny of mar-
supials given information on their taxonomy, diet,
social level, and mode of locomotion. However,
one should not rely on this regression equation
to fully reconstruct the values of the variables
from which the model was derived; this exercise
is done here simply to compare the actual brain
phylogeny (fig. 3) to the tree derived from the
values predicted by our regression model (fig. 4)
and get a feeling of how good the model really
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Lestoros inca
Caenolestes obscurus
Dasyurus viverrinus
Sarcophilus harrisii
-Antechinus flavipes
F——>Sminthopsis murina
Perameles nasuta

)

Tennd, b

Paucituberculata

Polyprotodonta

Philander opossum
Metachirus nudicaudatus
Didelphis m. aurita
Didelphis m. marsupialis
Didelphis virginiana
Thylamys sp.
Caluromys lanatus
Marmosa murina
Marmosa domina
Potorous tridactylus
Setonix brachyurus
Thylogale billardierii
Petauroides volans
Pseudocheirus peregrinus
Trichosurus vulpecula
— Petaurus breviceps
Vomb ursinus
Macropus giganteus
Macropus rufogriseus
Macropus eugenii

Marsupials

Diprotodonta

Outgroup

FiG. 4. Phylogeny of marsupials derived from “pre-
dicted” distances computed from the multiple regres-
sion model.

is. The matrix correlation between the path-length
matrices associated to both trees is equal to 0.864
(R? = 0.746). This is different from the R? ob-
tained from the regression model because the
predicted distance values have been fitted to a
tree before the comparison. Nevertheless, the
trees are quite similar; this exercise clearly illus-
trates that one could use behavioral and taxo-
nomic distance matrices to predict distances on
a brain phylogeny.

DiscussioN

We know that specific cortical patterns result-
ing from ontogeny in individual species are strictly
controlled by genetics. This control apparently
sets the rule of a primary repertoire of recogni-
tion by the cortical cell group through determin-
ing the basic intrinsic and extrinsic circuitries of
such ensembles (Pirlot 1987). Selection and ad-
aptation to particular environmental inputs may
lead, however, to the formation of a secondary
repertoire (Edelman and Mountcastle 1982). That
is, the brain is not only the end-product of genetic
pressures but also the result of environmental
selective forces, and the prime instrument by
which an animal can adapt to novel environ-
mental conditions.

Because there exist reciprocal adaptations be-
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TABLE 1.

LEGENDRE ET AL.

Backward elimination procedure for selecting an optimal subset of explanatory matrix variables for

the marsupial brain evolutionary tree. The model parameters (Std. b) are standard partial regression coefficients.
All probabilities (P) are one-tailed, computed after 9999 random triple permutations of the dependent matrix-
variable; with this number of permutations, no probability can be smaller than 1/(9999 + 1) = 0.0001. At each
step, the variable chosen for elimination is marked with a dagger (}); the variable with the largest probability
is eliminated if its probability is larger than the Bonferroni-corrected significance level o/ = 0.05/[(number of

variables in the model at the given step)].

Step 1 Step 2 Step 3
Matrix-variables Std. b P Std. b P Std. b P

Taxonomy (orders) 0.626 0.0001 0.627 0.0001 0.629 0.0001
Diet 0.193 0.0001 0.192 0.0001 0.192 0.0001
Sociability 0.182 0.0001 0.178 0.0001 0.200 0.0001
Laocomotion 0.172 0.0001 0.150 0.0001 0.153 0.0001
Habitat 0.060 0.1229 0.061 0.1227% - —
Geography - 0.033 0.2986%1 - - - -

R? 0.7585 0.7580 0.7549

Probability of R2 0.0001 0.0001 0.0001

tween an organ and its functions, one should
expect a functional relation between brain and
behavior. Different life habits imply specific sen-
sory motor developments that modify brain size.
Since the brain is the central organ controlling
all relationships between an organism and its
environment, it is very likely to be influenced by
external forces. Behavioral drive can therefore
really shape the brain of distant taxa to look
similar. Species of mammals with similar habits
(Baron 1977; Harvey et al. 1980; Harvey and
Bennett 1983; Hofman 1983; Bennett and Har-
vey 1985; Gittleman 1986), diets (Pirlot and Ste-
phan 1970; Stephan and Pirlot 1970; Pirlot and
Pottier 1977; Eisenberg and Wilson 1978; Pirlot
1981), habitats (Bauchot et Stephan 1968; Baron
1981; Pirlot and Kamiya 1982), or demographic
strategies (Eisenberg and Wilson 1981) are known
indeed to exhibit similar brain volumes. But is
the behavioral drive responsible by itself for brain
development? A correlation between a specific
behavioral trait and a particular brain type does
not imply causality. Both can be related to a
common covariate: phylogeny.

Because functional adaptations to the envi-
ronment result from past evolutionary events,
including selection (Atchley et al. 1984), it would
be very restrictive to invoke a single cause to
explain brain development. One must consider,
as we have shown, both extrinsic (i.e., environ-
mental) and intrinsic (i.e., genetic) pressures when
studying brain development. The model that we
arrived at illustrates this fact: the volumetric
evolution of the marsupial brain, as captured by
our 11 neuroanatomical variables, is significant-

ly related to the taxonomy, as well as to the evo-
lution of diet, sociability, and locomotion; these
descriptors represent either adaptations to the
environment or genetic constraints.

Taxonomy is obviously the most important
feature (b = 0.629) related to brain differences
among marsupials. The phylogeny reconstructed
from brain data clearly separates diprotodonts,
on the one hand, from polyprotodonts and pau-
cituberculates on the other (fig. 3). This shows
that the brain has not evolved according to what
would be expected from the marsupial phylogeny
(in which some polyprotodonts are members of
the same clade as the diprotodonts) and illus-
trates the convergence of brain organization be-
tween American and Australian polyprotodonts.

Dietary information then becomes important
to explain smaller differences (b = 0.192) not
accounted for by taxonomy. We can interpret the
separation of marsupials on the basis of brain
characters as related to dietary differences; di-
protodonts are herbivorous or frugivorous,
whereas polyprotodonts and paucituberculates
are either insectivorous, omnivorous, or carniv-
orous. The finer relationships within orders of
marsupials are probably more correlated to diet
than to taxonomy, which explains only the major
dichotomy at the base of the brain tree (fig. 3);
it is also reflected in the “predicted” phylogeny
(fig. 4).

Social level is also significantly improving the
regression model at a smaller scale (b = 0.200).
Low sociability is a characteristic of primitive
American marsupials of the Polyprotodonta and
Paucituberculata orders. Among the Australian



MODELING BRAIN EVOLUTION FROM BEHAVIOR

polyprotodonts, social species are grouped to-
gether in the brain tree (fig. 3); this is also the
case for diprotodont marsupials. (Details are giv-
en in Lapointe and Legendre 1995.)

Finally, locomotion has a significant contri-
bution to the regression model (b = 0.15). An-
cestors of the marsupials were probably climber-
walkers (Eisenberg 1980). Primitive paucituber-
culates and American polyprotodonts (Didel-
phidae) are semiarboreal (climber-walkers) or
terrestrial animals (walkers), whereas the Aus-
tralian polyprotodonts (Dasyuridae) evolved into
walking marsupials. Diprotodont radiation led
to jumping kangaroos, walking semifossorial
wombats, and climbing or even gliding possums.

The standard partial regression coefficients, as-
sociated with the three significant independent
matrix variables, seem to be related to the hi-
erarchical level at which those characters explain
brain similarities. The major dichotomy on the
brain phylogeny (fig. 3) is taxonomic, whereas
the finer relationships are more likely to be re-
lated to diet and social level. At low taxonomic
level, differences between species are accounted
for mostly by behavioral adaptations in response
to environmental pressures. Among-order com-
parisons, however, are probably reflecting ge-
netic differences among marsupials. This general
fact, that closely related species are more likely
to exhibit similar development than distant spe-
cies, is a consequence of the “taxon-level effect”
(Pagel and Harvey 1988). Itimplies that the brain-
behavior evolution cannot be properly studied
without considering also the phylogenetic prox-
imities among species. This is what the “com-
parative method” is trying to accomplish (Har-
vey and Pagel 1991); it considers the phylogeny
fixed and controls for its effect to study the cor-
relation among traits. For instance, the focus of
a comparative study might be to test that eco-
logical and brain characters remain correlated to
each other, even when one corrects for phylo-
genetic distances. The question that the present
paper tries to answer is quite different: our null
hypothesis is that phylogenetic and ecological
distances can be combined to predict the dis-
tances depicting the evolution of the brain. The
structure of the actual phylogeny is not preserved
through our permutational procedure; on the
contrary, a new (permuted) phylogenetic struc-
ture is generated every time, under the null hy-
pothesis. With the double-permutation method,
the permuted phylogenies are generated under a
molecular-clock hypothesis (all branches are as-
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sumed to evolve at the same rate), whereas in
the triple-permutation method, the permuted
phylogenies have unequal rates of evolution in
the different branches; the Mantel permutation
method does not preserve nor create any phy-
logenetic structure, of course.

The methodological contribution of this paper
provides a new way to evaluate the joint evo-
lution of structure and function. This method
may also be useful for other problems, where
several types of distance matrices are simulta-
neously considered: coevolution problems, such
as hosts and parasites, with due allowance for
environmental and geographic information; in
ecology, epidemiology or behavior studies, ex-
planation of the community, disease, or behavior
structure by different types of biotic, abiotic and
spatial variables; in population studies, expla-
nation of the genetic structure of populations by
environmental, linguistic and geographic factors.
Problems of the same type are found in geog-
raphy, sociology, psychometry, political science,
econometrics, and so on.

A computer program is available from Phi-
lippe Casgrain to carry out the three types of
regression modeling from dissimilarity matrices
described in this paper.
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