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Summary

1. Tests of significance of the individual canonical axes in redundancy analysis allow researchers to

determine which of the axes represent variation that can be distinguished from random. Variation

along the significant axes can be mapped, used to draw biplots or interpreted through subsequent

analyses, whilst the nonsignificant axesmay be dropped from further consideration.

2. Three methods have been implemented in computer programs to test the significance of the

canonical axes; they are compared in this paper. The simultaneous test of all individual canonical

axes, which is appealing because of its simplicity, produced incorrect (highly inflated) levels of type I

error for the axes following those corresponding to true relationships in the data, so it is invalid.

The ‘marginal’ testing method implemented in the ‘vegan’ R package and the ‘forward’ testing

method implemented in the program CANOCO were found to have correct levels of type I error

and comparable power. Permutation of the residuals achieved greater power than permutation of

the raw data.

3. R functions found in a Supplement to this paper provide the first formal description of the ‘mar-

ginal’ and ‘forward’ testingmethods.

Key-words: canonical redundancy analysis (RDA), numerical simulations, power, tests of

significance, type I error

Introduction

Redundancy analysis (RDA, Rao 1964) and canonical corre-

spondence analysis (CCA, ter Braak 1986, 1987) are two forms

of asymmetric canonical analysis widely used by ecologists and

palaeoecologists. ‘Asymmetric’ means that the two data matri-

ces used in the analysis do not play the same role: there is a

matrix of response variables, denoted Y, which often contains

community composition data, and a matrix of explanatory

variables (e.g. environmental), denoted X, which is used to

explain the variation in Y, as in regression analysis. Contrast

this with canonical correlation and co-inertia analyses where

the two matrices play the same role in the analysis and can be

interchanged; see, however, Tso (1981) for an asymmetric

interpretation of canonical correlation analysis. RDA and

CCAproduce ordinations ofY constrained byX.

This paper deals with methods to test the significance of the

canonical axes that emerge from this type of analysis. The

canonical axes are those that are formed by linear combina-

tions of the predictor variables; they are sometimes referred to

as ‘constrained axes’. The section ‘Background: the algebra of

redundancy analysis’ will show how they are computed. Indi-

vidual canonical axes may be tested when the overall relation-

ship (R2) between Y and X has been shown to be significant.

Wewill concentrate onRDA; our conjecture is that the conclu-

sions derived from our simulations should apply to CCA as

well.

As we deal with complex, multivariate data influenced by

many factors, it is to be expected that several independent

structures coexist in the response data. If these structures are

linearly independent, they should appear on different canoni-

cal axes. Each one should be identifiable by a test of signifi-

cance. Canonical axes that explain no more variation than

random should also be detected; they do not need to be further

considered in the interpretation of the results.

It is not always necessary to test the significance of the

canonical axes when there are only a few.However, researchers

often face situations where there is a large number of canonical

axes; they may want to know howmany canonical axes should

be examined, plotted, and interpreted. Spatial modelling is a

good example of these situations: when analysing the spatial

variation of species-rich communities (hundreds of species,

hundreds of sites) by spatial eigenfunctions, we may end up

with hundreds of canonical axes. Different types of spatial

eigenfunctions have been described in recent years to model
*Correspondence author. E-mail: Pierre.Legendre@umontreal.ca

Correspondence site: http://www.respond2articles.com/MEE/

Methods in Ecology and Evolution 2011, 2, 269–277 doi: 10.1111/j.2041-210X.2010.00078.x

� 2010 The Authors. Methods in Ecology and Evolution � 2010 British Ecological Society



the spatial structure of multivariate response data: Griffith’s

(2000) spatial eigenfunctions from a connection matrix of

neighbouring regions or sites; Moran’s eigenvector maps

(MEM, Borcard & Legendre 2002; Borcard et al. 2004; Dray,

Legendre, & Peres-Neto 2006); asymmetric eigenvector maps

(AEM, Blanchet, Legendre, & Borcard 2008). It is then of

interest to determine which of the canonical axes derived from

these eigenfunctions represent variation that is more structured

than random. This is the objective of the tests of significance of

the canonical axes. Variation along the (hopefully few) signifi-

cant axes can be mapped, used to draw biplots or interpreted

through subsequent analyses. The nonsignificant axes can be

dropped because they do not represent variation more struc-

tured than random. The eigenvalue associated with each axis

expresses the variance accounted for by the canonical axis; the

fraction of the response variation that each axis represents is a

useful supplementary criterion: axes that account for less than,

say, 1% or 5% of the variation may not need to be further

analysed even if they are statistically significant.

Three methods have been proposed to test the significance

of canonical axes in RDA. We will compare them using simu-

lated data to determine which ones, if any, have correct levels

of type I error (defined in the section ‘Simulationmethod’).We

will also compare these methods and two permutation proce-

dures in terms of power. This paper provides the first formal

description of thesemethods.

Background: the algebra of redundancy
analysis

Redundancy analysis (RDA, Rao 1964) of a response matrix

Y (with n objects and p variables) by an explanatory matrix X

(with n objects andm variables) consists of two steps (Legendre

& Legendre 1998, section 11Æ1). In the algebraic description

that follows, the columns of matrices Y and X have been cen-

tred to havemeans of 0.

• Step 1 is a multivariate regression of Y on X, which

produces a matrix of fitted values Ŷ through the linear equa-

tion:

Ŷ ¼ X½X0X��1X0Y eqn 1

This is equivalent to a series of multiple linear regressions of

the individual variables ofY onX, calculation of the vectors of

fitted values and binding these column vectors to form matrix

Ŷ.

• Step 2 is a principal component analysis of Ŷ. This PCA

produces the canonical eigenvalues and eigenvectors as well

as the canonical axes (object ordination scores). This step is

performed to obtain reduced-space ordination diagrams dis-

playing the objects, response variables, and explanatory vari-

ables for the most important axes of the canonical

relationship.

Like the fitted values of a multiple linear regression, the

canonical axes (object ordination scores) are also linear combi-

nations of the explanatory variables in X. These linear combi-

nations are the defining properties of canonical axes in the

presentation of RDA by ter Braak & Prentice (1988) and ter

Braak (1995). The present paper focuses on the problem of

determining which of the canonical axes are important enough

towarrant consideration, plotting and detailed analysis.

PARTIAL RDA

The statistical test for identifying the significant axes requires

the notion of a partial RDA, that is, RDA with additional

explanatory variables, called covariables, assembled in matrix

W. In partial RDA, the linear effects of the explanatory vari-

ables in X on the response variables in Y are adjusted for the

effects of the covariables inW.

In multiple regression, we know that the partial regression

of y by X in the presence of covariablesW can be computed in

two different ways (Legendre & Legendre 1998, section 10Æ3Æ5).
One first computes the residuals of y on W (noted yres|W) and

the residuals of X on W (Xres|W). Then, one can either regress

yres|W onXres|W, or regress y onXres|W. The same partial regres-

sion coefficients and vector of fitted values are obtained in both

cases. The R2 of the first analysis is the partial R2 whereas that

of the second analysis is the semipartialR2.

The same two approaches can be used for partial RDA.

First, one computes the residuals ofY onW (notedYres|W) and

the residuals ofX onW (Xres|W). Then, one can compute either

the RDA of Yres|W by Xres|W or the RDA of Y by Xres|W. The

two approaches produce the same canonical eigenvalues,

eigenvectors and axes and can be used to test the significance

of the canonical axes. In partial RDA, the canonical axes are

linear combination of the adjusted X variables, Xres|W, and are

orthogonal to the covariables inW. TheR2 obtained in the first

approach is the partial canonicalR2 whereas that of the second

analysis is the semipartial canonical R2; these two statistics are

described in eqns 9 and 10 below.

STATIST ICS, S IMPLE RDA

The first step of RDA already leads to informative statistics.

With matrices Y and Ŷ, one can compute the following statis-

tics:

• The canonical R2, whichMiller & Farr (1971) called the bi-

multivariate redundancy statistic, measures the strength of the

linear relationship betweenY andX:

R2
YjX ¼

SSðŶÞ
SSðYÞ eqn 2

where SSðŶÞ is the total sum-of-squares (or sum of squared

deviations from the means) of Ŷ and SS(Y) is the total sum-

of-squares of Y. Miller & Farr (1971) derived this equation

as follows. They considered the case where the p variables of

Y are standardized, forming matrix Ystand. They computed a

principal component analysis (PCA) of Ystand, then a multi-

ple regression of each principal component j on the explana-

tory matrix X. This multiple regression is noted PCj|X and

itsR2 isR2
PCjjX. Miller and Farr established that
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R2
Ystand jX ¼

Pp
j¼1

kjR2
PCjjX

p
eqn 3

The PCj are the principal components of Ystand and the kj
are the corresponding eigenvalues. The sum of the eigen-

values is p, the number of variables in Ystand, because the

variables in Ystand have been standardized. So R2
Ystand jX,

where Ystand|X denotes the multivariate regression of Ystand

on X, is a weighted mean of the coefficients of determination

of the PCj regressed on matrix X, the weights being given by

the proportion of the variance of Ystand occupied by each

principal component (i.e. the eigenvalues divided by p). The

same value of R2
Ystand jX would be obtained by calculating the

mean of the coefficients of determination of the standard-

ized Ystand variables regressed one by one on X:

R2
Ystand jX ¼

Pp
j¼1

R2
y0 jX

p
eqn 4

For the general case, where Y is not standardized, R2
YjX is

computed using eqn 2.

• The adjusted R2 is computed using the classical Ezekiel

(1930) formula:

R2
adj ¼ 1� ð1� R2

YjXÞ
ðn� 1Þ
ðn�m� 1Þ eqn 5

where m is the number of explanatory variables in X or,

more precisely, the rank of the variance-covariance matrix

of X.

• The F-statistic for the overall test of significance is con-

structed as follows (Miller 1975):

F ¼
R2

Ystand jX

.
mp

ð1� R2
YstandjXÞ

.
ðn�m� 1Þp

eqn 6

This statistic is used to perform the overall test of signifi-

cance of the canonical relationship. The null hypothesis of

the test is H0: the strength of the linear relationship, mea-

sured by the canonical R2, is not larger than that which

would be obtained for unrelated Y and X matrices of the

same sizes [Note: in the absence of relationship, the

expected value of R2 is not 0 but m ⁄ (n–1)].
When the variables of Y are standardized, the F-statistic

(eqn 6) can be tested for significance using the Fisher–Snede-

cor F-distribution with d.f.1 = mp and d.f.2 = p(n ) m ) 1);

p is the number of response variables in Y; m parameters were

estimated for each of the p multiple regressions used to com-

pute the vectors of fitted values forming the p columns of Ŷ;

hence, a total of mp parameters were estimated. This is why

there are mp degrees of freedom attached to the numerator of

F (d.f.1). Eachmultiple regression equation has degrees of free-

dom equal to (n ) m ) 1), so the number of degrees of free-

dom of the denominator, d.f.2, is p times (n ) m ) 1). Miller

(1975) conducted numerical simulations in the multivariate

normal case, with combinations of m and p from 2 to 15 and

sample sizes of 30 to 160. He showed that eqn 6 produced

distributions of F values that were very close to theoretical

F-distributions with the same numbers of degrees of freedom.

Additional simulations that we conducted (reported in Appen-

dix S1) confirmed that this parametric test of significance had

correct levels of type I error when Y was standardized. This

was not the case, however, for nonstandardized response

variables. In our simulations, the columns of Y were random

numbers drawn from linearly independent statistical popula-

tions. Further simulations should be performed to check the

validity of Miller’s parametric test when there are correlations

among the columns ofY.

In many analyses, the response variables should not be stan-

dardized prior to RDA.With community composition data in

ecology (species abundance data), for instance, the variances

of the species should be preserved in most analyses because

abundant and rare species do not play the same roles in eco-

systems. Our simulation results (Appendix S1) show that

parametric tests should not be used when the Y variables have

unequal variances, especially when the error is not normal.

Permutation tests always had correct levels of type I error in

our results. For permutation tests, one can simplify the equa-

tion of the F-statistic and eliminate the constant p:

F ¼
R2

YjX

.
m

ð1� R2
YjXÞ

.
ðn�m� 1Þ

eqn 7

This simplification does not change the value of F. Equa-

tion 7 is the one used in programs of canonical analysis,

such as canoco and vegan’s rda(), designed to analyse

empirical user’s data. The F-statistic is tested by permuta-

tion in these programs.

STATIST ICS, PARTIAL RDA

• For analysis in the presence of W containing q covariables

(partial RDA), the F-statistic is constructed as follows (ter

Braak& Šmilauer 2002):

F ¼ SSðYfitÞ=m
SSðYresÞ=ðn�m� q� 1Þ eqn 8

There are several ways of computing the sum-of-squares

of the fitted values SS(Yfit) and residuals SS(Yres) in the

partial RDA case. The most convenient is the following:

SS(Yfit) = SS(Yfit|(X + W)) ) SS(Yfit|W) and SS(Yres) =

SS(Y) ) SS(Yfit|(X + W)). (X + W) designates the concate-

nation of X and W in a single matrix. Yfit was noted Ŷ in

eqn 1, which did not involve covariables W.

• The semipartial R2, R2
YjXresjW

, is the proportion of explained

variation with respect to the total variation in Y. This is the

most widely used R2 statistic in partial RDA. It is the R2 of

the simple RDAofY byXres|W:

R2
YjXresjW

¼ SSðYfitÞ=SSðYÞ eqn 9

• The partial R2, R2
YresjWjXresjW

, is the proportion of explained

variation with respect to the total variation in Y residualized
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on the matrix of covariablesW. Althoughmore rarely used, it

can be computed as the R2 of the simple RDA of Yres|W by

Xres|W:

R2
YresjWjXresjW

¼ SSðYfitÞ=SSðYresjwÞ eqn 10

Methods to test the significance of individual
canonical axes in RDA

The null hypothesis for the test of significance of the jth axis is

H0: the linear dependence of the response variables Y on the

explanatory variables X is less than j-dimensional. More infor-

mally, the null hypothesis is that the jth axis under test explains

nomore variation than a random axis of the same order (j), for

matrices Y and X (in the presence of covariablesW, if applica-

ble), given the variation explained by the previously tested axes.

TEST ALL INDIV IDUAL CANONICAL AXES

SIMULTANEOUSLY

The first and simplest method can be described as follows

(covariablesW are not considered in this first formof test):

1. Compute the RDA of Y by X. Extract all canonical eigen-

values.

2. A rough test could be based on the eigenvalues themselves.

For a better test design, for each canonical eigenvalue kj, we
will compute F-statistics using the following formulas:

F1j ¼ kj=ððSSðYÞ �
Xj

i¼1
kiÞ=ðn� 1�mÞÞ eqn 11

F2j ¼ kj=ððSSðYÞ �
Xk
i¼1

kiÞ=ðn� 1�mÞÞ eqn 12

where n is the number of objects, m is the rank of the var-

iance-covariance matrix of X, k is the number of canoni-

cal eigenvalues and SS(Y) is the total sum-of-squares in

Y. The first formula for the F-statistic is related to the

formula found in the canoco manual (ter Braak & Šmila-

uer 2002, p. 51) to test the first canonical eigenvalue; it

uses the sum of canonical eigenvalues up to and including

the kj being tested. The second formula uses the sum of

all k canonical eigenvalues in the denominator of F in the

same way as the marginal method below. In both formu-

las, the eigenvalue kj in the numerator could be divided

by m. That constant, as well as the number of degrees of

freedom (n ) 1 ) m) in the denominator, has no influence

on the results of permutation tests.

3. Permute the rows ofY at random, obtainingmatrixY*.

4. Compute the canonical analysis of Y* by X. Obtain all

canonical eigenvalues. For each canonical eigenvalue of the

permuted analysis, compute the F1j* and F 2j* statistics under

permutation, using the formulas above.

5. Repeat steps 3 and 4 a large number of times, say 999

times, to obtain estimates of the distributions of F1j* and

F2 j* under permutation. Add the reference values of F1j and

F 2j to their respective distributions (Hope 1968).

6. Calculate the associated probabilities as the number of

cases in the distributions that are larger than or equal to the

reference values, divided by the number of permutations

plus 1.

That method is appealing because of its simplicity. Compu-

tation is faster than with the two followingmethods. Because it

is the simplest one, it may be appealing to the developers of

new programs; this is why it is described, tested and discussed

here. Our simulation results will show that this method should

not be used.

MARGINAL AND FORWARD TEST OF THE CANONICAL

AXES

The marginal and forward tests of canonical axes use F-statis-

tics similar to those described in eqns 11 and 12, respectively.

They differ from the simultaneous test described in section ‘Test

all individual canonical axes simultaneously’ except for the first

canonical axis. For the second and later canonical axes, the

forward andmarginal tests are based on a partialRDA, even in

the case where there were initially no covariables. For testing

the jth axis (j > 1), the lower-numbered canonical axes (1, 2…
(j–1)) are added to the matrix of covariablesW. Calculation of

the residuals, which are permuted and added to the unpermut-

ed fitted values during the permutation test for each axis, is per-

formed on the covariables W incremented with the previously

tested axes. The test cannot be performed simultaneously for

all axes because the residual sum-of-squares, which is com-

puted using the covariablesW incremented with the previously

tested axes, is one of the elements that form the denominator

of the F-statistic and it varies for each axis. Furthermore, for

partial regression and partial canonical analysis, Anderson &

Legendre (1999) have shown that permutation of the residuals

of either the reduced or the full model (see ‘Permutation meth-

ods’ below) is preferable to permutation of the rawdata.

It is very difficult to describe the methods for testing the

canonical axes in any detail using sentences and paragraphs.

Considering the popularity of the R statistical language which

is used by many ecologists and other application scientists,

we append to the paper (Data S1) two R functions, called

marginal.test() and forward.test(), which serve as complete

descriptions of the marginal and forward methods; to keep

these functions simple, the analysis is performed without true

covariables and the functions are written without shortcuts or

optimizations.Detailed comments have been added to the code

to make it understandable even by those who are not fluent in

R. The purpose of these functions is to unambiguously describe

the two methods. More complex functions involving covari-

ables are presented in Data S2; they are called test.axes.

canoco() and test.axes.cov(). These four functions do not call

compiled code that would increase computation efficiency

during permutation testing. They are not intended for routine

testing of canonical eigenvalues, although they do produce

correct, publishable results.

Marginal test

The marginal method, which is based on the approach used in

marginal tests of significance in partial regression, is computed
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as follows. Amatrix of covariablesmay be present in the analy-

sis; it is included in all steps of the description.

1. Compute theRDAofY byX in the presence of covariables

W, if any; see ‘Partial RDA’ in ‘Background: the algebra of

redundancy analysis’. Extract the eigenvalues as well as the

canonical axes that are linear combinations of the explana-

tory variablesX (i.e. the object score ordination axes).

2. Test the significance of the successive canonical eigen-

values, kj, using the following F-statistic:

F 3j ¼ kj=ðSSðYresjðXþWÞÞ=ðn� 1�mÞÞ
¼ kjðn� 1�mÞ=SSðYresjðXþWÞÞ eqn 13

In the marginal method, the denominator of the F-statistic,

SS(Yres|(X + W)), is always (i.e. for the tests of all axes) the

residual sum-of-squares of the model including all explanatory

variables X and all covariables W, if any. Permutation of the

raw data can be used to test the first canonical eigenvalue if

there is no matrix W in the analysis. Permutation of the raw

data and permutation of the residuals of the reducedmodel are

identical in tests without covariables (Legendre & Legendre

1998, Table 11Æ7). If there are covariables in the analysis, and

for the test of all successive canonical axes, use permutation of

the residuals of the reduced or full model (see ‘Permutation

models’ below). In the marginal.test() function in Data S1,

permutation of the residuals of the reduced model is used to

test the canonical axes.

Forward test

A forward approach to the test of the canonical axes has been

implemented in the canoco program since version 3.10 (ter

Braak 1990). It can be described as follows. The following

description includes a matrix of covariables that may be pres-

ent in the analysis.

1. Compute the RDA of Y by X in the presence of covari-

ablesW, if any; see ‘Partial RDA’ above. Set aside the vector

of canonical eigenvalues and the matrix containing the

canonical axes that are linear combinations of the explana-

tory variablesX.

2. Test the significance of the successive canonical eigen-

values, kj, using the following F-statistic:

F4j ¼ kj=ððSSðYresj½WþAxisð1Þ to Axisðj�1Þ�Þ � kjÞ=ðn� 1�mÞÞ
¼ kjðn� 1�mÞ=ðSSðYresj½WþAxisð1Þ to Axisðj�1Þ�Þ � kjÞ

eqn 14

where kj is the eigenvalue under test. kj is the first eigen-

value from the analysis of Y [or permuted Y during the

permutations] by X in the presence of covariables W and

the previously tested axes 1 to (j–1), which are added as

columns to W. SS(Yres|[W + Axis (1) to Axis (j–1)]) is the resid-

ual sum-of-squares of that partial RDA model. From that

quantity, we subtract eigenvalue kj, which is recomputed

during each permutation. Permutation of the raw data

can be used to test the first canonical eigenvalue if there is

no matrix W in the analysis. If there is, and for the test of

all successive canonical axes, use permutation of the resid-

uals of the reduced or full model (see ‘Permutation mod-

els’ below). In the forward.test() function in Data S1,

permutation of the residuals of the reduced model is used

to test the canonical axes; see the section ‘Permutation

methods’ below.

PARAMETRIC TEST

Besides the three methods described above, Lazraq & Cléroux

(2002) proposed a parametric method to test the significance of

the successive components in RDA under the assumption of

multinormality. Takane & Hwang (2005) showed, however,

that the test of Lazraq and Cléroux lead to strongly biased

results. Takane & Hwang (2005) also suggested that the per-

mutation test used by Takane & Hwang (2002) in generalized

canonical correlation analysis can be adapted to RDA when

the multivariate normality assumption does not hold; it leads

to the forward permutation procedure described in the present

paper. In support of their suggestion, Takane &Hwang (2005)

cited some of the simulation results reported in the present

paper, which they had been shown during a seminar by PL in

2005.

PERMUTATION METHODS

In the marginal and forward methods, significance tests of the

canonical axes involve either unrestricted permutation of the

residuals of the reduced model, a method proposed by Freed-

man & Lane (1983), or permutation of the residuals of the full

model, a method proposed by ter Braak (1990, 1992). These

methods are described in Anderson & Legendre (1999) for

multiple regression and in Legendre & Legendre (1998, section

11Æ3) for RDA and CCA. Permutation of the raw data is

another possible option; it will be compared to the permuta-

tion of the residuals of the reduced model in the simulations

reported in section ‘Results andDiscussion’.

• In permutation of the raw data (method = ‘direct’ in

vegan and in our simulation software), the rows of Y are per-

muted at random to produce thematrix of permuted response

dataY*.

• In permutation of the residuals of the reduced model, one

computes the matrix of fitted values Yfit|W and the matrix of

residuals Yres|W of the multivariate regression of Y on the

matrix of covariables W. The rows of Yres|W are permuted,

producing matrix Yres|W*. The matrix of permuted response

data, Y*, is obtained by adding Yfit|W (unpermuted) to

Yres|W*.

• In permutation of the residuals of the full model, one com-

putes the matrix of fitted valuesYfit|(X + W) and the matrix of

residuals Yres|(X + W) of the multivariate regression of Y on

thematrix obtained by concatenation ofX andW by columns

into a single matrix. The rows of Yres|(X + W) are permuted,

producing matrix Yres|(X + W)*. The matrix of permuted

response data, Y*, is obtained by adding Yfit|(X + W) (unper-

muted) toYres|(X + W)*.
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In version 3.x of the canoco program, the default method for

the test of significance of the first canonical eigenvalue was per-

mutation of the residuals of the reduced model, and permuta-

tion of the residuals of the full model for the overall test

of significance of the canonical relationship. In version 4.x of

canoco, the default became permutation of the residuals of the

reduced model in all cases. The default method for the mar-

ginal test in vegan was permutation of the raw data (meth-

od = ‘direct’) until version 1.14; the default was changed to

method = ‘reduced’ in version 1.15.

Permutation of the residuals of the reduced and the full

model were found by Anderson & Legendre (1999) to produce

equivalent results. Only permutation of the residuals of the

reduced model was used in the simulations reported in the

present paper.

Besides these methods, one can also permute Y in a way

imposed by the logic of a problem. The most important meth-

ods of restricted permutation are permutation within the levels

of a factor or block which is used as a covariable in the study

and loop permutation along a time series or toroidal permuta-

tion of the points on a geographical surface.

Software

As mentioned above, Data S1 of this paper contains functions

that describe the marginal and forward methods for simple

RDA, using R code. Data S2 describes two R functions

designed for testing canonical axes in simple or partial RDA.

These two functions are programmed differently, following the

two approaches for partial RDA described in the ‘Partial

RDA’ subsection of ‘Background: the algebra of redundancy

analysis’ of this paper. They produce identical results. For

users who are analysing real data, the R package ‘vegan’ (Ok-

sanen et al. 2010) offers canonical analysis by RDA and CCA

with covariables W, with tests of significance of the canonical

axes through the marginal test. The marginal method is imple-

mented in the permutest.cca() function, which carries out the

tests of significance of the canonical axes when users call

the anova.cca() function after canonical analysis by the

functions rda() and cca(). The program canoco (ter Braak &

Šmilauer 2002) offers tests of significance of the canonical axes

through the forwardmethod.

Simulation method

Simulations were carried out to compare the statistical prop-

erties of three methods developed to test the significance of

the canonical axes in RDA described in sections ‘Test all

individual canonical axes simultaneously’ and ‘Marginal and

forward test of the canonical axes’. The simulations were

designed specifically for that purpose, by opposition with

simulations that could be performed to illustrate the use of

RDA and its tests of significance in a wide range of real data

analyses. One of the limitations of any simulation study is

that not all possible cases can be covered. So, in this paper,

we limited our simulations to key situations where a known

number of canonical axes were generated. The three methods

will be compared as to their ability to detect the correct num-

ber of significant axes in the simulated data. A method that

detects significant axes not corresponding to linear relation-

ships built into the data will be declared incorrect. In practice,

then, we generated data having a known number of linear

relationships (canonical dimensions) to determine whether

the testing procedures found the correct number of dimen-

sions. This is the role of the blocks of variables created in the

response matrix Y and described below. This data structure is

a simplification, but not an oversimplification, of the kind of

relationships that would be found in real data, for example

when analysing the relationships between species and envi-

ronmental variables.

Type I error consists in finding ‘false positives’, or false

significant results, during statistical tests when there is no

effect – here, a linear relationship between the response and

explanatory matrices. To estimate the rate of type I error in

the tests of the canonical axes, pairs of Y and X matrices

were generated using random deviates and tested for signifi-

cance. A test of significance is valid if the probability of type

I error is no greater than the significance level a, for any a
value (Edgington 1995, p. 37). We used the following values

to generate the data for the simulations to study type I error:

n = 20 or 100; p (number of variables in Y) = 3, 5, or 8; m

(number of variables in X) = 3, 5, or 8. Error was normally

distributed.

Power is the ability of a statistical method (here the test of

individual canonical axes in RDA) to detect a relationship

when one is present in the data. The difficulty in the present

study was to generate data that contained a known number

of linear canonical relationships, that is, a known number of

dimensions, to check that the testing procedures for the

canonical axes found the correct number of dimensions. That

is the role of the blocks of variables generated in the response

matrix Y. The generation method is described in the following

paragraphs.

To give a simple example, we could have generated a single

variable inY related to a single variable inX as follows:

Yði; jÞ ¼ Xði; jÞ þ 0�2e where e � Nð0; 1Þ eqn 15

Analysis of that pair would have been expected to produce a

single significant canonical eigenvalue.

In our simulations, we generated data that contained 1–4

blocks, each containing 1–3 variables in Y; each block was

related to two variables in X. Because of that, when there was

more than a single y variable per block, more canonical axes

were created than the number of significant axes, which was

equal to the number of blocks ofY variables. For example, cre-

ate four independent random normal variables following

N(0,1), called x1 … x4, and six more random normal variables

following N(0,1), called e1 … e6. Then, create two blocks in Y,

each block containing three y variables:

block 1: y1 ¼ 0�5x1 þ 0�5x2 þ ce1;y2 ¼ 0�5x1 þ 0�5x2 þ ce2;

y3 ¼ 0�5x1 þ 0�5x2 þ ce3, and

block 2: y4 ¼ 0�5x3 þ 0�5x4 þ ce4;y5 ¼ 0�5x3 þ 0�5x4 þ ce5;

y6 ¼ 0�5x3 þ 0�5x4 þ ce6:
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In this example, the coefficient c determines the importance

of the random error component; that coefficient will vary in

the simulations reported in the next section. The Y variables

within each block are all related to a linear model of the same

pair ofX variables but differ fromone another by their random

component e, which differs from variable to variable. So, an

analysis of that pair of matrices Y and X would be expected to

produce two significant canonical axes.

We used the following values for the simulations for power

reported in this paper: No. blocks = 1–4, No. y per

block = 1–3, n = 20 or 100. As two X variables were gener-

ated for each block in Y, there are m = 2–8 variables in X

and p = 1–12 variables in Y. Error distributions: normal,

exponential, cubed exponential, as in Manly (1997) and

Anderson & Legendre (1999). The weight of the error compo-

nent in the generation of the y variables was c = 0Æ2, 0Æ5,
or 0Æ8.
In both the type I error and the power studies, each simula-

tion run consisted of the analysis of 1000 pairs of indepen-

dently generated data matrices. The permutation tests

involved 999 random permutations. The significance level of

the tests was a = 0Æ05.

Results and Discussion

The simulation results lead to the following observations.

SIMULTANEOUS TEST OF ALL CANONICAL

EIGENVALUES

The simulation results reported in the first six rows of Table B1

(Appendix S2), parts a and b, show that in the absence of a

relationship between Y and X, the rejection rates of H0 were

always close to the nominal significance level, here 5%. The

tests had correct rates of type I error in that situation for both

ways of computing the F-statistic (F1 and F2, eqns 2 and 3).

When relationships were present in the data (Power and type I

error sections, Table B1 in Appendix S2), the tests had good

power to detect the significant axes displaying the relation-

ships; the expected number of significant axes is the number of

blocks of Y variables (‘No. blocks’ column). The tests of the

following eigenvalues, which did not display relationships built

in the data, should, however, have had rejection rates close to

the significance level (a = 0Æ05) or lower. The results show

that the rejection rates for these axes had highly inflated levels

of type I error (values in bold in the table). So that form of test

is invalid. As a consequence, the simultaneous test of all canon-

ical eigenvalues should not be used.

MARGINAL AND FORWARD METHODS, NORMAL ERROR

The results presented in Fig. 1 and Tables B2 and B3 in

Appendix S2 indicate that these twomethods have very similar

properties: in the absence of a relationship between Y and X,

the rejection rates of H0 were always close to or lower than the

significance level a = 0Æ05 (Tables B2 and B3 in Appendix S2,

‘Type I error’ sections). When relationships were present in the

data, the tests had good power to detect the axes displaying the

relationships (Tables B2 and B3 in Appendix S2, ‘Power and

type I error’ sections); the expected number of significant axes

is the number of blocks of Y variables (‘No. blocks’ column).

For all axes that were not expected to display a significant rela-

tionship, the rejection rates (type I error) were always lower

than a = 0Æ05. These two forms of test are thus valid, even

though their conservative behaviour for the nonsignificant

axes indicates a slight loss of power for the significant axes after

the first one.

COMPARISON OF THE ‘D IRECT ’ AND ‘REDUCED’

PERMUTATION METHODS

Does the choice of a permutationmethod, ‘direct’ or ‘reduced’,

make a difference for the marginal method? Simulations were

conducted with increased weights for the error component in

the generation of the Y variables (parameter c = 0Æ5 and 0Æ8,
instead of 0Æ2 in Tables B2 and B3, Appendix S2), in the hope

of displaying a difference of power between the two permuta-

tion methods. The results presented in Table B4 in Appen-

dix S2 for the marginal test show that permutation of the

residuals of the reduced model has more power than permuta-

tion of the raw data to detect a relationship when there is a

large amount of error in the data, especially when n is small.

For c = 0Æ8 for example, compare rows of results with the

same values of n and ‘No. blocks’: the rejection rates for the

axes that were expected to be significant, following the first

one, are always higher for method = ‘reduced’ than for meth-

od = ‘direct’. As expected, power is much higher for n = 100

than for n = 20.

INFLUENCE OF INCREASING WEIGHT OF THE ERROR

COMPONENT

As expected, increasing the weight of the error component in

the generation of Y (parameter c) reduced the power of the

marginal and forward tests of the canonical axes (Tables B2

and B3, Appendix S2: c = 0Æ2; Tables B4 and B5: c = 0Æ5 and
0Æ8; Fig. 1).

INFLUENCE OF ERROR TYPE

For reduced model permutations, the results for normal

and exponential error are similar (Fig. 1). For cubed expo-

nential error (very highly skewed data), the power to detect

significant relationships almost completely vanishes because

the linear component of the X–Y relationships is weak.

Detailed results are presented in Tables B6 and B7 in

Appendix S2. For highly skewed data, such as those gener-

ated here using cubed exponential deviates as the error

term, one might more easily identify relationships between y

and X using De’ath’s (2002) multivariate regression tree,

which aims at identifying breaks in the response data values

that correspond to thresholds in the explanatory variables,

instead of linear relationships with the explanatory variables

as it is the case in RDA.
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There is no need for an adjustment for multiple testing

when testing the canonical axes. An overall test of the canon-

ical relationship (canonical R2) must be carried out, ideally

before the canonical axes are computed, and certainly before

the axes are tested and examined. So one is not interested

here in adjusting the significance level of individual tests to

obtain a fixed (e.g. 5%) experimentwise error rate, but only

in a test of significance that has a correct rate of type I error

for each axis.

Statistical significance is of course not the same as biological

importance. If an axis is not statistically significant, it usually

does not warrant mapping, biplotting or biological interpreta-

tion, with perhaps an exception: when the number of sites is

very small and power is low, one might still want to draw a

biplot and examine some of the first nonsignificant axes. On

the other hand, even when an axis is statistically significant, it

may not be worth interpreting when it explains little variation;

this may happen when the number of objects is large. We

advise that the results of tests of statistical significance should

not be used blindly.

Conclusion

In this paper, we addressed the following questions through

numerical simulations:

• Which of the three testing methods produced correct type I

error for the test of the successive canonical eigenvalues? The

computationally more simple method which consists of test-

ing all axes with a single set of permutations produced incor-

rect type I error for all axes except the first one; so it is invalid

and should not be used to test the significance of canonical

axes in RDA. The marginal and forward procedures are both

valid as they displayed type I error rates no greater than the

significance level a; we used a = 0Æ05 in this simulation

study. These two permutationmethods produced comparable

results and were equally powerful for the range of conditions

studied in our simulations (Tables B1–B3 inAppendix S2).

• How does permutation of the raw data compare to permu-

tation of the residuals in the marginal and forward tests? Per-

mutation of the residuals of the reduced model provided

greater power than permutation of the raw data in the tests of

Fig. 1. Comparison of the marginal and forward testing methods in tests of canonical axes #1–5 for n = {20, 100} and different types of error,

reduced-model permutations. There were four blocks of y variables in these simulations, i.e. four distinct linear relationships between Y and X,

p = 12 variables in Y, and m = 8 variables in X. The black symbols (marginal method) are often hidden behind the white symbols (forward

method). The data are fromTables B2 to B7 (Appendix S2).
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the axes following the first one (Tables B4 and B5 in Appen-

dix S2).

• What is the effect of the type of error on the power of the

marginal and forward tests? The importance of the loss of

power depended on the number of observations n and on the

type of error: with normal or exponential error, the loss was

very slight when using permutation of the residuals [Tables

B4 (method = ‘reduced’) and B5–B7 inAppendix S2].

The R functions found in Data S1 provide the first formal

description of the ‘marginal’ and ‘forward’ testingmethods.
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in redundancy analysis. Methods in Ecology & Evolution, 2, 269–277. 

APPENDIX S1 

SIMULATIONS RESULTS, F-TEST OF THE GLOBAL RDA R-SQUARE 
 
 This Appendix reports results of the simulations conducted to test the type I error of the 
global F-test of significance in RDA under different conditions. Type I error occurs in the global 
test of the canonical R2 when a test result is significant for matrices Y and X between which there 
is no linear relationship. A test of significance is valid if the probability of type I error is no 
greater than the significance level α, for any α value (Edgington 1995, p. 37); α was 0.05 in our 
simulations. 

 In a first series of simulations, we verified the finding of Miller (1975) that the F-statistic 
computed as in eq. 6 produces valid tests of significance for standardized data. Data were 
generated independently in matrices Y and X, using the software described in document Data S3; 
this insured that there were no linear relationships between the variables of Y and X except by 
chance. The columns of Y were random numbers drawn from linearly independent statistical 
populations. The error in Y was either normal, exponential, or cubed exponential (exponential 
deviates to the exponent 3, which provided extremely non-normal error), following previous 
simulations studies of the same type (e.g. Manly 1997, Anderson and Legendre 1999). The 
variables in Y were standardized prior to testing. The results (Table A1) show that the parametric 
test had correct levels of type I error for all combinations of the simulation parameters. The 
permutation test also had correct levels of type I error. 

 Then, we generated random variables in Y with equal population variances, but we did 
not standardized matrix Y prior to the tests. The results (Table A2) show that while the test of the 
canonical relationship remained valid for normal and exponential error, the rejection rates were 
inflated (i.e. higher than the significance level) for extremely non-normal error. The permutation 
test had correct levels of type I error in all simulations. 

 Finally, we generated random variables in Y with unequal population variances. The 
generated random deviates were multiplied by values chosen at random, in each simulation 
independently, from a random uniform distribution between 1 and 10. There was inflation of the 
rejection rate of the parametric test of significance for all types of error distributions. The effect 
was less important for random normal error and more important for exponential and cubed 
exponential deviates. The permutation test had correct levels of type I error in all simulations. 

 We conclude that the parametric method of testing the canonical relationship proposed by 
Miller (1975) can be safely used only when the variables in Y are standardized prior to canonical 
analysis. It can also be used for non-standardized variables Y drawn from normally distributed 
variables with equal population variances. In all other cases, permutation tests should be used. 
The permutation tests can actually be used safely in all cases, including those where the Miller 
parametric test can be used. 
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Table A1. Simulation results for type I error in F-tests of significance of the global R2 statistic for 
standardized Y variables: parametric test (Miller F-statistic, eq. 6) and permutation test rejection 
rates of H0 at the 5% significance level over 1000 simulations. Permutation tests involved 999 
random permutations. n: number of observations; p: number of response variables in Y; m: 
number of explanatory variables in X. Y and X were generated independently in these 
simulations. 

___________________________________________________ 

 n p m Rejection rates 
 _____________________________ 

 Parametric Permutation 
___________________________________________________ 

a) Normal error 

 10 1 1 0.047 0.051 
 20 1 1 0.047 0.047 
 20 5 5 0.039 0.051 
 20 10 5 0.040 0.049 
 20 20 10 0.029 0.039 
 50 5 5 0.038 0.041 
 50 1 1 0.055 0.055 
 50 10 5 0.052 0.050 
 50 20 10 0.043 0.040 
 100 1 1 0.058 0.059 
 100 5 5 0.048 0.051 
 100 10 5 0.056 0.057 
 100 20 10 0.051 0.051 
 
b) Exponential error 

 10 1 1 0.049 0.045 
 20 1 1 0.046 0.049 
 20 5 5 0.044 0.051 
 20 10 5 0.035 0.042 
 20 20 10 0.044 0.054 
 50 1 1 0.051 0.050 
 50 5 5 0.042 0.048 
 50 10 5 0.048 0.051 
 50 20 10 0.051 0.053 
 100 1 1 0.056 0.058 
 100 5 5 0.057 0.062 
 100 10 5 0.042 0.042 
 100 20 10 0.036 0.039 
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c) Cubed exponential error 

 10 1 1 0.046 0.055 
 20 1 1 0.061 0.064 
 20 5 5 0.043 0.048 
 20 10 5 0.050 0.065 
 20 20 10 0.029 0.036 
 50 1 1 0.046 0.044 
 50 5 5 0.047 0.046 
 50 10 5 0.054 0.055 
 50 20 10 0.042 0.045 
 100 1 1 0.048 0.047 
 100 5 5 0.050 0.048 
 100 10 5 0.052 0.058 
 100 20 10 0.063 0.056 
___________________________________________________ 
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Table A2. Simulation results for type I error in F-tests of significance of the global R2 statistic for 
unstandardized Y variables generated with equal population variances. Headings as in Table A1.  

___________________________________________________ 

 n p m Rejection rates 
 _____________________________ 

 Parametric Permutation 
___________________________________________________ 

a) Normal error 

 20 5 5 0.043 0.041 
 20 10 5 0.045 0.045 
 20 20 10 0.049 0.057 
 50 5 5 0.052 0.049 
 50 10 5 0.039 0.036 
 50 20 10 0.050 0.049 
 100 5 5 0.034 0.033 
 100 10 5 0.046 0.047 
 100 20 10 0.050 0.050 
 
b) Exponential error 

 20 5 5 0.069 0.054 
 20 10 5 0.066 0.045 
 20 20 10 0.073 0.052 
 50 5 5 0.051 0.043 
 50 10 5 0.056 0.047 
 50 20 10 0.065 0.063 
 100 5 5 0.049 0.045 
 100 10 5 0.047 0.045 
 100 20 10 0.036 0.035 
 
c) Cubed exponential error 

 20 5 5 0.141 0.054 
 20 10 5 0.161 0.045 
 20 20 10 0.228 0.051 
 50 5 5 0.103 0.041 
 50 10 5 0.139 0.058 
 50 20 10 0.182 0.049 
 100 5 5 0.084 0.046 
 100 10 5 0.142 0.051 
 100 20 10 0.154 0.045  
___________________________________________________
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Table A3. Simulation results for type I error in F-tests of significance of the global R2 statistic for 
unstandardized Y variables with unequal population variances. Headings as in Table A1.  

___________________________________________________ 

 n p m Rejection rates 
 _____________________________ 

 Parametric Permutation 
___________________________________________________ 

a) Normal error 

 20 5 5 0.071 0.038 
 20 10 5 0.094 0.046 
 20 20 10 0.100 0.054 
 50 5 5 0.094 0.050 
 50 10 5 0.084 0.052 
 50 20 10 0.093 0.044 
 100 5 5 0.101 0.068 
 100 10 5 0.100 0.057 
 100 20 10 0.112 0.056 
 
b) Exponential error 

 20 5 5 0.094 0.044 
 20 10 5 0.098 0.041 
 20 20 10 0.131 0.050 
 50 5 5 0.073 0.036 
 50 10 5 0.104 0.063 
 50 20 10 0.097 0.054 
 100 5 5 0.088 0.045 
 100 10 5 0.079 0.046 
 100 20 10 0.095 0.046 
 
c) Cubed exponential error 

 20 5 5 0.138 0.055 
 20 10 5 0.169 0.044 
 20 20 10 0.250 0.047 
 50 5 5 0.134 0.054 
 50 10 5 0.153 0.053 
 50 20 10 0.195 0.048 
 100 5 5 0.114 0.054 
 100 10 5 0.158 0.053 
 100 20 10 0.173 0.050 

___________________________________________________
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APPENDIX S2 

SIMULATION RESULTS, TEST OF INDIVIDUAL CANONICAL AXES 
 
 
 The following tables of simulation results for the tests of individual canonical axes contain 
rejection rates after 1000 independent simulations. They should be read as follows.  

• In the “Type I error” sections, all rejection rates are expected to be approximately equal or 
smaller than the significance level (0.05) used in the tests.  

• In the simulations reported in the “Power and type I error” sections of Tables B1 and B2, as 
well as in Tables B3 to B7, 1 to 4 sets of linear relationships (called "blocks” in the column 
headings) have been generated between the response (Y) and explanatory (X) matrices. We want 
to know how much power the methods have to identify these relationships. Power is a value 
between 0 (no relationship detected, no power) and 1 (maximum power: the method has detected 
a relationships in all simulations). In Tables B4 ad B5, the “direct” and “reduced” permutation 
methods are compared for their power. In Tables B6 and B7, we will see the effect of non-normal 
error on the power of the tests. 

• In the “Power and type I error” sections of Tables B1 and B2, as well as in Tables B3 to B7, 
there are more canonical axes than the number of built-in blocks; the simulation results (rejection 
rates) for these axes are in bold. Detecting one of these axes as significant is to make a type I 
error. A number of rejections of H0 equal to or smaller than the significance level of 0.05, as 
found e.g. in Tables B2 and B3, is expected in valid tests at significance level 0.05. However, a 
value higher than 0.05 means that the method is invalid for testing these extra axes (e.g. in 
Table B1). 
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Table B1. Simulation results for the simultaneous test of all canonical axes. Shown in the table 
are the rejection rates of H0 at the 5% significance level over 1000 simulations. Tests of 
significance involved 999 random permutations of the raw data using (a) statistic F1 or 
(b) statistic F2. Error level in the generation of the y variables (normal error): c = 0.2 in the 
Power and type I error sections of this table. 

__________________________________________________________________________________________ 

 n p m No. No. y No. can. Rejection rates 
       ________________________________________________________ 

 blocks per block axes Axis 1 Axis 2 Axis 3 Axis 4 Axis 5 Axis 6 Axis 7 Axis 8 
__________________________________________________________________________________________ 

a) F1 statistic (equation 1) 

Type I error 
 20 3 3 0 0 3 0.046 0.050 0.049      
 100 3 3 0 0 3 0.050 0.035 0.043      
 20 5 5 0 0 5 0.055 0.051 0.052 0.071 0.061    
 100 5 5 0 0 5 0.048 0.058 0.055 0.043 0.052    
 20 8 8 0 0 8 0.055 0.053 0.061 0.064 0.047 0.055 0.053 0.055 
 100 8 8 0 0 8 0.046 0.043 0.058 0.057 0.047 0.042 0.044 0.045 
 
Power and type I error 
 20 3 2 1 3 2 1.000 0.799     
 100 3 2 1 3 2 1.000 0.817     
 20 6 4 2 3 4 1.000 1.000 0.997 0.910   
 100 6 4 2 3 4 1.000 1.000 0.998 0.913   
 20 9 6 3 3 6 1.000 1.000 1.000 1.000 0.998 0.946 
 100 9 6 3 3 6 1.000 1.000 1.000 1.000 1.000 0.953 
 20 12 8 4 3 8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.988 
 100 12 8 4 3 8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.977 
__________________________________________________________________________________________ 
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__________________________________________________________________________________________ 

 n p m No. No. y No. can. Rejection rates 
       ________________________________________________________ 

 blocks per block axes Axis 1 Axis 2 Axis 3 Axis 4 Axis 5 Axis 6 Axis 7 Axis 8 
__________________________________________________________________________________________ 

b) F2 statistic (equation 2) 

Type I error 
 20 3 3 0 0 3 0.052 0.049 0.049      
 100 3 3 0 0 3 0.051 0.036 0.043      
 20 5 5 0 0 5 0.051 0.046 0.054 0.070 0.061    
 100 5 5 0 0 5 0.048 0.058 0.054 0.043 0.052    
 20 8 8 0 0 8 0.063 0.056 0.059 0.063 0.044 0.053 0.051 0.055 
 100 8 8 0 0 8 0.045 0.045 0.059 0.059 0.047 0.042 0.044 0.045 
 
Power and type I error 
 20 3 2 1 3 2 1.000 0.799       
 100 3 2 1 3 2 1.000 0.817       
 20 6 4 2 3 4 1.000 1.000 0.997 0.910     
 100 6 4 2 3 4 1.000 1.000 0.998 0.913     
 20 9 6 3 3 6 1.000 1.000 1.000 1.000 0.998 0.946   
 100 9 6 3 3 6 1.000 1.000 1.000 1.000 1.000 0.953   
 20 12 8 4 3 8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.988 
 100 12 8 4 3 8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.977 
__________________________________________________________________________________________ 

Notes: n = number of objects; p = number of response variables in Y; m = number of explanatory 
variables in X; No. blocks = number of blocks of Y variables linearly related to groups of 2 X 
variables; No. y per block = number of Y variables in each block; No. can. axes = number of 
resulting canonical axes.  
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Table B2. Simulation results for the marginal test of canonical eigenvalues: rejection rates of H0 
at the 5% significance level over 1000 simulations, normal error. Tests of significance involved 
999 random permutations under the reduced model. Column headings: see notes, Table B1. The 
error level c = 0.2 in the “Power and type I error” sections.  

__________________________________________________________________________________________ 

 n p m No. No. y No. can. Rejection rates 
       ________________________________________________________ 

 blocks per block axes Axis 1 Axis 2 Axis 3 Axis 4 Axis 5 Axis 6 Axis 7 Axis 8 
__________________________________________________________________________________________ 

Type I error 
 20 3 3 0 0 3 0.043 0.000 0.000           
 100 3 3 0 0 3 0.050 0.000 0.000           
 20 5 5 0 0 5 0.048 0.000 0.000 0.000 0.000       
 100 5 5 0 0 5 0.051 0.000 0.000 0.000 0.000       
 20 8 8 0 0 8 0.063 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
 100 8 8 0 0 8 0.043 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
 
Power and type I error 
 20 1 2 1 1 1 1.000               
 100 1 2 1 1 1 1.000               
 20 2 2 1 2 2 1.000 0.013             
 100 2 2 1 2 2 1.000 0.022             
 20 3 2 1 3 2 1.000 0.015             
 100 3 2 1 3 2 1.000 0.014             
 20 2 4 2 1 2 1.000 0.999             
 100 2 4 2 1 2 1.000 1.000             
 20 4 4 2 2 4 1.000 1.000 0.005 0.000         
 100 4 4 2 2 4 1.000 1.000 0.003 0.000         
 20 6 4 2 3 4 1.000 1.000 0.013 0.000         
 100 6 4 2 3 4 1.000 1.000 0.011 0.000         
 20 3 6 3 1 3 1.000 1.000 0.981           
 100 3 6 3 1 3 1.000 1.000 1.000           
 20 6 6 3 2 6 1.000 1.000 0.998 0.003 0.000 0.000     
 100 6 6 3 2 6 1.000 1.000 1.000 0.005 0.000 0.000     
 20 9 6 3 3 6 1.000 1.000 1.000 0.003 0.000 0.000     
 100 9 6 3 3 6 1.000 1.000 1.000 0.007 0.000 0.000     
 20 4 8 4 1 4 1.000 1.000 1.000 0.687         
 100 4 8 4 1 4 1.000 1.000 1.000 1.000         
 20 8 8 4 2 8 1.000 1.000 1.000 0.930 0.000 0.000 0.000 0.000 
 100 8 8 4 2 8 1.000 1.000 1.000 1.000 0.001 0.000 0.000 0.000 
 20 12 8 4 3 8 1.000 1.000 1.000 0.985 0.000 0.000 0.000 0.000 
 100 12 8 4 3 8 1.000 1.000 1.000 1.000 0.008  0.000 0.000 0.000 
__________________________________________________________________________________________ 
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Table B3. Simulation results for the forward test of canonical eigenvalues: rejection rates of H0 
at the 5% significance level over 1000 simulations, normal error. Tests of significance involved 
999 random permutations under the reduced model. Column headings: see notes, Table B1. The 
error level c = 0.2 in the “Power and type I error” sections.  

__________________________________________________________________________________________ 

 n p m No. No. y No. can. Rejection rates 
       ________________________________________________________ 

 blocks per block axes Axis 1 Axis 2 Axis 3 Axis 4 Axis 5 Axis 6 Axis 7 Axis 8 
__________________________________________________________________________________________ 

Type I error 
 20 3 3 0 0 3 0.042 0.000 0.000           
 100 3 3 0 0 3 0.054 0.000 0.000           
 20 5 5 0 0 5 0.047 0.000 0.000 0.000 0.000       
 100 5 5 0 0 5 0.048 0.001 0.000 0.000 0.000       
 20 8 8 0 0 8 0.057 0.001 0.000 0.000 0.000 0.000 0.000 0.000 
 100 8 8 0 0 8 0.042 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
 
Power and type I error 
 20 1 2 1 1 1 1.000               
 100 1 2 1 1 1 1.000               
 20 2 2 1 2 2 1.000 0.013             
 100 2 2 1 2 2 1.000 0.022             
 20 3 2 1 3 2 1.000 0.016             
 100 3 2 1 3 2 1.000 0.013             
 20 2 4 2 1 2 1.000 0.999             
 100 2 4 2 1 2 1.000 1.000             
 20 4 4 2 2 4 1.000 1.000 0.007 0.000         
 100 4 4 2 2 4 1.000 1.000 0.003 0.000         
 20 6 4 2 3 4 1.000 1.000 0.015 0.000         
 100 6 4 2 3 4 1.000 1.000 0.013 0.000         
 20 3 6 3 1 3 1.000 1.000 0.986           
 100 3 6 3 1 3 1.000 1.000 1.000           
 20 6 6 3 2 6 1.000 1.000 1.000 0.004 0.000 0.000     
 100 6 6 3 2 6 1.000 1.000 1.000 0.005 0.000 0.000     
 20 9 6 3 3 6 1.000 1.000 1.000 0.006 0.000 0.000     
 100 9 6 3 3 6 1.000 1.000 1.000 0.007 0.000 0.000     
 20 4 8 4 1 4 1.000 1.000 0.999 0.821         
 100 4 8 4 1 4 1.000 1.000 1.000 1.000         
 20 8 8 4 2 8 1.000 1.000 1.000 0.961 0.000 0.000 0.000 0.000 
 100 8 8 4 2 8 1.000 1.000 1.000 1.000 0.001 0.000 0.000 0.000 
 20 12 8 4 3 8 1.000 1.000 1.000 0.989 0.003 0.000 0.000 0.000 
 100 12 8 4 3 8 1.000 1.000 1.000 1.000 0.011 0.000 0.000 0.000 
__________________________________________________________________________________________ 
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Table B4. Simulation results comparing permutation of the raw data (method = “direct”) to 
permutation of the residuals of the reduced model (method = “reduced”) for the marginal test of 
the canonical axes for different error levels c = {0.5, 0.8}, normal error. Rejection rates of H0 at 
the 5% significance level over 1000 simulations. Tests of significance involved 999 random 
permutations. Column headings: see notes, Table B1.  

 

__________________________________________________________________________________________ 

 n c  No. No. y No. can. Rejection rates 
       ________________________________________________________ 

   blocks per block axes Axis 1 Axis 2 Axis 3 Axis 4 Axis 5 Axis 6 Axis 7 Axis 8 
__________________________________________________________________________________________ 

Method = “direct” 
 
 20 0.5  1 3 2 1.000 0.011       
 100 0.5  1 3 2 1.000 0.005       
 20 0.5  2 3 4 1.000 0.860 0.000 0.000     
 100 0.5  2 3 4 1.000 1.000 0.001 0.000     
 20 0.5  3 3 6 1.000 0.954 0.268 0.000 0.000 0.000   
 100 0.5  3 3 6 1.000 1.000 1.000 0.000 0.000 0.000   
 20 0.5  4 3 8 1.000 0.972 0.583 0.011 0.000 0.000 0.000 0.000 
 100 0.5  4 3 8 1.000 1.000 1.000 0.999 0.000 0.000 0.000 0.000 
 
 20 0.8  1 3 2 0.994 0.015       
 100 0.8  1 3 2 1.000 0.010       
 20 0.8  2 3 4 0.999 0.527 0.002 0.000     
 100 0.8  2 3 4 1.000 1.000 0.004 0.000     
 20 0.8  3 3 6 0.999 0.689 0.062 0.000 0.000 0.000   
 100 0.8  3 3 6 1.000 1.000 0.988 0.002 0.000 0.000   
 20 0.8  4 3 8 0.998 0.714 0.145 0.003 0.000 0.000 0.000 0.000 
 100 0.8  4 3 8 1.000 1.000 1.000 0.665 0.000 0.000 0.000 0.000 
__________________________________________________________________________________________ 

Method = “reduced” 
 
 20 0.5  1 3 2 1.000 0.022       
 100 0.5  1 3 2 1.000 0.026       
 20 0.5  2 3 4 1.000 0.978 0.006 0.000     
 100 0.5  2 3 4 1.000 1.000 0.013 0.000     
 20 0.5  3 3 6 1.000 1.000 0.641 0.003 0.000 0.000   
 100 0.5  3 3 6 1.000 1.000 1.000 0.006 0.000 0.000   
 20 0.5  4 3 8 1.000 0.999 0.909 0.132 0.000 0.000 0.000 0.000 
 100 0.5  4 3 8 1.000 1.000 1.000 1.000 0.002 0.000 0.000 0.000 
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 20 0.8  1 3 2 0.991 0.017       
 100 0.8  1 3 2 1.000 0.027       
 20 0.8  2 3 4 1.000 0.655 0.002 0.000     
 100 0.8  2 3 4 1.000 1.000 0.009 0.000     
 20 0.8  3 3 6 0.999 0.858 0.121 0.000 0.000 0.000   
 100 0.8  3 3 6 1.000 1.000 1.000 0.011 0.000 0.000   
 20 0.8  4 3 8 1.000 0.907 0.293 0.004 0.000 0.000 0.000 0.000 
 100 0.8  4 3 8 1.000 1.000 1.000 0.916 0.004 0.000 0.000 0.000 
__________________________________________________________________________________________ 



 

 

13 

Table B5. Simulation results comparing the effects of different error levels c = {0.5, 0.8}, normal 
error, on the forward test of the canonical axes. Rejection rates of H0 at the 5% significance 
level over 1000 simulations. Tests of significance involved 999 random permutations under the 
reduced model (method = “reduced”). Column headings: see notes, Table B1.  

 

__________________________________________________________________________________________ 

 n c  No. No. y No. can. Rejection rates 
       ________________________________________________________ 

   blocks per block axes Axis 1 Axis 2 Axis 3 Axis 4 Axis 5 Axis 6 Axis 7 Axis 8 
__________________________________________________________________________________________ 

Method = “reduced” 
 
 20 0.5  1 3 2 1.000 0.022       
 100 0.5  1 3 2 1.000 0.025       
 20 0.5  2 3 4 1.000 0.976 0.007 0.000     
 100 0.5  2 3 4 1.000 1.000 0.011 0.000     
 20 0.5  3 3 6 1.000 1.000 0.673 0.005 0.000 0.000   
 100 0.5  3 3 6 1.000 1.000 1.000 0.005 0.000 0.000   
 20 0.5  4 3 8 1.000 0.996 0.905 0.189 0.000 0.000 0.000 0.000 
 100 0.5  4 3 8 1.000 1.000 1.000 1.000 0.003 0.000 0.000 0.000 
 
 20 0.8  1 3 2 0.991 0.016       
 100 0.8  1 3 2 1.000 0.024       
 20 0.8  2 3 4 0.997 0.666 0.004 0.000     
 100 0.8  2 3 4 1.000 1.000 0.009 0.000     
 20 0.8  3 3 6 0.998 0.846 0.138 0.002 0.000 0.000   
 100 0.8  3 3 6 1.000 1.000 1.000 0.011 0.000 0.000   
 20 0.8  4 3 8 0.989 0.839 0.303 0.011 0.000 0.000 0.000 0.000 
 100 0.8  4 3 8 1.000 1.000 1.000 0.922 0.005 0.000 0.000 0.000 
__________________________________________________________________________________________ 
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Table B6. Simulation results comparing the marginal and forward testing methods, under 
permutation of residuals (method = “reduced”), for the canonical axes using exponential error, 
for different error levels c = {0.2, 0.5, 0.8}. Rejection rates of H0 at the 5% significance level 
over 1000 simulations. Tests of significance involved 999 random permutations. Column 
headings: see notes, Table B1.  

__________________________________________________________________________________________ 

 n c  No. No. y No. can. Rejection rates 
       ________________________________________________________ 

   blocks per block axes Axis 1 Axis 2 Axis 3 Axis 4 Axis 5 Axis 6 Axis 7 Axis 8 
__________________________________________________________________________________________ 

Marginal test 
 
 20 0.2  1 3 2 1.000 0.020       
 100 0.2  1 3 2 1.000 0.018       
 20 0.2  2 3 4 1.000 1.000 0.015 0.000     
 100 0.2  2 3 4 1.000 1.000 0.010 0.000     
 20 0.2  3 3 6 1.000 1.000 1.000 0.006 0.000 0.000   
 100 0.2  3 3 6 1.000 1.000 1.000 0.004 0.000 0.000    
 20 0.2  4 3 8 1.000 1.000 1.000 0.975 0.002 0.000 0.000 0.000 
 100 0.2  4 3 8 1.000 1.000 1.000 1.000 0.010 0.000 0.000 0.000 
 
 20 0.5  1 3 2 1.000 0.035       
 100 0.5  1 3 2 1.000 0.026       
 20 0.5  2 3 4 1.000 0.951 0.016 0.000     
 100 0.5  2 3 4 1.000 1.000 0.008 0.000     
 20 0.5  3 3 6 1.000 1.000 0.577 0.006 0.000 0.000   
 100 0.5  3 3 6 1.000 1.000 1.000 0.006 0.000 0.000    
 20 0.5  4 3 8 1.000 1.000 0.880 0.115 0.000 0.000 0.000 0.000 
 100 0.5  4 3 8 1.000 1.000 1.000 1.000 0.004 0.000 0.000 0.000 
 
 20 0.8  1 3 2 0.976 0.018       
 100 0.8  1 3 2 1.000 0.020       
 20 0.8  2 3 4 0.995 0.592 0.008 0.000     
 100 0.8  2 3 4 1.000 1.000 0.003 0.000     
 20 0.8  3 3 6 0.996 0.809 0.110 0.001 0.000 0.000   
 100 0.8  3 3 6 1.000 1.000 0.997 0.004 0.000 0.000   
 20 0.8  4 3 8 0.996 0.841 0.253 0.004 0.000 0.000 0.000 0.000 
 100 0.8  4 3 8 1.000 1.000 1.000 0.883 0.004 0.000 0.000 0.000 
__________________________________________________________________________________________
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__________________________________________________________________________________________ 

Forward test 
 
 20 0.2  1 3 2 1.000 0.022       
 100 0.2  1 3 2 1.000 0.018       
 20 0.2  2 3 4 1.000 1.000 0.020 0.000     
 100 0.2  2 3 4 1.000 1.000 0.010 0.000     
 20 0.2  3 3 6 1.000 1.000 1.000 0.008 0.000 0.000   
 100 0.2  3 3 6 1.000 1.000 1.000 0.003 0.000 0.000    
 20 0.2  4 3 8 1.000 1.000 1.000 0.987 0.004 0.000 0.000 0.000 
 100 0.2  4 3 8 1.000 1.000 1.000 1.000 0.008 0.000 0.000 0.000 
 
 20 0.5  1 3 2 1.000 0.036       
 100 0.5  1 3 2 1.000 0.026       
 20 0.5  2 3 4 1.000 0.954 0.017 0.000     
 100 0.5  2 3 4 1.000 1.000 0.008 0.000     
 20 0.5  3 3 6 1.000 0.997 0.598 0.007 0.000 0.000   
 100 0.5  3 3 6 1.000 1.000 1.000 0.006 0.000 0.000   
 20 0.5  4 3 8 1.000 0.995 0.873 0.146 0.000 0.000 0.000 0.000 
 100 0.5  4 3 8 1.000 1.000 1.000 1.000 0.005 0.000 0.000 0.000 
 
 20 0.8  1 3 2 0.975 0.016       
 100 0.8  1 3 2 1.000 0.017       
 20 0.8  2 3 4 0.991 0.607 0.009 0.000     
 100 0.8  2 3 4 1.000 1.000 0.003 0.000     
 20 0.8  3 3 6 0.987 0.789 0.132 0.000 0.000 0.000   
 100 0.8  3 3 6 1.000 1.000 0.997 0.003 0.000 0.000   
 20 0.8  4 3 8 0.972 0.751 0.258 0.011 0.000 0.000 0.000 0.000 
 100 0.8  4 3 8 1.000 1.000 1.000 0.891 0.002 0.000 0.000 0.000 
__________________________________________________________________________________________ 
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Table B7. Simulation results comparing the marginal and forward testing methods, under 
permutation of residuals (method = “reduced”), for the canonical axes using cubed exponential 
error, for different error levels c = {0.2, 0.5, 0.8}. Rejection rates of H0 at the 5% significance 
level over 1000 simulations. Tests of significance involved 999 random permutations. Column 
headings: see notes, Table B1.  

__________________________________________________________________________________________ 

 n c  No. No. y No. can. Rejection rates 
       ________________________________________________________ 

   blocks per block axes Axis 1 Axis 2 Axis 3 Axis 4 Axis 5 Axis 6 Axis 7 Axis 8 
__________________________________________________________________________________________ 

Marginal test 
 
 20 0.2  1 3 2 0.251 0.003       
 100 0.2  1 3 2 0.472 0.006       
 20 0.2  2 3 4 0.135 0.009 0.000 0.000     
 100 0.2  2 3 4 0.343 0.030 0.000 0.000     
 20 0.2  3 3 6 0.093 0.004 0.001 0.000 0.000 0.000   
 100 0.2  3 3 6 0.236 0.018 0.001 0.000 0.000 0.000    
 20 0.2  4 3 8 0.080 0.001 0.000 0.000 0.000 0.000 0.000 0.000 
 100 0.2  4 3 8 0.155 0.009 0.000 0.000 0.000 0.000 0.000 0.000 
 
 20 0.5  1 3 2 0.091 0.001       
 100 0.5  1 3 2 0.112 0.000       
 20 0.5  2 3 4 0.064 0.001 0.000 0.000     
 100 0.5  2 3 4 0.079 0.000 0.000 0.000     
 20 0.5  3 3 6 0.055 0.000 0.000 0.000 0.000 0.000   
 100 0.5  3 3 6 0.057 0.002 0.000 0.000 0.000 0.000    
 20 0.5  4 3 8 0.043 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
 100 0.5  4 3 8 0.057 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
 
 20 0.8  1 3 2 0.058 0.000       
 100 0.8  1 3 2 0.074 0.000       
 20 0.8  2 3 4 0.063 0.001 0.000 0.000     
 100 0.8  2 3 4 0.058 0.000 0.000 0.000     
 20 0.8  3 3 6 0.053 0.001 0.000 0.000 0.000 0.000   
 100 0.8  3 3 6 0.067 0.000 0.000 0.000 0.000 0.000    
 20 0.8  4 3 8 0.053 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
 100 0.8  4 3 8 0.069 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
__________________________________________________________________________________________
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__________________________________________________________________________________________ 

Forward test 
 
 20 0.2  1 3 2 0.250 0.003       
 100 0.2  1 3 2 0.469 0.007       
 20 0.2  2 3 4 0.121 0.009 0.000 0.000     
 100 0.2  2 3 4 0.343 0.030 0.000 0.000     
 20 0.2  3 3 6 0.081 0.004 0.001 0.000 0.000 0.000   
 100 0.2  3 3 6 0.226 0.017 0.001 0.000 0.000 0.000    
 20 0.2  4 3 8 0.052 0.003 0.000 0.000 0.000 0.000 0.000 0.000 
 100 0.2  4 3 8 0.140 0.009 0.000 0.000 0.000 0.000 0.000 0.000 
 
 20 0.5  1 3 2 0.083 0.001       
 100 0.5  1 3 2 0.113 0.000       
 20 0.5  2 3 4 0.054 0.001 0.000 0.000     
 100 0.5  2 3 4 0.081 0.000 0.000 0.000     
 20 0.5  3 3 6 0.057 0.000 0.000 0.000 0.000 0.000   
 100 0.5  3 3 6 0.058 0.002 0.000 0.000 0.000 0.000    
 20 0.5  4 3 8 0.045 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
 100 0.5  4 3 8 0.055 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
 
 20 0.8  1 3 2 0.058 0.000       
 100 0.8  1 3 2 0.075 0.000       
 20 0.8  2 3 4 0.058 0.001 0.000 0.000     
 100 0.8  2 3 4 0.060 0.000 0.000 0.000     
 20 0.8  3 3 6 0.048 0.005 0.000 0.000 0.000 0.000   
 100 0.8  3 3 6 0.065 0.000 0.000 0.000 0.000 0.000    
 20 0.8  4 3 8 0.057 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
 100 0.8  4 3 8 0.066 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
__________________________________________________________________________________________ 
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DATA S1 

DESCRIPTION OF THE MARGINAL AND FORWARD METHODS 
 
 This section contains R-language functions describing the marginal and forward methods 
for testing the canonical axes in simple redundancy analysis (RDA) without covariables. These 
functions are also found in the folder of R functions provided in the Supporting Information. 
 
Marginal  test 
 
'marginal.test' <-  
   function(Y,X,nperm=199,seed=NULL,scaleY=FALSE,verbose=FALSE) 
#  
# Test of canonical eigenvalues in simple RDA using the marginal method. 
# In this method, the residual SS in the denominator of F is the same for the  
# test of all canonical axes: the residual SS of the regression of Y on X. 
# 
# This is a simple explicit program, without shortcuts nor compiled   
# permutation function. Its aim is to unambiguously describe the marginal  
# testing method. The code is interspersed with comments to explain the  
# computation steps. This function is not intended for routine testing of  
# canonical eigenvalues, although it produces correct, publishable results. 
#  
# Parameters: 
#    Y: response data matrix 
#    X: explanatory data matrix; no factors are allowed 
#    nperm: number of permutations 
#    seed: seed for random number generator, used by the permutation function  
#          sample(). If seed=NULL (default), a random integer is drawn as the  
#          seed for the run. It will be reset to that value before the test of  
#          each canonical axis. All axes are thus tested using the same set of  
#          permutations. A fixed value, e.g. seed=12345, can be givenn by the  
#          user to compare the results of this function with that of other  
#          functions where the seed can also be set at run time. 
#    scaleY = TRUE : standardize the Y variables 
#           = FALSE: the Y variables are centered on their means 
#    verbose = TRUE: print intermediate F and F.perm results 
# 
# License: GPL-2  
# Authors: Pierre Legendre and Jari Oksanen, 2010 
{ 
   if(nperm > 5) verbose <- FALSE   # Modify this limit as needed # 
   if(length(seed)==0) seed <- ceiling(runif(1,max=10000)) 
   cat("seed =",seed,'\n') 
   a <- system.time({             # How much time needed for the test? 
   epsilon <- sqrt(.Machine$double.eps) 
# 
# Center or standardize the Y variables, standardize the X variables 
   Y <- scale(as.matrix(Y), center=TRUE, scale=scaleY) 



 2 

   X <- scale(as.matrix(X), center=TRUE, scale=TRUE) 
   n <- nrow(Y) 
   SS.Y <- sum(Y^2) 
# 
# Compute the rank of X 
   m <- length(which(svd(cov(X))$d > epsilon)) 
# 
# RDA consists of 2 steps: regression, then PCA of the table of fitted  
# values by eigen decomposition of the matrix of Sums of Squares and Cross  
# Products (SSCP), which is cov*(n-1) 
   qr.X <- qr(X)                   # We use QR decomposition for efficiency 
   Yhat <- qr.fitted(qr.X, Y)      # Faster than: Yhat<-fitted.values(lm(Y~X)) 
   SS.Yhat <- sum(Yhat^2)                     
   Yhat.eig <- svd(Yhat, nv=0)     # svd decomposition of Yhat 
   eig.values <- Yhat.eig$d^2      # = eigen(cov( t(Yhat)%*%Yhat ))$values 
   k <- sum(eig.values > epsilon)  # Number of canonical eigenvalues 
   axes <- Yhat.eig$u[,1:k]        # Canonical axes = f(X) 
# 
# A section could be added here to compute the RDA R-square (SS.Yhat/SS.Y)  
# and test its significance. 
# A section could be added here to produce a biplot with scaling type 1 or 2. 
# 
# Test the significance of individual canonical axes 
   # 
   # No covariables: test canonical axis 1 by permutation of the raw data. 
   # Test of axis 1: no residuals to be computed on previously tested axes 
   F <- eig.values[1] / (SS.Y - SS.Yhat) 
   Fstat <- F*(n-1-m)        # Start assembling vector 'Fstat' 
   # 
   set.seed(seed) 
   nGE <- 1   # Hope correction: count ‘Fstat’ in the reference distribution 
   for(iperm in 1:nperm) { 
      Y.perm <- Y[sample(n),] 
      SS.Y.perm <- SS.Y      # Same SS for Y and Y.perm after permuting Y rows 
      #  
      # Re-use the qr.X: does not change during permutations 
      Yhat.perm <- qr.fitted(qr.X, Y.perm) 
      SS.Yhat.perm <- sum(Yhat.perm^2) 
      Yhat.perm.eig <- svd(Yhat.perm, nv=0, nu=0)$d^2 
      # 
      F.perm <- Yhat.perm.eig[1] / (SS.Y.perm - SS.Yhat.perm) 
      if(F.perm >= F) nGE <- nGE+1 
      if(verbose) cat("Axis 1   :   F =",F,"  F.perm =",F.perm,'\n') 
      } 
   prob <- nGE/(nperm+1)     # Start assembling vector 'prob' 
    
   # Test the following canonical axes by permuting residuals of reduced model 
   if(k > 1) { 
   for(j in 2:k) { 
      # Compute the F statistic 
      F <- eig.values[j] / (SS.Y - SS.Yhat) 
      Fstat <- c(Fstat, F*(n-1-m))     # Attach the new F value to 'Fstat' 
      # 
      # Compute reduced model residuals of Y on the previously tested axes 
      qr.prev  <- qr(axes[,1:(j-1)]) 
      Y.fit <- qr.fitted(qr.prev, Y) 
      Y.res <- qr.resid(qr.prev, Y) 
      # 
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      # Compute residuals of X on previously tested axes for partial RDA below 
      qr.X.res <- qr(qr.resid(qr.prev, X)) 
      #    
      set.seed(seed) 
      nGE <- 1   # Hope correction 
      if(verbose) cat('\n') 
      for(iperm in 1:nperm) { 
         # Create permuted Y and compute its sum of squares (SS) 
         Y.perm <- Y.fit + Y.res[sample(n),] 
         SS.Y.perm <- sum(Y.perm^2)    # Not same SS as in the unpermuted data 
         # 
         # The j-th eigenvalue is the first eigenvalue of the partial RDA 
         # of Y.perm by X residualized onthe previous axes[,1:(j-1)]. 
         # qr.X.res was computed before the permutation loop. 
         Yhat.perm <- qr.fitted(qr.X.res, Y.perm) 
         Yhat.perm.eig1 <- svd(Yhat.perm, nv=0, nu=0)$d[1]^2 
         # 
         # For denominator of the F-statistic: RDA of Y.perm on X. 
         # qr.X was computed near the beginning of the function. 
         YhatTot.perm <- qr.fitted(qr.X, Y.perm) 
         SS.YhatTot.perm <- sum(YhatTot.perm^2) 
         # 
         # Compute the F-statistic under permutation for the tested eigenvalue 
         F.perm <- Yhat.perm.eig1 / (SS.Y.perm - SS.YhatTot.perm) 
         # 
         if(F.perm >= F) nGE <- nGE+1 
         if(verbose) cat("Axis [",j,"]:  F =",F,"  F.perm =",F.perm,'\n') 
         } 
      prob <- c(prob, nGE/(nperm+1))   # Attach the new probability to 'prob' 
      } 
      } 
# 
   }) 
   a[3] <- sprintf("%2f",a[3]) 
   cat("Computation time =",a[3]," sec",'\n') 
# 
# Output the  results 
# The eigenvalues of the covariance matrix = (eigenvalues computed here)/(n-1) 
out <- cbind(eig.values[1:k]/(n-1), Fstat, prob) 
# 
rownames(out) <- rownames(out, do.NULL=FALSE, prefix="Axis.")  
colnames(out) <- c("Eigenvalue", "F.marginal", "P.marginal") 
out 
} 
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Forward test 
 
'forward.test' <- 
   function(Y, X, nperm=199, seed=NULL, scaleY=FALSE, verbose=FALSE) 
# 
# Test of canonical eigenvalues in simple RDA using the forward method. 
# In this method, the residual SS in the denominator of F differs from axis  
# to axis: it is the residual SS of the regression of Y on canonical axes  
# from 1 to the one being tested.  
# 
# This is a simple explicit program, without shortcuts nor compiled 
# permutation function. Its aim is to unambiguously describe the stepwise 
# testing method. The code is interspersed with comments to explain the 
# computation steps. This function is not intended for routine testing of  
# canonical eigenvalues, although it produces correct, publishable results. 
#  
# Parameters: 
#    Y: response data matrix 
#    X: explanatory data matrix 
#    nperm: number of permutations 
#    seed: seed for random number generator, used by the permutation function  
#          sample(). If seed=NULL (default), a random integer is drawn as the  
#          seed for the run. It will be reset to that value before the test of  
#          each canonical axis. All axes are thus tested using the same set of  
#          permutations. A fixed value, e.g. seed=12345, can be givenn by the  
#          user to compare the results of this function with that of other  
#          functions where the seed can also be set at run time. 
#    scaleY = TRUE : standardize the Y variables 
#           = FALSE: the Y variables are centered on their means 
#    verbose = TRUE: print intermediate F and F.perm results 
# 
# License: GPL-2  
# Authors: Pierre Legendre, Cajo J. F. ter Braak and Jari Oksanen, 2010 
{ 
   if(nperm > 5) verbose <- FALSE   # Modify this limit as needed # 
   if(length(seed)==0) seed <- ceiling(runif(1,max=10000)) 
   cat("seed =",seed,'\n') 
   a <- system.time({               # How much time needed for the test? 
   epsilon <- sqrt(.Machine$double.eps) 
# 
# Center or standardize the Y variables, standardize the X variables 
   Y <- scale(as.matrix(Y), center=TRUE, scale=scaleY) 
   X <- scale(as.matrix(X), center=TRUE, scale=TRUE) 
   n <- nrow(Y) 
   SS.Y <- sum(Y^2) 
# 
# Compute the rank of X 
   m <- sum(svd(X, nv = 0, nu = 0)$d^2 > epsilon) 
# 
# RDA consists of 2 steps: regression, done with QR to avoid overhead of lm(),  
# then PCA of the table of fitted values by decomposition of the matrix of  
# Sums of Squares and Cross Products (SSCP), which is the same as cov*(n-1). 
   Q <- qr(X)                      # We use QR decomposition for efficiency 
   Yhat <- qr.fitted(Q, Y)         # Faster than: Yhat<-fitted.values(lm(Y~X)) 
   SS.Yhat <- sum(Yhat^2) 
   Yhat.eig <- svd(Yhat, nv=0)     # svd decomposition of Yhat 
   eig.values <- Yhat.eig$d^2      # = eigen(cov( t(Yhat)%*%Yhat ))$values 
   k <- sum(eig.values > epsilon)  # Number of canonical eigenvalues 
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   axes <- Yhat.eig$u[,1:k]        # Canonical axes = f(X) 
# 
# A section could be added here to compute the RDA R-square (SS.Yhat/SS.Y)  
# and test its significance (F-test). 
# A section could be added here to produce a biplot with scaling type 1 or 2. 
# 
# Test the significance of individual canonical axes 
   # 
   # Test of axis 1: no residuals to be computed on previously tested axes 
   # No covariables: test canonical axis 1 by permutation of the raw data. 
   F <- eig.values[1] / (SS.Y - eig.values[1]) 
   Fstat <- F*(n-1-m)        # Start assembling vector 'Fstat' 
   sum.eigval <- eig.values[1] 
   # 
   set.seed(seed) 
   nGE <- 1   # Hope correction: count 'Fstat' in the reference distribution 
   for(iperm in 1:nperm) { 
      Y.perm <- Y[sample(n),] 
      SS.Y.perm <- SS.Y      # Same SS for Y and Y.perm after permuting Y rows 
      # Re-use the QR decomposition of X: does not change in permutations 
      Yhat.perm <- qr.fitted(Q, Y.perm) 
      Yhat.perm.eig <- svd(Yhat.perm, nv=0, nu=0)$d^2 
      eig.value.perm <- Yhat.perm.eig[1] 
      # 
      F.perm <- eig.value.perm / (SS.Y.perm - eig.value.perm) 
      if(F.perm >= F) nGE <- nGE+1 
      if(verbose) cat("Axis 1   :   F =",F,"  F.perm =",F.perm,'\n') 
      } 
   prob <- nGE/(nperm+1)     # Start assembling vector 'prob' 
    
   # Test the following canonical axes by permuting residuals of reduced model 
   if(k > 1) { 
   for(j in 2:k) { 
      sum.eigval <- sum.eigval + eig.values[j] 
      F <- eig.values[j] / (SS.Y - sum.eigval) 
      Fstat <- c(Fstat, F*(n-1-m))   # Attach the new F value to 'Fstat' 
      # 
      # Compute reduced model residuals of Y on the previously tested axes 
      qr.prev  <- qr(axes[,1:(j-1)]) 
      Y.fit <- qr.fitted(qr.prev, Y) 
      Y.res <- qr.resid(qr.prev, Y) 
      qr.X.res <- qr(qr.resid(qr.prev, X)) 
 
      set.seed(seed) 
      nGE <- 1   # Hope correction 
      if(verbose) cat('\n') 
      for(iperm in 1:nperm) { 
         # Create permuted Y and compute its sum of squares (SS) 
         Y.perm <- Y.fit + Y.res[sample(n),] 
         SS.Y.perm <- sum(Y.perm^2)   # Not same SS as in the unpermuted data 
         # 
         # The j-th eigenvalue is the first eigenvalue of the partial RDA 
         # of Y.perm by X in the presence of the previous axes[,1:(j-1)]. 
         # Prior to the permutation loop, X has been residualized on the  
         # previous axes. 
         Yhat.perm <- qr.fitted(qr.X.res, Y.perm) 
         Yhat.perm.eig1 <- svd(Yhat.perm, nv=0, nu=0)$d[1]^2 
         # 
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         # The fitted values of Y.perm on the previous axes [1:(j-1)] 
         # provide the first [1:(j-1)] constrained eigenvalues for the  
         # denominator of F. We sum them, then we add the j-th eigenvalue  
         # 'Yhat.perm.eig1' computed above. 
         sum.eig.1toj.perm <- sum(qr.fitted(qr.prev, Y.perm)^2)+Yhat.perm.eig1 
         # 
         # Compute the F-statistic under permutation for the tested eigenvalue 
         F.perm <- Yhat.perm.eig1 / (SS.Y.perm - sum.eig.1toj.perm) 
         if(F.perm >= F) nGE <- nGE+1 
         if(verbose) cat("Axis [",j,"]:  F =",F,"  F.perm =",F.perm,'\n') 
         } 
      prob <- c(prob, nGE/(nperm+1))   # Attach the new probability to 'prob' 
      } 
      } 
# 
  }) 
  a[3] <- sprintf("%2f",a[3]) 
  cat("Computation time =",a[3]," sec",'\n') 
# 
# Output the results. 
# The eigenvalues of the covariance matrix = (eigenvalues computed here)/(n-1) 
out <- cbind(eig.values[1:k]/(n-1), Fstat, prob) 
# 
rownames(out) <- rownames(out, do.NULL=FALSE, prefix="Axis.")  
colnames(out) <- c("Eigenvalue", "F.forward", "P.forward") 
out 
} 
 

* * * * * * * * * * 
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DATA S2 

R FUNCTIONS FOR TESTING THE CANONICAL AXES IN PARTIAL RDA 
 
 Two functions are available in the R function folder to test the canonical axes in partial 
RDA, which is RDA in the presence of a matrix of covariables W. 

• The function test.axes.canoco() follows the programming approach of the program Canoco (ter 
Braak and Šmilauer 2002); it uses the first approach described in the section “Partial RDA” of the 
paper. A first partial RDA is computed to obtain the canonical eigenvalues and the reference 
values of the F-statistics for the marginal and forward methods. Calculation of the partial RDA 
uses the residuals of Y on W, Yres|W, and the residuals of X on W, Xres|W. Then, for each axis, a 
new partial RDA is computed involving matrix W incremented with addition of the previously 
tested axes (no axis is added for the test of the first axis), and the first axis of that partial RDA is 
tested for significance (that axis being the axis currently under test). The partial RDA function is 
called again after each permutation of the residuals of the reduced model. 

• The function test.axes.cov() uses the second approach described in the section “Partial RDA” of 
the paper, where the RDA of Y by Xres|W is computed to produce the canonical eigenvalues and 
test their significance. The canonical eigenvectors, as well as the ordination axes for the partial 
object scores and the fitted object scores, could also be computed in this approach; they are not in 
this demonstration function. 
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DATA S3 

SIMULATION METHOD, TEST OF THE GLOBAL RDA R-SQUARE 
 
 This section contains the scripts and the parameter files used to carry out the simulations 
for the global tests of significance of the canonical relationship in RDA reported in the paper.  
The R simulation functions are in the function folder. 
 
Simulations for results presented in Appendix S1, Tables A1 to A3 
 
# Script to launch the simulations 
# Load the following functions to the R window: run.simul.miller(), simul.miller() and 
generate.YX(). These three functions are found in the file simul.miller.R. 
 
param <- read.table(file.choose())   # Read the file of simulation parameters 
simul.out.11 = run.simul.miller(param, nruns=9, ierr=1, sd.max=1, scaleY=TRUE, 
perm=TRUE) 
simul.out.12 = run.simul.miller(param, nruns=9, ierr=2, sd.max=1, scaleY=TRUE, 
perm=TRUE) 
simul.out.13 = run.simul.miller(param, nruns=9, ierr=3, sd.max=1, scaleY=TRUE, 
perm=TRUE) 
simul.out.21 = run.simul.miller(param, nruns=9, ierr=1, sd.max=1, 
scaleY=FALSE, perm=TRUE) 
simul.out.22 = run.simul.miller(param, nruns=9, ierr=2, sd.max=1, 
scaleY=FALSE, perm=TRUE) 
simul.out.23 = run.simul.miller(param, nruns=9, ierr=3, sd.max=1, 
scaleY=FALSE, perm=TRUE) 
simul.out.31 = run.simul.miller(param, nruns=9, ierr=1, sd.max=10, 
scaleY=FALSE, perm=TRUE) 
simul.out.32 = run.simul.miller(param, nruns=9, ierr=2, sd.max=10, 
scaleY=FALSE, perm=TRUE) 
simul.out.33 = run.simul.miller(param, nruns=9, ierr=3, sd.max=10, 
scaleY=FALSE, perm=TRUE) 
 
 
# File of simulation parameters 
 
 nsim nperm n p m 
Run1 1000 999 10 1 1 
Run2 1000 999 20 1 1 
Run3 1000 999 20 5 5 
Run4 1000 999 20 10 5 
Run5 1000 999 20 20 10 
Run6 1000 999 50 1 1 
Run7 1000 999 50 5 5 
Run8 1000 999 50 10 5 
Run9 1000 999 50 20 10 
Run10 1000 999 100 1 1 
Run11 1000 999 100 5 5 
Run12 1000 999 100 10 5 
Run13 1000 999 100 20 10 
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DATA S4 

SIMULATION METHODS, TEST OF INDIVIDUAL CANONICAL AXES 
 
 This section contains the scripts and the parameter files used to carry out the simulations 
for the tests of significance of individual eigenvalues in RDA reported in the paper. The R 
simulation functions are in the function folder. 
 
Simultaneous test of the canonical axes 
 
# Simulations for the results presented in Appendix S2, Table B1 
 
# Script to launch the simulations 
# Load the following functions: run.simul.simultaneous(), generate.data() and 
simul.test.eigval.simultaneous() 
 
param <- read.table(file.choose())   # Read the file of simulation parameters 
out <- run.simul.simultaneous(param, nruns=14) 
out$F1 # Results for statistic F1 
out$F2 # Results for statistic F2 
 
 
# File of simulation parameters 
 

nsim nperm n p m block pp 
Run1 1000 999 20 3 3 0 0 
Run2 1000 999 100 3 3 0 0 
Run3 1000 999 20 5 5 0 0 
Run4 1000 999 100 5 5 0 0 
Run5 1000 999 20 8 8 0 0 
Run6 1000 999 100 8 8 0 0 
Run7 1000 999 20 3 2 1 3 
Run8 1000 999 100 3 2 1 3 
Run9 1000 999 20 6 4 2 3 
Run10 1000 999 100 6 4 2 3 
Run11 1000 999 20 9 6 3 3 
Run12 1000 999 100 9 6 3 3 
Run13 1000 999 20 12 8 4 3 
Run14 1000 999 100 12 8 4 3 
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Marginal and forward tests of the canonical axes 
 
# Simulations for results presented in Appendix S2, Tables B2 and B3 
 
# Load the following functions to the R window: run.simul(), generate.data(), simul.test.eigval(), 
test.eigval() and forward.test() 
 
param <- read.table(file.choose())   # Read the file of simulation parameters 
out <- run.simul(param, nruns=30, ierr=1, direct=FALSE) 
out$outJ # Results for the marginal test (Jari Oksanen method) 
out$outC # Results for forward test (Cajo ter Braak method) 
 
 
# File of simulation parameters 
 
 nsim nperm n p m block pp beta.err 
Run1 1000 999 20 3 3 0 0 0.2 
Run2 1000 999 100 3 3 0 0 0.2 
Run3 1000 999 20 5 5 0 0 0.2 
Run4 1000 999 100 5 5 0 0 0.2 
Run5 1000 999 20 8 8 0 0 0.2 
Run6 1000 999 100 8 8 0 0 0.2 
Run7 1000 999 20 1 2 1 1 0.2 
Run8 1000 999 100 1 2 1 1 0.2 
Run9 1000 999 20 2 2 1 2 0.2 
Run10 1000 999 100 2 2 1 2 0.2 
Run11 1000 999 20 3 2 1 3 0.2 
Run12 1000 999 100 3 2 1 3 0.2 
Run13 1000 999 20 2 4 2 1 0.2 
Run14 1000 999 100 2 4 2 1 0.2 
Run15 1000 999 20 4 4 2 2 0.2 
Run16 1000 999 100 4 4 2 2 0.2 
Run17 1000 999 20 6 4 2 3 0.2 
Run18 1000 999 100 6 4 2 3 0.2 
Run19 1000 999 20 3 6 3 1 0.2 
Run20 1000 999 100 3 6 3 1 0.2 
Run21 1000 999 20 6 6 3 2 0.2 
Run22 1000 999 100 6 6 3 2 0.2 
Run23 1000 999 20 9 6 3 3 0.2 
Run24 1000 999 100 9 6 3 3 0.2 
Run25 1000 999 20 4 8 4 1 0.2 
Run26 1000 999 100 4 8 4 1 0.2 
Run27 1000 999 20 8 8 4 2 0.2 
Run28 1000 999 100 8 8 4 2 0.2 
Run29 1000 999 20 12 8 4 3 0.2 
Run30 1000 999 100 12 8 4 3 0.2 
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# Simulations for results presented in Appendix S2, Table B4, method=“direct” 
 
# Script to launch the simulations 
# Load the following functions to the R window: run.simul(), generate.data(), simul.test.eigval(), 
test.eigval() and forward.test() 
 
param <- read.table(file.choose())   # Read the file of simulation parameters 
out <- run.simul(param, nruns=16, ierr=1, direct=TRUE) 
out$outJ # Results for the marginal test (Jari Oksanen method) 
# Discard out$outC: results for forward test, permutation of residuals of reduced model  
 
# Simulations for results presented in Appendix S2, Tables B4 and B5, method=”reduced” 
 
# Script to launch the simulations 
# Load the following functions to the R window: run.simul(), generate.data(), simul.test.eigval(), 
test.eigval() and forward.test() 
 
param <- read.table(file.choose())   # Read the file of simulation parameters 
out <- run.simul(param, nruns=16, ierr=1, direct=FALSE) 
out$outJ # Results for the marginal test (Jari Oksanen method) 
out$outC # Results for forward test (Cajo ter Braak method) 
 
 
# File of simulation parameters 
 
 nsim nperm n p m block pp beta.err 
Run1 1000 999 20 3 2 1 3 0.5 
Run2 1000 999 100 3 2 1 3 0.5 
Run3 1000 999 20 6 4 2 3 0.5 
Run4 1000 999 100 6 4 2 3 0.5 
Run5 1000 999 20 9 6 3 3 0.5 
Run6 1000 999 100 9 6 3 3 0.5 
Run7 1000 999 20 12 8 4 3 0.5 
Run8 1000 999 100 12 8 4 3 0.5 
Run9 1000 999 20 3 2 1 3 0.8 
Run10 1000 999 100 3 2 1 3 0.8 
Run11 1000 999 20 6 4 2 3 0.8 
Run12 1000 999 100 6 4 2 3 0.8 
Run13 1000 999 20 9 6 3 3 0.8 
Run14 1000 999 100 9 6 3 3 0.8 
Run15 1000 999 20 12 8 4 3 0.8 
Run16 1000 999 100 12 8 4 3 0.8 
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# Simulations for results presented in Appendix S2, Tables B6  
# Script to launch the simulations 
# Load the following functions to the R window: run.simul(), generate.data(), simul.test.eigval(), 
test.eigval() and forward.test() 
param <- read.table(file.choose())   # Read the file of simulation parameters 
out <- run.simul(param, nruns=24, ierr=2, direct= FALSE) 
out$outJ # Results for the marginal test (Jari Oksanen method) 
out$outC # Results for forward test (Cajo ter Braak method) 
 
# Simulations for results presented in Appendix S2, Tables B7 
# Script to launch the simulations 
# Load the following functions to the R window: run.simul(), generate.data(), simul.test.eigval(), 
test.eigval() and forward.test() 
param <- read.table(file.choose())   # Read the file of simulation parameters 
out <- run.simul(param, nruns=24, ierr=3, direct=FALSE) 
out$outJ # Results for the marginal test (Jari Oksanen method) 
out$outC # Results for forward test (Cajo ter Braak method) 
 
 
# File of simulation parameters 
 
 nsim nperm n p m block pp beta.err 
Run1 1000 999 20 3 2 1 3 0.2 
Run2 1000 999 100 3 2 1 3 0.2 
Run3 1000 999 20 6 4 2 3 0.2 
Run4 1000 999 100 6 4 2 3 0.2 
Run5 1000 999 20 9 6 3 3 0.2 
Run6 1000 999 100 9 6 3 3 0.2 
Run7 1000 999 20 12 8 4 3 0.2 
Run8 1000 999 100 12 8 4 3 0.2 
Run9 1000 999 20 3 2 1 3 0.5 
Run10 1000 999 100 3 2 1 3 0.5 
Run11 1000 999 20 6 4 2 3 0.5 
Run12 1000 999 100 6 4 2 3 0.5 
Run13 1000 999 20 9 6 3 3 0.5 
Run14 1000 999 100 9 6 3 3 0.5 
Run15 1000 999 20 12 8 4 3 0.5 
Run16 1000 999 100 12 8 4 3 0.5 
Run17 1000 999 20 3 2 1 3 0.8 
Run18 1000 999 100 3 2 1 3 0.8 
Run19 1000 999 20 6 4 2 3 0.8 
Run20 1000 999 100 6 4 2 3 0.8 
Run21 1000 999 20 9 6 3 3 0.8 
Run22 1000 999 100 9 6 3 3 0.8 
Run23 1000 999 20 12 8 4 3 0.8 
Run24 1000 999 100 12 8 4 3 0.8 
 


