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ABSTRACT. Earth Observation at regional scales, such are the Iberian Peninsula or the Mediterranean Basin, 
is an important tool to understand the relationships between climate and surface properties. Among the different 
layers of information that can be derived from satellite imagery, Land Cover maps are important by themselves 
and as an aid to infer other variables. Land Cover legends at regional scales require finer categories than those 
used at a global scale, which implies processing multi-spectral imagery acquired by Earth Observing systems 
with daily acquisition rates. In this article we discuss several alternatives to analyze satellite image data sets 
that are both multi-temporal and multi-spectral, with spatial resolution of 1 km2. In order to facilitate the 
interpretation of our results, we restrict our analysis to pixels that correspond to cells with a uniform and known 
cover on the ground, as described by a detailed vegetation map, in Catalonia (NE Spain). Our results indicate 
that canonical Redundancy Analysis is efficient at reducing the multi-spectral and multi-temporal space while 
keeping high statistical separability among habitat types. The small fraction of uniform pixels (~2 %) suggests 
that, at least for the Mediterranean Region, data fusion techniques would be convenient to increase spatial 
resolution in the data set, and that instruments keeping daily acquisition rates but with higher spatial resolution 
(~1 ha) should be considered. 
 
 
1 INTRODUCTION 

Earth observation through remotely sensed 
imagery has an important role in Global Change 
research. Satellite images are used to assess the state 
of the surface, to parameterize some models and to 
validate results. Considering that these images are the 
only observations done at a scale close to the one 
intended for models, their analysis should suggest new 
approaches for modeling. 

Among the applications of Remote Sensing on 
this field, Land Cover (LC) mapping holds a central 
place. Global Land Cover maps are critical 
information for monitoring changes of the Earth 
surface and also have an auxiliary role to estimate 
other surface variables. Historically, Land Cover 
mapping has used either multi-temporal or multi-
spectral imagery depending on whether the study had 
global or continental extent with coarse resolution 
(typically using AVHRR data sets), or covered smaller 
areas with higher resolution (typically using 
LANDSAT and SPOT images). 

Most work done with AVHRR data sets for 
global and continental Land Cover mapping reduce 
each multi-spectral image to one single layer of 
Normalized Difference Vegetation Index (NDVI), 
which is proportional, in a statistical sense, to the 
fraction of photosynthetically-active radiation that is 
intercepted by green tissue (fPAR). The multi-
temporal and multi-spectral data set is thus simplified 
into a time sequence of NDVI layers. An early and 
important finding of Remote Sensing is that time 
series of NDVI are very good descriptors of vegetative 
phenology. Global and continental charts produced 
from AVHRR data sets are essentially based on the 
information provided by time series of NDVI, 
although different authors used different techniques 
for classification (Tucker et al. 1985, Townshend et al 
1987, Lloyd 1990, Loveland 1991, Eidenshink 1992, 
Running et al. 1994, 1995, DeFries et al 1995, Ehrlich 
and Lambin, 1996, Loveland et al. 2000). A similar 
approach was used at a regional scale by Lloyd (1989) 
and Lobo et al. (1997). 
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While most work on Global Change has been 
conducted at a global scale, interest on modeling and 
assessing the impact at a regional scale is growing. A 
regional scale facilitates evaluation of results, and its 
detail is more appropriate to study the implications of 
Global Change for human populations. Current legend 
schemes of Land Cover classes are relevant 
information for studies at global and continental 
scales, but regional applications require more detailed 
classifications, which in turn require more spectral 
information. Newer recent satellite Earth observation 
systems with daily acquisition rates are equipped with 
more spectral bands than earlier NOAA systems. 

A methodological problem arises when we decide 
to analyze time series of multi-spectral images and 
want to use more than one single index across time, as 
data from each cell becomes a multi-variate time 
series. In an analogous way as done with the older 
AVHRR imagery, it is, in principle, possible to 
identify specific features in time profiles of several 
indices, but little is known on the phenological 
behavior of indices other than NDVI and alike. 
Another approach is to stack spectral bands from 
images of successive dates, as if they were bands from 
other regions in the electromagnetic spectrum, to 
create a huge multi-spectral image). This approach 
simplifies the problem by ignoring its temporal aspect 
and subsuming it into its multi-spectral aspect. Such 
an approach would, however, severely affect the 
essence of the problem, since the time axis (the arrow 
of time) is of a different nature than the axes of the 
variables.  

In this study, we describe the use of Canonical 
Redundancy Analysis (RDA) to transform the original 
space of n (cells) x t (times) x p (spectral variables) to 
a reduced space of n (cells) x p (scores) which is 
subsequently submitted to discriminant analysis. As a 
first step and in order to facilitate the interpretation of 
our results, we restrict our analysis to pixels that 
correspond to cells with a uniform and known cover 
on the ground, using an annual set of SPOT-4 
VEGETATION images and land-cover maps of 
Catalonia (NE Spain). 

2  METHODS  

2.1 Data  

We have processed an annual (1999) set of 36 S10-
VEGETATION images and 44 digital maps at the 
scale 1:50,000 from the series of Maps of Habitats of 
Europe for Catalonia (NE Spain). Each map covering 
an area of 28 km x 18.5 km, we have screened a total 
of 22,792 km2. S10-VEGETATION images are 10-
day syntheses of daily calibrated and atmospherically 
corrected images produced through the Maximum 
Value Compositing method of Holben (1986). SPOT-4 
VEGETATION has four spectral bands: 430 – 470, 

610 – 680, 780 – 890 and 1580 – 1750 nm. The legend 
of the maps is based on the Corine Biotopes Manual 
(Devillers et al., 1991) and the Directive 92/43 of the 
European Union with specific improvements for 
Catalonia (NE Spain) (Carreras & Vigo 1997). This 
system is very close to the more recent and 
comprehensive European Nature Information System 
(EUNIS) of the European Environment Agency, 
developed and maintained by the European Topic 
Center on Nature Protection and Biodiversity of the 
European Union. Rather than to habitats in the 
ecological sense sense, the legend corresponds to that 
of a land-cover map with emphasis on vegetation 
categories. 

2.2 Analysis 

We selected those 1-km2 cells that had at least 
90% of their surface in a single habitat patch (a total of 
495 cells, 2.17% of all screened cells), and extracted 
the reflectance data and ancillary information from the 
sequence of S10-VEGETATION pixels that matched 
those cells. We organized the reflectance values as one 
data matrix for each selected pixel. The data matrices 
had time observations as rows (one observation for 
each S10 composite), while, as columns, we included 
the four spectral bands and two normalized difference 
(ND) indices: NDVI (which we call here ND(nir,red) 
for consistency) and ND(nir,mir). 

We ran three approaches of analysis, aiming to 
discriminate the selected cells according to their 
habitat type. In all three approaches, we calculated the 
statistical separability of the different habitat 
categories in the transformed spaces using the Jeffries-
Matutsita distance (Richards 1999). The use of the 
Jeffries-Matutsita distance as a measure of statistical 
separability in all cases let us compare the 
discriminant power of each approach. 

The first approach used only the (univariate) time 
series of ND(nir,red) for each selected cell. Therefore, 
this approach focused on the temporal aspect of the 
data set. We selected the column of NDVI profiles 
from the data matrix of each selected cell, assembled a 
global data matrix with these profiles as row vectors, 
ran a PCA on the global data set, and selected the first 
four scores (accounting for > 96% of the total 
variance). 

The second approach used the spectral space 
defined by the bands of the imagery for each period of 
synthesis, hence focusing on the spectral 
characteristics of the data set. We made a multi-variate 
table with the selected cells and their reflectance 
values in the four bands of the VEGETATION image 
for each period of synthesis, calculated the statistical 
separability for each table, and, finally, calculated a 
combined statistical separability matrix by selecting 
the highest separability value across time for each pair 
of habitats. 
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The third approach used the (multi-variate) time 
course of the spectral responses for each cell, 
attempting to combine both sources of information: 
temporal and spectral. We ran a RDA (Legendre and 
Legendre, 1998) on the multivariate table of all 
selected cells using bands B2, B3 and MIR plus the 
two ND indices as matrix of response variables, and a 
matrix of dummy variables coding for the cells as 
matrix of explanatory variables. 
 
 

 
 
Figure 1. Examples of four robust fits of a regression 
line to the mir vs. red reflectance values of four 
selected cells, constraining the intercept to a 0 value. 
Black symbols, a non-irrigated cereal crop  (code 30); 
red, evergreen oak forest (code 25) Catalonia (NE 
Spain). 
 

2.3 Slope of the MIR vs. RED regression. 

The relationship between values of red and medium-
infrared reflectance is dependent upon both the 
structure and the humidity of the target. Most plots of 
the values of MIR vs. RED bands for a given target 
along an annual cycle are a cloud in which a linear 

trend accounts for most of the variance (Fig. 1). Some 
outliers located well below the linear trend are likely 
due to recent rainfall events. We used a robust linear 
regression method to fit a line constraining the 
intercept to be 0 for each selected cell, and test the use 
of the slope as a characteristc feature of different 
habitats. 

3 RESULTS  

A plot of the selected cells in the plane of the first 
two principal components (PCs) of the ND(nir,red) 
time series (Fig. 2) indicates that the main source of 
variation is along an axis from the evergreen oak 
community (code 25, relatively flat plots of 
ND(nir,red), see Fig. 3) to the non-irrigated cereal 
fields (code 30, wave of ND(nir,red) peaking in early 
spring). Therefore, the main source of variation is due 
to the “degree of deciduoucity” of the plants in the 
cell. A second axis of variation ordinates the 
ND(nir,red) time profiles from those with a narrow 
wave picking in spring to those with a narrow wave 
picking in summer (code 31, rice fields), with the flat 
profiles of evergreen communities and the wide waves 
of the Genista purgans shrubland (a pattern of 
discontinuous evergreen shrubs over an herbaceous 
background) at intermediate positions. The second 
main source of variation is thus related to the timing of 
the greenness peak. 

Values of the Jeffries-Matusita index indicate that 
several habitat types cannot be adequately 
discriminated using the PCs of the ND(nir,red) time 
profiles. Particularly low values are found among the 
different Mediterranean shrub communities (codes 5, 6 
and 7) and between those and Pinus halepensis 
woodlands (code 12). In some cases the low 
separability is a consequence of the definition of the 
habitat types. This is the case for Rosmarinus garrigue 
and Pinus halepensis woodlands over Rosmarinus 
garrigue (codes 12 and 13) and between the two types 
of P. halepensis woodlands (codes 12 and 13). As 
these woodlands can be very open, a substantial part 
of the reflectance actually comes from the understory.
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Figure 2. Projection of the selected cells (identified by their habitat codes) on 
the plane of the first two PCs. See Fig. 3 for time profiles of representative cells 
with habitats coded as 25 (forest of evergreen oak), 30 (not-irrigated creal 
fields), 3 (montane fields of Genista purgans) and 31 (rice fields). Other 
relevant codes: 5 (bushland of Cistus sp. on siliceous soils), 6 (garrigues of 
Rosmarinus officinalis), 7 (garrigues of Cistus clusii and Anthyllis cytisoides on 
calcareous soils), 14 (forests of Abies alba), 15 (forests of Pinus uncinata). 

 
 

 
Figure 3. Time profiles of ND(nir,red) for four selected pixels with codes 25, 
30, 3 and 31 (forest of evergreen oak, non-irrigated cereal fields, sub-alpine 
shrubland and rice fields). Note the position of these habitats in Fig. 2. (25 -> 
h45b; 30->h82c; 3->h31t; 31->h82d) 
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The RDA ordination is essentially the same as the 
PCA ordination. Clustering within class 30 is more 
evident and, in general, cells tend to cluster by habitat 
type more than in the PCA ordination. As a 
consequence, discrimination among habitat types is 
enhanced in the RDA ordination . Separability reaches 
high values for classes 5 vs. 6 (1.96) and 5 vs. 7 (1.99), 
while classes 6 vs. 7 remain undiscriminated. 
Statistical separability of the Mediterranean 
shrublands (codes 5, 6 and 7) vs. the P. halepensis 
woodlands (codes 12 and 13) also achieves high 
values in this data set. Discrimination between the two 
evergreen oak forests (codes 25 and 26) is, however, 
even more difficult here, although the values of 
separability in the PCA-transformed data set were 
already too low. Despite a small increase, 
discrimination between P. halepensis (codes 12 and 
13) and P. uncinata forests (code 23) is weak. An 
important increase of separability occurs between the 
Mediterranean shrublands (codes 5, 6 and 7) and the 
P. uncinata forests (code 23). 

MIR vs. RED slopes calculated by robust linear 
regression with the constrain of null intercept show an 
interesting pattern (Fig. 4). Lowest values are found 
for rice fields, increase for cereal fields and attain a 
maximum for evergreen forests. Values for garrigue 
habitats are intermediate. Several other facts deserve 
being highlighted. First, while MIR vs. RED slopes do 
not discriminate between the two evergreen oak 
forests (Quercus suber and Q. ilex), they show a clear 
bimodal distribution for the case of Q. suber forests, 
with two distinct clusters. Cereal fields show also two 
clusters. Second, values from cells of Cistus garrigue 
are higher than those from cells of the other two 
garrigues. Third, conifer forests show intermediate 
values between the M-R slopes of evergreen forests 
and garrigues. Including M-R slopes as an additional 
variable for RDA increases separability, particularly 
between the Rosmarinus and Cistus garrigues. There is 
an increase between the two evergreen oak forests 
(Quercus suber and Q. ilex) as well, but this is a 
consequence of the presence of lower cluster of Q. 
suber. However, in both cases the increase is not 
sufficient to reach a good discrimination in these two 
pairs of habitats.  

Despite the enhanced discrimination power, some 
habitat types still show poor separability. Two of the 
three Mediterranean shrublands cannot be 
discriminated between them, neither can be the two 
types of woodlands of P. halepensis. Furthermore, 
there is a weak separability between one of these two 
woodlands and one type of P. uncinata forest. 

Combining the best spectral separability of each 
period of time does not improve discrimination within 
any of the pair of habitats with weak separability in 
the RDA-transformed data set. Searching the best 
discriminant period for each pair of habitat types also 

has the problem of selecting an eventually high 
separability merely due to transient conditions (i.e., a 
recent rainfall) rather than to more stable 
characteristics. This risk is much reduced if the entire 
annual cycle is considered, as in the RDA approach. 
 

 
 

Figure 4. Values of the slope of the MIR vs. RED 
regression line with 0 intercept. Cells coded, and 
ordered, by habitat. 

 

4 CONCLUSIONS  

Direct RDA reduces a very complex multi-spectral 
and multi-temporal space and still keeps a high 
statistical separability among habitat types. Results 
using the RDA-transformed data set are better than 
those using NDVI time series and than those 
combining the best discriminant dates using all bands.  

Some habitat types cannot be sorted out in the 
RDA-transformed data set. In some cases, the problem 
can be solved by going up one step in the hierarchical 
structure of the legend, and merging the 
indistinguishable types into a broader category, while 
still keeping an acceptable thematic detail. This is the 
case, for example, of the Mediterranean shrublands 
“Rosmarinus garrigue” and “Cistus and Anthyllis 
cytisoides garrigue” that can be lumped together into 
the category “Western garrigue” of the EUNIS 
classification scheme. However, in other cases, the 
indistinguishable types are not related in the 
hierarchical legend, and merging them together would 
create incoherent or too broader categories (i.e., “P. 
halepensis woodlands” and some “P. uncinata 
forests”). More research is required to discriminate 
these habitat types, with particular attention to 
including angular information. 

The fraction of 1 km2 pixels that are completely 
included within one single habitat patch is very low in 
our region of study (2.17%). Data fusion of imagery 
acquired by complementary systems might result into 
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products with the required intensity in both time and 
space. Also, Remote Sensing systems designed for the 
Mediterranean region and featuring spatial resolution 
close to 1 ha and daily acquisition should be 
contemplated. 

ACKNOWLEDGEMENTS  

This research has been conducted within the 
framework of project AMFIBER (REN2001-
1841/GLO, Programa Nacional de Ciencia y 
Tecnología of Spain) and the Programa Nacional 
Ramón y Cajal (Ministerio de Ciencia y Tecnología of 
Spain), using imagery provided by the VEGETATION 
Preparatory Program. 

REFERENCES  

Bartalev, S., Achard F., Erchov D., Gond. V., 2000. 
The potential contribution of SPOT 
4/VEGETATION data for mapping Siberian 
forest cover at continental scale. Proceedings of 
the VEGETATION 2000 conference, 3-6 April 
2000 Belgirate (Italia). 
http://vegetation.cnes.fr:8080/ 

Braun-Blanquet, J., 1951, Pflanzensoziologie. 2ond. 
Ed. (Springer-Verlag. Viena). 

Carreras, J. and Vigo, J. 1997. Projecte de Cartografia 
dels Hàbitats a Catalunya. Report of the "Grup 
de Geobotànica i Cartografia de la Vegetació 
(Universitat de Barcelona)" for the 
"Departament de Medi Ambient de la 
Generalitat de Catalunya". Unpublished. 

Casanova, D. 1998. Quantifying the effects of land 
conditions on rice growth: a case study in the 
Ebro delta (Spain) using remote sensing. Thesis 
Landbouwuniversiteit Wageningen, 219 pp. 

DeFries R.S. and Townshend, J.R.G. 1995, Global 
discrimination of land cover types from metrics 
derived from AVHRR Pathfinder data. . Remote 
Sensing of Environment 54, 209-222. 

Devillers, P., Devillers-Terschuren, J. & Ledant, J.P. 
1991. Corine Biotopes Manual. Habitats of the 
European Community. Commission of the 
European Communities. Luxenbourg. 

Eidenshink, J.C.,1992. The 1990 conterminous US 
AVHRR data set. Photogrammetric Engineering 
and Remote Sensig, 58, 809-813. 

Ehrlich, D. and Lambin, E.F., 1996. Broad scale land-
cover classification and international climatic 
variability. . International Journal of Remote of 
Remote Sensing, 17, 845-862 

Gao, B.-C., 1996, NDWI - a normalized difference 
water index for remote sensing of vegetation 

liquid water from space. Remote Sensing of 
Environment, 58, 257-266. 

Holben, B.N., 1986. Characteristics of maximum-
value composite images from temporal AVHRR 
data. International Journal of Remote of Remote 
Sensing, 7, 1417-1434. 

Legendre, P. and Legendre, L. 1998. Numerical 
Ecology. 2nd edition (Amsterdam, Elsevier). 

Lloyd, D. 1989. A phenological description of Iberian 
vegetation using short wave vegetation index 
imagery. International Journal of Remote of 
Remote Sensing 10, 827-833 

Lobo, A., Ibáñez-Martí, J.J. and Carrera Giménez-
Cassina, C. 1997. Regional scale hierarchical 
classification of temporal series of AVHRR 
vegetation index. International Journal of 
Remote Sensing, 18, 3167-3193. 

Loveland, T.R. and Belward, A.S. 1997. The IGBP-
DIS Global 1 km Land Cover Data Set, 
DISCover First Results. International Journal of 
Remote Sensing, 18, pp. 3289-3295 

Loveland, T., B. Reed, J. Brown, D. Ohlen, Z. Zhu, L. 
Yang and J. Merchant. 2000.  Development of a 
Global Land Cover Characteristics Database and 
IGBP DISCover from 1-km AVHRR Data. 
International Journal of Remote Sensing, 21, 
1303-1330. 

Loveland, T.R., Merchant, J.M., Ohlen, D.O. and 
Brown, J.F. 1991. Development of a land cover 
characteristics for te conterminous US. 
Photogrammetric Engineering and Remote 
Sensig, 57, 1453-1453. 

Richards, J. and Jia, X., 1999. Remote Sensing Digital 
Image Analysis. An Introduction. (Berlin, 
Springer). 

Running, S.W., Loveland, T.R., and Pierce L.L., 1994. 
A vegetation classification logic based in global 
biogeochemical models. AMBIO, 23, 77-81 

Running, S.W., Loveland, T.R., Pierce L.L., Nemani, 
R.R. and Hunt, E.R., 1995. A vegetation 
classification logic for global land cover 
analysis. Remote Sensing of Environment 51, 39-
48. 

Spot Image 1998. VEGETATION User´s Guide. 
http://www.spotimage.fr/data/images/vege/VEG
ETAT/book_1/e_frame.htm 

Townshend, J.R.G., Justice, C. and Kalb, V., 1987, 
Characterization and classification of Sout 
American land cover types using satellite data. . 
International Journal of Remote Sensing, 8, 
1189-1207 

Tucker, C.J., Townshend, J., and Goff, T.E., 1985. 
African land-cover classification using satellite 
data. Science, 227, 369-375. 
 

 




