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Abstract. Among the various forms of canonical analysis available in the statistical
literature, RDA (redundancy analysis) and CCA (canonical correspondence analysis) have
become instruments of choice for ecological research because they recognize different roles
for the explanatory and response data tables. Data table Y contains the response variables
(e.g., species data) while data table X contains the explanatory variables. RDA is an ex-
tension of multiple linear regression; it uses a linear model of relationship between the
variables in X and Y. In CCA, the response variables are chi-square transformed as the
initial step, but the relationship between the transformed response data and the explanatory
variables in X is still assumed to be linear. There is no specia reason why nature should
linearly relate changes in species assemblages to changes in environmental variables. When
modeling ecological processes, to assume linearity is unrealistic in most instances and is
only done because more appropriate methods of analysis are not available. We propose two
empirical methods of canonical analysis based on polynomial regression to do away with
the assumption of linearity in modeling the relationships between the variables in X and
Y. They are called polynomial RDA and polynomial CCA, respectively, and may be viewed
as alternatives to classical linear RDA and CCA. Because the analysis uses nonlinear
functions of the explanatory variables, new ways of representing these variables in biplot
diagrams have been developed. The use of these methods is demonstrated on real data sets
and using simulations. In the examples, the new techniques produced a noticeable increase
in the amount of variation of Y accounted for by the model, compared to standard linear
RDA and CCA. Freeware to carry out the new analyses is available in ESA’'s Electronic

Data Archive, Ecological Archives.
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INTRODUCTION

Canonical analysis has become an instrument of
choice for ecologists who want to relate a data table
(Y) of response variables (which are often species
abundances) to a second data table (X) of explanatory
variables (often environmental factors). Two bibliog-
raphies of ecological papers on the subject, covering
the periods 1983—1993 and 1994-1998 (H. J. B. Birks,
S. M. Peglar, and H. A. Austin; and H. J. B. Birks, N.
E. Indrevaa, and C. Rygh, unpublished manuscripts),
contain 804 titles. One can obtain a canonical ordi-
nation of the response variables whose axes are max-
imally and linearly related to the explanatory variables.
Canonical analysis, which is also called constrained
ordination analysis, providesinteresting statistics, such
as the proportion of variance of the response data that
is accounted for by the explanatory variables, and tests
of significance of this statistic and of individual ca-
nonical eigenvalues.
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The forms of canonical analysis discussed in this
paper are Redundancy Analysis (RDA) and Canonical
Correspondence Analysis (CCA). Other forms of ca-
nonical analysis, such as canonical correlation analysis
and discriminant analysis, are not of interest here. The
development of Redundancy Analysis (RDA) is due to
C. R. Rao (1964, 1973). RDA is an extension of mul-
tiple linear regression; it uses a linear model of rela-
tionships among the variables in Y and between the
variables in X and Y. It may also be considered as a
constrained extension of Principal Component Anal-
ysis (PCA) which identifies trends in the scatter of data
points that are maximally and linearly related to a set
of constraining (explanatory) variables. RDA consists
of a series of multiple linear regressions followed by
an eigenvalue decomposition of the table of fitted val-
ues. When table Y contains species abundance data,
the component axes resulting from RDA are interpret-
able in terms of differences in the abundances of the
species; thus the component axes in RDA biplots rep-
resent gradients in absolute species abundances, con-
strained by the explanatory variables.

Canonical Correspondence Analysis (CCA), devel-
oped by ter Braak (1986, 1987a) as an extension of
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Transform the variables:
* RDA: none, |og(_y+1), or other

¢ CCA: to matrix Q
Center the variables on means

Weights for the objects:

* RDA: 1 for all objects

* CCA: square roots of the row sums
Center the variables on means
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/

Polynomial regression algorithm
to obtain the matrix of fitted values
(Y in RDA, or Q in CCA)

Eigenvalue decomposition of the
covariance matrix of Y or Q

Represent explanatory variables in biplot:
* RDA: multiple linear correlation
* CCA: weighted multiple linear correlation

FiG. 1.

Correspondence Analysis (CA), approximates unimo-
dal responses of the speciesto environmental gradients,
but it still assumes linearity of the relationships be-
tween the variables in X and Y. A chi-square trans-
formation of the species abundances is done, but the
rel ationship between the transformed response dataand
the explanatory variablesin X is assumed to be linear.
The component axes resulting from CCA basically rep-
resent gradients in species proportions, constrained by
the explanatory variables.

Thereisno special reason why nature should linearly
relate changes in species assemblages to changes in
environmental variables. When modeling ecological
processes, to assume linearity is unrealistic in most
instances and is only done because more appropriate
methods of analysis are not available.

This paper proposes a canonical (or constrained) or-
dination method based on polynomial regression to do
away with the assumption of linearity in describing the
relationships between the variables in X and Y (Fig.
1). This method, which builds upon the pioneering
work of Rao and ter Braak, may be viewed as a non-
linear alternative to classical RDA and CCA. Our strat-
egy is to apply polynomial regression, whose use is
justified below, to describe the relationship between
each response variabley of Y and the explanatory var-
iablesin X, in place of multiple linear regression. This
approach may allow a noticeable increase in the ex-
plained variation of Y, compared to the linear model.
The new approach often produces greater significance
of the model than the linear approach; the significance
of a canonical ordination model can be assessed using
a permutation test.

RDA and CCA using polynomial regression.

The polynomial regression algorithm described in
this paper allows modeling of polynomial relationships
between the matrices of response and explanatory var-
iables considered in RDA and CCA. The matrix of
fitted values Y used in the analysisis no longer alinear
combination of the explanatory variablesin X, but their
polynomial combination. In this study, we only con-
sidered polynomials for which the degree of any par-
ticular explanatory variable included in any term of the
polynomial is one or two. The regression algorithm
proposed in this paper does not aim at providing an
optimal polynomial with a fixed number of terms; it
only triesto explain a portion of the variance, reflecting
nonlinearities in the relationships, that cannot be ac-
counted for by a linear regression model. @kland
(1999) noted that species composition data rarely meet
the assumptions of the species response models which
are implicit in various methods of ordination and con-
strained ordination analysis. The nonlinear adjustments
proposed in the present paper provide away to enhance
the fit of the model to the data in such cases.

The problem of expressing nonlinear relationships
in canonical analysis has been investigated in the past.
Van der Burg and de Leeuw (1983) used alternating
least squares to find optimal nonlinear transformations
of discrete data in canonical correlation analysis. Du-
rand (1993) used additive spline transformations in
RDA; Donovan (1998) also used spline transformations
to express nonlinearities in RDA and CCA. These au-
thors noted that the shapes of the transformations they
obtained were generally not interpretable. We inves-
tigated the use of polynomial regression with the same
objective in mind. Polynomials offer an elegant and
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easy way to obtain approximations of nonlinear rela-
tionships of unknown functional forms. The resulting
equation islinear in its parameters, but the relationship
between the response and explanatory variables may
be linear or not; the linear equation isthe simplest form
of a polynomial function. Finally, a polynomial equa-
tion is an algebraic function and can be represented
graphically. From the ecological point of view, poly-
nomials represent a more flexible tool than linear mod-
els, which are embedded in them, to describe relation-
ships between the response and explanatory variables.
Product terms retained in polynomial equations rep-
resent combinations of variables having significant im-
pact on the response data while significant second-or-
der terms represent nonlinear relationships between ex-
planatory and response variables.

A FORTRAN program was used to carry out the
computations (Polynomial RbACca; see the Supple-
ment). After computing polynomial RDA or CCA, us-
ers of this program can also perform standard RDA and
CCA based on multiple linear regression and assess the
difference in explained variation between the two mod-
els, linear and polynomial, using a specially-designed
permutation test.

This paper is organized as follows. (1) The new
method of polynomial regression is first presented.
(2) Classical RDA based on multiple linear regression
is described, as well as its polynomial generalization.
(3) CCA and its polynomial generalization are then
presented, followed by (4) a discussion about ways of
representing the explanatory variables in biplots and
(5) tests of significance in polynomial canonical anal-
ysis. (6) To illustrate the new methods, a classical eco-
logical data set containing nonlinear species—environ-
ment relationships is reanalyzed using polynomial
RDA and CCA.

PoLYNOMIAL REGRESSION ALGORITHM

The algorithm described in this section aims at ex-
pressing each response variable y separately as a poly-
nomial function of the explanatory variables most re-
lated to it. The variables should have already been
transformed, if necessary, to insure homoscedasticity
of the response variables. Reduction of the number of
explanatory variables in the polynomial regression is
necessary to avoid overfitting the response variables;
in the linear case, overfitting occurs when a response
variable is fitted using a number of explanatory vari-
ables larger than (n — 1) where n is the number of
observations. The polynomial algorithm proceeds by
successively reducing the matrix of explanatory vari-
ables X while increasing the value of the coefficient of
multiple determination R? for the response variable y
under study. This reducing procedure is applied inde-
pendently to each response variable y, corresponding
to a column of the matrix of response variables Y. Let
y be one of the response variables, associated with a
vector of datay = (Yi, Yo - - -, Yn)- The algorithm is
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comprised of four basic steps, described below, which
arerepeated (m — 1) times as the matrix of explanatory
variables X with m columnsis reduced to a single vec-
tor.

1) X isamatrix of explanatory variables of order (n
X m). The variablesin X are centered on their respec-
tive means in order to reduce the collinearity between
the linear and quadratic terms of the polynomial, cal-
culated below. Binary explanatory variables, that may
stand alone or may be used to code for multistate qual-
itative descriptors, may or may not be centered on their
means; this is up to the user. The first step consists in
regressing y on all variablesin X following a classical
least-squares multiple linear regression model. We find
the vector of fitted values § using vector b of the re-
gression coefficients:

g = Xb = X[X'X]X'y. 1)

2) The second step is to obtain the vector of residual
values (Y,.) from the multiple regression:
Yies = Y — y (2)
3) The task of the third step is to select the pair of
variables in X that provides the best quadratic approx-
imation of y,.. To accomplish this selection, for each
pair of columns j and k of X, we compute a multiple
linear regression of vector y, on matrix Xk (where j
and k are upper indices) containing variables X;, X, XX,
X2, x¢ as columns, plus a column of 1's. For example,
letj = 1 and k = 2; aquadratic polynomial regression
of the vector of residualsy,. (from Eq. 2) on variables
X, and X, is obtained by

91z = X1 (3)
where c'? is the vector of regression coefficients for

explanatory variablesj = 1 and k = 2, and matrix X*?
is constructed as follows:

Xy X XXy Xj X3 10

X12:D

D: : : : : D

B(ln X2n XlnXZn X%n X%n 1[]

2 Xn XpXnp XL X3 1[1

If X, isabinary {0, 1} variable that has not been cen-
tered on its mean, the fourth column of X*? should not
be included in this matrix; likewise for variable x,. The
reason for this is that the square of a binary variable
is equal to itself. The vector of regression coefficients
c? is computed using least squares, like vector b of
Eq. 1. The coefficient of multiple determination R(1, 2)
is computed for this regression. The procedure is re-
peated for every pair (j, k) of columns of X. Each time,
the coefficient of multiple determination R®(j, K) is
computed. The pair (j, k) providing the largest coef-
ficient of determination, R%(j, k), is retained; this pair
will be used in step 4.

4) The two columns j and k selected in step 3 are
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combined to form a new joint column t in X, which
replaces j and k for the remainder of the analysis. The
following formula is used to compute the new com-
bined variable t for each observationi (i = 1, ..., n):

X = Xy + X + Y 4
where the coefficients b are those of Eq. 1. Thus, matrix
X isreduced and now is comprised of one column (i.e.,
one variable) fewer than before. This new column com-
bines the terms corresponding to the contributions of
j and k to the linear regression of y on X (Eg. 1) as
well as the fitted values of the regression of residual
VECtor Y, on matrix X2, Therefore, a new combined
explanatory variable t is formed, containing the linear
and quadratic contributions to the fitting of y by var-
iables j and k.

The four steps above are repeated (m — 1) times as
matrix X(n X m) is transformed into a matrix X(n X
1), which is a simple vector. To obtain the final vector
y to be used in the analysis in place of y, we perform
a simple linear regression of y on X(n X 1). It should
be clear that the vector of fitted values ¥ is now a
polynomial function of the explanatory variablesin the
matrix X(n X m) considered at the beginning of the
regression procedure. This procedure also guarantees
that every single variable of X is expressed by linear
and quadratic terms in the reduced vector X(n X 1).

We would not be able to control the maximum degree
of any single variablein the polynomial if the quadratic
form was used in matrix X of Eq. 3 in each of the (m
— 1) iterations. To make sure that the degree of each
variable X is at most two in any single term of the
polynomial, the following rule for composing matrix
Xik is applied for any pair of variables (j, k), starting
from the second pass through the algorithm: if column
j isalready acombined variable obtained by Eq. 4, then
its quadratic contribution (column x?) should not be
included in Xik. The same applies to variable k if it is
a combined variable. Thus matrix Xikx may have from
four to six columns, depending on the nature of the
variables j and k.

The maximum degree of the polynomial is not
bounded; it was not our objective to do so. Control is
only exerted upon the highest degree, which is two, of
any one variable in a monomial. In the most extreme
case, one may end up with a polynomial of order m.
Polynomials generated by this algorithm contain sub-
sets of the terms from the following model:

¥ = Dby + bx; + byx, + -+ + b,X,

+ by X2+ - + by X3

+ g XX + -+ b [ x [] x2
G
The algorithm is used to determine which terms should
be kept or deleted. This flexibility, as well as the huge
range of shapes that the polynomial can fit, are among
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FiG. 2. lterations of the polynomial weighted regression
algorithm computed during the regression step of polynomial
CCA for the first species (Sp. 1, Al. accentuata) in Table 1;
the four explanatory variables are: x,, water content; X,, re-
flection of the soil surface; x;, percent cover by Calamagrostis
epigejos; X,, percent cover by Corynephorus canescens.

the advantages of this method. Distribution functions,
which reflect species responses to the environmental
factors found in real-life patterns, may vary alot from
species to species. Polynomial modeling provides a
way of representing this diversity of responses. Ad-
mittedly, a polynomial model allows only an approx-
imation and not an exact representation of the nonlinear
relationships, whose functional forms are not known,
but this approach is still far more efficient than the
approximation by a straight line or a plane, as in clas-
sical linear regression.

Two examples of the use of thisempirical procedure
are presented in the section Numerical examples. Fig.
2 illustrates the computations for species 1 of the sec-
ond example, where polynomial CCA is used. The
detailed description of the polynomial regression re-
sults are presented in that section. The estimation of
the number of independent parameters estimated by
the polynomial regression procedure and the number
of degrees of freedom left for statistical testing is
described in Appendix A.

To obtain the matrix of fitted values Y to be used in
place of Y in the ordination analysis, (m — 1) passes
through the algorithm are necessary for each response
variable y; (j = 1, ..., p) of Y. Taking into account
the O(nn?) time complexity of each loop consisting of
the four steps described above, the whole algorithm
performed on two matrices Y (n X p) and X(n X m)
requires time on the order of pnne.

REDUNDANCY ANALYSIS AND ITS POLYNOMIAL
GENERALIZATION

There are dedicated software packages available to
perform classical RDA and CCA, such as Canoco (ter
Braak 1988a, b, 1990, ter Braak and Smilauer 1998)
and RpACca described in Legendre and Legendre
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(1998:579). Although the algorithmic strategies used
in these two packages differ, they lead to identical re-
sults. The approach of ter Braak is based upon the
iterative application of averaging or weighted aver-
aging equations; the ordination axes are computed one
by one. In this work, we follow the direct computa-
tional approach described in Legendre and Legendre
(1998). The main steps, implemented in the program
RpaCca, are summarized in Appendix B. In the pre-
sent section, we describe the modifications to that al-
gorithm needed to obtain polynomial RDA.

Let Y be amatrix of response variables with n rows,
representing the sites or objects, and p columns cor-
responding to the species or other variables under
study. For instance, Y may be a matrix of the abun-
dances of p species at n sites. Let X be a matrix of
explanatory variables with n rows representing the
same sitesasin Y and m columns corresponding to the
explanatory variables observed at these sites.

The objective of the polynomial regression algo-
rithm, described in the previous section, is to explain
apart of the variance of Y which remained unexplained
after multiplelinear regression. The approach isadirect
modification of the algorithm for classical RDA pre-
sented in Appendix B. The first step is to calculate the
polynomial regression of Y on X, i.e,

Y = P(X, X?) (5)

where P(X, X?) denotes the polynomial equations of
the previous section, which may differ for each variable
y of Y not only in their polynomial coefficients but
also in the X variables that are included in the equa-
tions. The covariance matrix S of Y is computed in the
classical way (Eg. B.2), followed by eigenanalysis of
S (Eq. B.4). The site scores needed to represent the Y
variables in biplots are calculated using equations of
the same type as in principal component analysis (Eq.
B.5 or B.6). In polynomial RDA, the matrix of eigen-
vectors U corresponding to non-null eigenvalues is of
size (p X |) where | cannot exceed p or (n — 1) but
may be larger than m.

Each canonical ordination axis is now a quadratic
function of the explanatory variables in X, the degree
of each variable X in the polynomial being at most two.
It is denoted as follows:

Cord(spaceofexplanamryvariabl&sx)k = Quk = P(xv Xz)uk' (6)

CANONICAL CORRESPONDENCE ANALYSIS AND ITS
PoLYNOMIAL GENERALIZATION

We will now show how to use polynomial regression
in the framework of canonical correspondence analysis
(CCA). Basically, CCA is similar to RDA; the main
difference is that it preserves chi-square distances, as
in correspondence analysis (CA), instead of Euclidean
distances among sites. Matrix Q contains fitted values
obtained by weighted linear regression of a matrix Q
of the contributions to chi-square (also used in CA) on
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the weighted explanatory variables found in matrix X.
There are several algorithms for CCA. Appendix C
outlines the one that served as the basis for this paper.

Let Y beamatrix of size (n X p) containing p species
abundance or presence—absence variables, or other fre-
quency data, observed at n sites. Asin RDA, X is a
matrix of explanatory variables of size (n X m), with
rows representing the same sites asin Y and columns
corresponding to the explanatory variables observed at
the sites. The main differences from RDA are that Y
will be chi-square transformed into a matrix Q, asin
contingency table analysis, and that the rows of matrix
X will be weighted by the square roots of the row sums
of Y. An operational definition of matrix Q isgivenin
Appendix C.

In the present section, we describe how the algorithm
for CCA outlined in Appendix C can be modified to
incorporate the polynomial regression technique. Asin
RDA, the objective is to increase the percentage of
variance accounted for, compared to standard CCA. In
order to perform weighted polynomial regression, in
place of weighted linear regression, in the first step of
the analysis, we introduce the following changes to the
equations of the polynomial regression procedure. Let
q be a variable corresponding to a single species from
matrix Q (Eq. C.1). To take weights into account, the
changes to introduce into Egs. 1-4 are the following:

4 = Xub = X, [X\Xu] X0 @)

where X,, = D(p;,)¥2X is the weighted matrix of ex-
planatory variables,

Qres = (T - q (8)
0%z = D(p.)¥2X12cw

D (P )V2X#2[X*# (D(p. )X 2]+

X x12'D(pi+)1/2q_r$. (9)

The following formula is used to compute the new
combined variable t for each observationi (i =1, ...,
n):

X = % + X + P dl (10)

Thus, a weighted polynomial relationship is described
between matrix Q of the contributions to chi-square
and the matrix of explanatory variables X. After the
polynomial regression procedure, one obtains:

Q = P.X, X?) (11)

where P,(X, X?) denotes polynomials in which the
highest degree of each variable is two, and whose co-
efficients depend on the weights. As in the case of
polynomial RDA, the polynomial forms may vary from
variable to variable. A

The remainder of the analysis is based on matrix Q
and does not differ from the linear CCA outlined in
Appendix C. The only remaining difference involves
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the computation of the scores of the explanatory var-
iables X for biplots.

REPRESENTATION OF EXPLANATORY VARIABLES
IN BipLOTS

Two strategies can be used to represent the explan-
atory (e.g., environmental) variables in polynomial
RDA and CCA bhiplots.

1) One can represent the individual terms of the poly-
nomial by arrowsin the biplot. When matrix X contains
several variables, this strategy may produce too many
terms (arrows) to be represented in the diagram. One
may then apply an empirical rule, retaining only the
correlations larger than a preselected value. In RDA,
this strategy uses the correlations of the terms of the
polynomial with the constrained ordination of the ob-
jects given by Eq. 6 and scaled using Eq. B.7. In CCA,
the weighted correlations are obtained from Eq. C.12.

2) The second strategy is to represent each explan-
atory variable x by a single arrow in the biplot. This
arrow corresponds to the multiple correlation of x and
its quadratic form x? with the ordination axes. It does
not include any of the interaction terms. This solution
may be preferred when there are so many explanatory
variables in the analysis that the first strategy would
produce a clogged diagram.

L et us examine this second option in more detail. In
polynomial RDA, to obtain the biplot score of an ex-
planatory variable x along a canonical ordination axis,
a multiple correlation is computed between a vector of
constrained ordination scores cord (from Eq. 6) and
vectors x and x?, giving the multiple linear correlation
Reraxxg- The sign of the simple linear correlation be-
tween cord and x is assigned to R, (2 - With scaling
type 2, Ry 1S used directly; with scaling 1,
Reraxxg 1S multiplied by coefficient ¢, of Eq. B.7 to
obtain the biplot score of x along the axis. Calculation
of multiple linear correlations is described in Egs. 12
and 13. For abinary {0, 1} variable x that has not been
centered nor squared during polynomial regression, its
score is obtained by simple linear correlation.

In polynomial CCA, a weighted multiple linear cor-
relation is computed between the vector of constrained
site scores cord (from Eq. C.10 or C.11) corresponding
toagiven axisand apair of vectors{x, x? . Theweights
w; in Eg. C.12, which are associated with rows i of
vectors cord, X, x?, are equal to p..

In polynomial RDA, let R4, be a coefficient of
simple linear correlation; in polynomial CCA, it is a
coefficient of weighted simple linear correlation be-
tween cord and X, computed using Eg. C.12. Let
Reoraxe @nd R, 2 be the coefficients of (weighted) simple
linear correlation between cord and x2, and between x
and x?, respectively. The coefficient of (weighted) mul-
tiplelinear correlation Ry, 4.2 iScomputed asfollows:

POLYNOMIAL RDA AND CCA
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R 2y = 1- M (12)
cord,{x,x“} |M 2|
where matrices M; and M, are

E 1 Rcord,x Rcord,XZH

M3 = ERoord,x 1 Rx,x2 O

ord,x2 Rx,x2 1 O
m,— | b Roe (13)

2Ry 1

The sign of Ryyqy is assigned to R, 44z 10 Obtain the
biplot score of x along a canonical ordination axis cor-
responding to constrained ordination vector cord.
Biplot scores of the centroids of binary explanatory
variables x are computed as in classical linear RDA
and CCA. If w, is the weight associated with row i of
vectors cord and X, the score of the centroid of abinary
variable x along vector cord is the following:

>, wicord;x
Centroid(x, cord) = =*——. (14)

Weights w;, are 1 in RDA and polynomial RDA. The
arrow drawn using the biplot scores of a binary ex-
planatory variable points toward this centroid, as in
standard RDA and CCA based on (weighted) linear
regression.

The biplot scores of the explanatory variables from
matrix X are approximations of their real contributions
in the full-dimensional space of canonical ordination.
This point can be found in descriptions of biplots in
Gabriel (1982), ter Braak (1994), and Legendre and
Legendre (1998).

TESTS OF SIGNIFICANCE IN POLYNOMIAL
RDA anD CCA

Tests of significance can be carried out in linear or
polynomial RDA or CCA. The most general null hy-
pothesis is the same as in regression analysis; it states
that there is no special relationship between the re-
sponse and explanatory variables (independence of Y
and X), or that the model is not a significant represen-
tation of the response data. The pseudo-F statistic used
in the test as well as the method of permutation testing
are described in Appendix D.

If the linear and polynomial models are both signif-
icant, another interesting question can be addressed:
Which of the two models is the most appropriate to
describe the data? To answer this question, a permu-
tation procedure is used to assess the differencein var-
iance accounted for, between the polynomial model and
the linear model nested into it. Details of the method
are presented in Appendix D.

Appendix D also reports the results of simulation
studies showing (1) that our permutation test of sig-
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TaBLeE 1. The number of individuals of hunting spiders caught in 28 traps (sites) over a period of 60 weeks, plus the values
of four environmental variables measured at the same sites, from van der Aart and Smeenk-Enserink (1975).

Site Sp. 1, Sp. 2, Sp. 3, Sp. 4, Sp. 5, Sp. 6, Sp. 7, Sp. 8,
no. Al. accent. Al. cuneata Al. fabrilis Ar. lutetiana  Ar. perita Au. albimana Pa. lugubris Pa. monticola
1 25 10 0 0 0 4 0 60
2 0 2 0 0 0 30 1 1
3 15 20 2 2 0 9 1 29
4 2 6 0 1 0 24 1 7
5 1 20 0 2 0 9 1 2
6 0 6 0 6 0 6 0 11
7 2 7 0 12 0 16 1 30
8 0 11 0 0 0 7 55 2
9 1 1 0 0 0 0 0 26
10 3 0 1 0 0 0 0 22
11 15 1 2 0 0 1 0 95
12 16 13 0 0 0 0 0 96
13 3 43 1 2 0 18 1 24
14 0 2 0 1 0 4 3 14
15 0 0 0 0 0 0 6 0
16 0 3 0 0 0 0 6 0
17 0 0 0 0 0 0 2 0
18 0 1 0 0 0 0 5 0
19 0 1 0 0 0 0 12 0
20 0 2 0 0 0 0 13 0
21 0 1 0 0 0 0 16 1
22 7 0 16 0 4 0 0 2
23 17 0 15 0 7 0 2 6
24 11 0 20 0 5 0 0 3
25 9 1 9 0 0 2 1 11
26 3 0 6 0 18 0 0 0
27 29 0 11 0 4 0 0 1
28 15 0 14 0 1 0 0 6

Notes: The 12 species (Sp. 1 to Sp. 12) form the matrix of response variables Y. In the first example (RDA), the matrix
of explanatory variables X contains the first two environmental variables, while in the second example (CCA), it contains
all four. Water content is expressed as percentage of dry mass; reflection refers to reflection of soil surface under a cloudless
sky (x100); Calamagrostis coverage is percent cover by Calamagrostis epigejos, Corynephorus coverage is percent cover

by Corynephorus canescens.

nificance for polynomial RDA and CCA has correct
type | error, and (2) that the test for the difference in
explained variation between the polynomial and linear
models also has correct type | error.

NUMERICAL EXAMPLES

Numerical examples of polynomial RDA and CCA
are now presented. We used awell-known data set con-
sisting of the abundance of 12 hunting spiders at 28
sampling sites, as well as the values of four environ-
mental variables measured at the same sites. The data,
displayed in Table 1, are from van der Aart and
Smeenk-Enserink (1975: Tables 2 and 4) who studied
them using PCA and canonical correlation analysis
(CCoA). Thisdata set has been reanalyzed by ter Braak
(1986) in the paper where CCA was first described and
by other authors since then. It contains several nonlin-
ear species—environment relationships; examples are
displayed in Fig. 3. This property was discussed by van
der Aart and Smeenk-Enserink in their paper (1975).
The polynomial equationsfor the relationships between
the 12 species and two of the environmental variables
areshown in Table 2. Thisdataset isthenideally suited
to display the advantages of polynomial canonical anal-
ysis.

Preliminary PCA of the log-transformed spider
abundance data and CCA of the raw data confirmed
the existence of anatural gradient in the data. The PCA
ordination (not presented here; a similar ordination,
including the same 28 plus 72 other traps, was pub-
lished by van der Aart and Smeenk-Enserink [1975:
Fig. 3]), had the shape of a horseshoe in two dimen-
sions, while CA produced an arch. The arrangement of
the sites along these bent structures, which indicates a
replacement of species along an environmental gradient
(see discussions in ter Braak 1987b and Legendre and
Legendre 1998), is essentially the same as in the poly-
nomial canonical ordinations presented below (Figs. 4b
and 5). Van der Aart and Smeenk-Enserink (1975) had
selected environmental variables to explain this gra-
dient. They tested their hypotheses using CCoA; ter
Braak (1986) did the same using CCA. We will now
show that polynomial RDA and CCA provide better
tests of these hypotheses than the linear forms. The
results are better in two ways: the polynomial analyses
provide (1) a higher proportion of variation of the spe-
cies data explained by the model, which leads to more
significant statistical tests, and (2) clearer identification
of the variables explaining the gradient.
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TaBLE 1. Extended.
Sp. 9, Sp. 10, Sp. 11, Sp. 12, Water Calamagrostis Corynephorus
Pa. nigriceps  Pa. pullata  Tr. terricola Zo. Spinimana content Reflection coverage coverage

12 45 57 4 10.3 50 50 0
15 37 65 9 21.1 5 80 0
18 45 66 1 12.9 40 30 0
29 94 86 25 145 20 100 0
135 76 91 17 20.4 10 90 0
27 24 63 34 29.4 2 10 0
89 105 118 16 24.0 10 90 0

2 1 30 3 13.8 2 10 0

1 1 2 0 12.0 30 0 20

0 0 1 0 9.0 40 0 20

0 1 4 0 9.2 40 0 30

1 8 13 0 9.9 40 2 50

53 72 97 22 33.7 30 80 0
15 72 94 32 21.9 3 20 0

0 0 25 3 26.3 2 0 0

2 0 28 4 20.7 1 0 0

0 0 23 2 28.0 3 0 0

0 0 25 0 22.7 3 0 0

1 0 22 3 18.6 1 0 0

0 0 22 2 22.4 1 0 0

0 1 18 2 19.6 1 0 0

0 0 1 0 35 50 2 2

0 0 1 0 33 60 2 20

0 0 0 0 5.2 55 2 20

6 0 16 6 6.2 10 1 0

0 0 1 0 2.7 80 0 10

0 0 0 0 2.6 40 0 20

0 0 2 0 2.6 40 0 30

Example one: polynomial redundancy
analysis (RDA)

The 12 species of spidersform the matrix of response
variables Y (Table 1). In order to keep our first example
small and manageable, the matrix of explanatory var-
iables X only contains the first two environmental var-
iables: water content of the soil (variable ** Water’’) and
reflection of soil surface (variable **Reflection;” high
values of reflection indicate dry sites). The two envi-
ronmental variables are highly negatively correlated in

the dataset: r = —0.7482. The species datawerelog(y
+ 1) transformed before analysis. Centering the ex-
planatory variables on their respective means, before
calculating the quadratic terms of the polynomial, re-
duced the collinearity between the linear and quadratic
terms, as explained in step 1 of the polynomial re-
gression algorithm.

The eigenvectors (species scores from Eq. B.4) were
normalized to length 1 in order to represent the species
and sites as a distance biplot. The site scores which

TaBLE 2. Polynomial regression modeling of the spider species data (log-transformed vari-
ables) with respect to water content and reflection of the soil.

Water X

Species Water Reflection (Water)? Reflection (Reflection)? R2

Sp. 1 -0.28 0.82 -0.47 0.8267
Sp. 2 0.75 0.69 0.67 0.5524
Sp. 3 -0.84 0.54 0.8440
Sp. 4 0.47 0.2230
Sp. 5 —0.50 0.31 -0.29 0.30 0.8981
Sp. 6 0.44 0.1943
Sp. 7 -0.84 0.50 0.80 0.6147
Sp. 8 0.72 -0.72 0.4873
Sp. 9 0.45 0.2049
Sp. 10 0.77 0.65 0.45 0.3795
Sp. 11 0.81 -0.29 0.6720
Sp. 12 0.67 0.4526

Notes: Thetable givesonly the standard partial regression coefficients (which arecomparabl e)

for the terms that were selected by backward elimination (rejection level: a =

0.05). The

intercepts are omitted. ‘‘Water’’ refers to the water content of the soil; ‘‘reflection’ refersto

the reflection of soil surface.



1154
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Fic. 3. Two examples of quadratic relationships of spider
species from Table 1, after log(y + 1) transformation. For
the upper panel the regression equation for uncentered var-
iables (R? = 0.8440) isIn(Sp. 3 + 1) = 3.4984 — 0.3364 X
(Water) + 0.0077(Water)?, and the regression equation for
centered variables (R? = 0.8440) isIn(Sp. 3 + 1) = —0.6198
— 0.1027(Water) + 0.0077(Water)2. For the lower panel the
regression equation for uncentered variables (R? = 0.4873)
isIn(Sp. 8 + 1) = 0.5366 — 0.1368(Reflection) + 0.0019 X
(Reflection)? and the regression equation for centered vari-
ables (R? = 0.4873) isIn(Sp. 8 + 1) = 0.9477 — 0.0475 X
(Reflection) + 0.0019(Reflection)?. Sp. 3 is shown as afunc-
tion of water content whereas Sp. 8 is shown with respect to
reflection of soil surface. The standard partial regression co-
efficients are given in Table 2. The R? coefficient is the same
for noncentered and centered data although the equations dif-
fer.

are combinations of the environmental variables X
were obtained from Eq. 6. Biplot scores for the two
environmental variables, in polynomial form, were ob-
tained from Eqg. 12 using multiple linear correlations.
In addition, simple linear correlations were computed
for the individual terms of the quadratic polynomial.
The correlations were scaled using Eq. B.7 for repre-
sentation in the biplot. A linear RDA was also com-
puted for comparison (Table 3).

Permutation tests were performed for linear and
polynomial RDA to assess the significance of the two
models. In both cases, the P value was 0.001 after 999
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permutations; the two models were highly significant.
The significance of the difference in explained varia-
tion between the two models was assessed using the
test described in the section Tests of significance in
polynomial RDA and CCA; the P value was 0.002 after
999 permutations. So the polynomial model seems
more appropriate than the linear model to describe the
relationships between Y and X. Detailed results of the
polynomial RDA are presented in Table 4.

After hypothesis testing, one may be interested in
looking at the species—environment relationships in
some detail. Consider the first species (Sp. 1, Al. ac-
centuata) of Table 1, for example. The polynomial re-
gression algorithm provided the following quadratic
equation to approximate the abundances (log-trans-
formed) at the various sites i:

9, (Sp. 1) = 0.3585 — 0.0528x,, + 0.0392x,,
+ 0.0022x2 + 0.0006x;%;, — 0.0009x%

where x, is Water and X, is Reflection. With only two
explanatory variables, as in the present example, our
polynomial regression algorithm makes no selection
among the five terms of the quadratic polynomial equa-
tion. Because there are only two explanatory variables
in the analysis, the same equation would have been
obtained using the linear and quadratic variables as
explanatory variables in a regular multiple regression.
With more variables, our polynomial regression algo-
rithm does not guarantee that the terms selected in the
equation always represent the most optimal combina-
tion; this is the case for any step-by-step variable re-
duction procedure.

To appreciate the advantages of polynomial RDA,
compare the biplots obtained from the linear and poly-
nomial analyses (Fig. 4). Biplot 4a is from the linear
RDA. Biplot 4b corresponds to polynomial RDA. The
sites are positioned in terms of their responses to the
explanatory variables in the biplot (Egs. B.6 and 6)
because the site scores are linear combinations of the
environmental variables.

1) Polynomial RDA produced five canonical axes
(Table 4) explaining 57.6% of the variation of Y. A
large portion of the variance (53.7%) is accounted for
by the first two canonical axes. This is considerably
more than the 35.4% of the variation of Y accounted
for by linear RDA on two canonical axes. The differ-
ence is due to the fact, shown in Table 2 (see also Fig.
4b), that most species (all except Sp. 4, 9, and 12) are

—

Fic. 4. RDA distance biplots of the spider species data of Table 1: results of (a) linear and (b) polynomial RDA. The
numerical results of the polynomial RDA are in Table 4. The sites scores are linear combinations of the environmental
variables. Dots are the sampling sites (with site numbers). Full lines without arrowheads represent the species. Full arrows
represent the biplot scores of environmental variables for the individual terms of the polynomial; dashed arrows represent
the biplot scores of environmental variables based upon the multiple correlations of (Water, [Water]?) and (Reflection,
[Reflection]?) with the axes (Egs. 12 and 13). The lengths of all species lines and environmental variable arrows have been
multiplied by 10 for clarity; this does not change the interpretation of the biplots.
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TaBLE 3. Canonical eigenvalues and related data obtained
using linear RDA for the spider species data.

Canonical axes
| 1
Eigenvalues (with respect to total variancein'Y = 20.36706)

6.04197 1.16368
Fraction of total variancein Y
29.66540 5.71352

Cumulative fraction of total variance in Y accounted for by
axes | and Il

29.66540 35.37892

related significantly to the quadratic terms of the poly-
nomial of the explanatory variables: (Water)?, Water X
Reflection, and (Reflection)?.

2) The positions of the species with respect to the
environmental variables Water and Refl ection are most-
ly the same in the linear and polynomial biplots, except
for species 5. One diagram is simply rotated by ~20°
with respect to the other. The angular order of the spe-
cies around the biplot is almost identical to that in the
PCA species diagram presented in Fig. 3 of van der
Aart and Smeenk-Enserink (1975). So thisis not where
we should look for differences between the linear and
polynomial solutions.

3) As mentioned above, the PCA solution published
by van der Aart and Smeenk-Enserink (1975: Fig. 4)
had the shape of a horseshoe; in PCA ordination, when
there is replacement of the species along a single gra-
dient, the ordination of the sites has a horseshoe shape
in two dimensions. In the linear RDA biplot (Fig. 4a),
the sites are shrunk into a crescent because the analysis
is trying, with little success, to model their positions
as linear responses to the two environmental variables;
the linear analysis is not very successful at recon-
structing the gradient. In the polynomial RDA biplot
on the contrary (Fig. 4b), the sites are distributed in
the same horseshoe fashion as in the PCA ordination.
The species—environment correlation of polynomial
RDA are 83% and 82%, respectively, for canonical
axes 1 and 2. For linear RDA using Water and Reflec-
tion, these correlations were 80% and 43%, respec-
tively, for axes 1 and 2. Thus polynomial RDA has
produced an important gain in accuracy of the repre-
sentation of the sites, compared to linear RDA. The
good reconstruction of the sites in biplot 4b is due to
the presence of the quadratic terms of the environ-
mental variables; they are needed to correctly model
the species (Table 2) and obtain a horseshoe-like dis-
tribution of the sites.

4) In RDA biplots, projecting a site at right angle
on a species approximates the value of the site along
that species axis. It is easy to check, in Table 1, that
the sites found in quadrant 111 of the biplot (Fig. 4b)
have the highest frequencies of occurrence of the spe-
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cies found in that quadrant (species 2, 4, 6, 8, 9 and
10). The reconstructed site scores in the linear biplot
(Fig. 4a) do not position these sites correctly with re-
spect to those species.

5) In RDA bhiplots, the angles between the species
and the environmental variables reflect their correla-
tions. Indeed, the variable Water X Reflection has
strong positive correlations with species 2, 6, 9, 10,
11, and 12 and a strong negative correlation with spe-
cies 5. (Reflection)? is strongly positively correlated
only to species 5; (Water)? has strong positive corre-
lations only with species 3 and 5.

Example two: polynomial canonical correspondence
analysis (CCA)

For CCA, matrix Y contained the same 12 species
of spiders. The data were not log transformed because
CA and CCA are designed to analyze frequency data
directly. Y was transformed into matrix Q of contri-
butions to chi-square. The matrix of explanatory var-
iables X contained all four environmental variables of
Table 1. CCA based on polynomial regression was
computed for these data. The results of the analysis
were compared with those of classical linear CCA (Ta-
ble 5). For the biplot, only the positions of the first-
degree terms, their squares and the simple products
were computed. The correlations of more complex
terms with the ordination vectors (Eg. C.10 or C.11)
could easily be computed, but their interpretation
would be difficult.

Permutation tests were performed for linear and
polynomial CCA to assess the significance of the two
models; the rows of matrix Q were randomized with
respect to matrix X of the explanatory variables. In
both cases, the P value was 0.001 after 999 permuta-
tions; so, the two models were highly significant. The
significance of the difference in variance accounted for
by the two models was assessed using a permutation
test. The P value was 0.001 after 999 permutations,
this strongly suggests that the polynomial model is
more appropriate than the linear in this example. De-
tailed results of the analysis are the following:

1) The analysis produced 12 canonical axes. The
corresponding canonical eigenvectors accounted to-
gether for 80.3% of the variation of Q. The first six
axes are shown in Appendix E; they account together
for 78.2% of the variation of Q. This is noticeably
larger than the 43.8% of the variation of Q accounted
for on four canonical axes by CCA based on weighted
linear regression. The first two canonical axes explain
52.2% of the variation and the first three 64.9%. There-
fore, two or three dimensions would form interesting
ordination spaces for biplots since these axes account
for a great deal of the variation of Q. The higher frac-
tion of explained variation obtained by polynomial
CCA is the result of (1) the higher number of con-
strained ordination axes and (2) the inclusion of sec-
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TaBLE 4. Results of polynomial RDA of the spider species data (selected output).
Canonical axes
| I 11 v \Y,
Eigenvalues (with respect to total variance in Y = 20.36706)
7.51597 3.42170 0.33258 0.31649 0.14770
Fraction of total variance in Y
36.90258 16.80017 1.63295 1.55395 0.72518
Cumulative fraction of total variance in Y accounted for by axes |-V
36.90258 53.70275 55.33570 56.88965 57.61483
Species scores (normalized eigenvectors, matrix U)
Al. accentuata 0.26607 —0.46920 —0.22110 0.13133 —0.00433
Al. cuneata —0.27671 —0.21817 —0.16059 0.25158 0.41811
Al. fabrilis 0.34661 —0.13584 —0.02597 0.61271 —0.15820
Ar. lutetiana —0.09945 —0.03477 0.36491 0.06704 —0.28261
Ar. perita 0.24240 0.00115 0.44307 0.23270 0.67117
Au. albimana —0.23744 —0.13512 —0.12822 0.27683 0.09486
Pa. lugubris —0.15772 0.35779 —0.56306 0.06533 0.31349
Pa. monticola —0.06342 —0.62076 —0.29975 —0.20388 —0.09266
Pa. nigriceps —0.33866 —0.17318 0.03770 0.31161 —0.02935
Pa. pullata —0.38561 —0.34346 0.39806 —0.22958 0.16962
Tr. terricola —0.47841 0.12382 —0.02433 0.02489 0.00236
Zo. spinimana —0.29378 0.13298 0.10671 0.46097 —0.35256
Site scores from Eq. B.5, vector cord
Site 1 —2.35239 —3.76678 —0.18112 —0.30880 0.26217
Site 2 —3.44760 0.30630 1.15077 0.61495 0.15753
Site 3 —2.54619 —3.44231 —0.15865 0.61822 0.71142
Site 4 —4.47463 —1.51194 1.12045 1.10953 —0.03697
Site 5 —4.99663 —1.07440 1.52590 1.65727 0.36330
Site 6 —3.90795 —0.89575 1.75764 0.98327 —1.09182
Site 7 —5.13140 —2.64051 1.45755 1.01480 —0.53534
Site 8 —1.72782 2.21318 —2.21051 0.43691 1.48668
Site 9 1.60351 —0.64764 —0.30795 —2.03296 —0.43313
Site 10 2.92617 —0.50835 —0.61202 —1.72588 —0.91893
Site 11 2.28290 —2.47035 —1.30393 —1.35677 —0.64618
Site 12 0.23639 —3.19603 —0.91572 —1.83007 0.51147
Site 13 —4.83237 —2.83936 0.48656 1.94347 0.35610
Site 14 —4.09718 —0.49444 1.02181 0.20035 —0.49018
Site 15 0.57466 3.38082 —0.35775 —0.86334 —0.38539
Site 16 —0.29880 2.93130 —0.51779 —0.06665 0.08358
Site 17 0.83111 3.02950 0.09058 —1.05330 —0.54977
Site 18 0.81444 2.99010 —0.53020 —1.33807 0.34486
Site 19 0.10914 3.31586 —0.78850 —0.43557 0.07786
Site 20 0.30451 3.33570 —0.95217 —0.67733 0.39239
Site 21 0.16624 2.80162 —0.92359 -1.07187 0.33662
Site 22 4.37169 0.14199 0.50280 0.46620 0.00844
Site 23 4.45336 —0.36262 —0.33924 0.54394 0.59587
Site 24 4.91037 —0.34115 0.41907 0.61543 0.06733
Site 25 0.95260 —0.61796 —1.07489 1.59368 —1.24402
Site 26 4.27300 1.27126 1.59992 0.36615 1.14963
Site 27 4.95996 —0.26499 0.35801 0.49178 0.09376
Site 28 4.04290 —0.64305 —0.31703 0.10466 —0.66730
Biplot scores of environmental variables (from Eq. 12)
Water —0.55831 0.13356 0.08258 0.09274 —0.02380
Reflection 0.42253 —0.37818 0.04846 0.01118 0.06100
Biplot scores of environmental variables (from Eq. B.7)
Water —0.52272 0.12139 0.04417 0.01535 —0.01643
Reflection 0.40913 —0.24304 0.02803 0.00474 0.03246
(Water)? 0.11014 —0.03559 0.07593 0.09274 —0.01962
Water X Reflection —0.37820 —0.12150 —0.08382 0.01591 —0.02378
(Reflection)? 0.30721 0.11586 0.04838 0.01109 0.06100

Notes: Matrix Y: hunting spider species 1-12. Matrix X: water content, reflection of soil surface. Either set of biplot scores
can be used to represent the environmental variablesin biplots. Users of the program may al so request the matrix of regression
coefficients B of the multiple linear regressions of Y on X (if classical linear RDA or CCA is computed) or the polynomial
coefficients for each response variable y of Y (if polynomial RDA or CCA is used). The program may also carry out
permutation tests of the significance of the linear and polynomial models, as well as the significance of the difference in

variance accounted for between the two models.
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ond-order terms which allow full recovery of the CA
arch.

2) The linear CCA solution produced quite a bit of
distortion to the arch representing the gradient in the
CA hbiplot, because it imposed the constraint that the
ordination axes be linearly related to the environmental
variables. Thelinear CCA ordination isnot shown here;
the positions of the points are similar to the CCA results
presented in Fig. 1 of ter Braak (1986) with some dif-
ferences due to the fact that only two of the environ-
mental variables (water content and reflection of soil
suface) were the same in the two analyses. The poly-
nomial CCA solution (Fig. 5) is more successful at
recovering the arch because it incorporates quadratic
environmental terms in the explanatory equations of
the species. As a result, the ordination of the sites in
Fig. 5 is very similar to that of the CA biplot. The
biplot isdominated by the opposition between two pairs
of environmental variables in linear and quadratic
forms: on the one hand, water content and cover by
the grass Calamagrostis epigejos indicate wet sites,
which are found in quadrant Il of Fig. 5. On the other
hand, reflection of soil surface and cover by the grass
Corynephorus canescens indicate dry sites; abundance
of Corynephorus was highly correlated with the per-
centage of bare sand in van der Aart and Smeek-En-
serink (1975). In the linear CCA biplot (not shown),
which does not display the arch properly, Calama-
grostis is not associated with water content, and Cor-
ynephorus is not associated with reflection of the soil
surface.

3) The sites form three main groups, more densely
clustered than in the RDA ordination (Fig. 4): thedriest
sites 22 to 28, found in quadrant | of Fig. 5, are as-
sociated with high frequencies of species 3 and 5; the
more humid sites 2, 4 to 8, and 13 to 21 (in the insert
of Fig. 5) are associated with high frequencies of spe-
cies 4, 6, 7, and 9 to 12; sites 1, 3, and 9 to 12, with
intermediate humidity, are associated with high values
of species 8.

4) Projecting the species at right angles on the water
content variable, for example, provides an ordination
of the species of spiders along this variable. Sp. 5 has
the lowest weighted average with respect to water con-
tent, followed by Sp. 3, Sp. 1, and Sp. 8; all the other
species (except Sp. 2), found in quadrant 11 of the bi-
plot, occupy approximately the same position on the
positive side of this variable. When projecting the spi-
der species onto the Corynephorus percent cover, they
clearly fall into two groups; species 1, 3, 5, and 8,
mentioned in the previous sentence, occupy nearly the
same position along this variable.

5) The environmental variables were centered before
the other terms of the polynomial expression werecom-
puted. In CCA, the centering involves the row weights
p,.. of the species data table. This means, for instance,
that high values of the Water X Reflection variable
would correspond to sites having high (or low) values
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for both variables; no such siteisfound in the data set,
with the consequence that none occupies quadrant 111
where this variable is pointing, except site 3 which lies
near the origin. Sites 22 to 28 have, however, high
negative values for this product variable, due to the
very low water content combined with high values of
reflection of the soil; so they are found in quadrant I,
which is opposite to the arrow representing this product
variable. Sites 22 to 28 also have high values of
(Water)? (because they have the most extreme values
of the centered variable Water, on the negative side)
and (Reflection)? (because they have among the highest
values of centered Reflection, on the positive side).
Calamagrostis and Corynephorus are both absent from
sites 15 to 21, found high in the insert of Fig. 5; as a
consequence, these sites have the highest negative val-
ues on both of these centered variables, which gives
them the highest positive values for the product vari-
able Calamagrostis X Corynephorus. Thereare no sites
where both of these plant species are found together
in any abundance. The role of the other product vari-
ables in the analysis can be interpreted in the same
way.

In this biplot, the individual terms of the polynomial
aswell asthe combined terms have been drawn in order
to show how polynomial CCA allowed the full rep-
resentation of the arch. In an actual application of the
method, a simpler diagram showing only the arrows
for the multiple correlation biplot scores (Water and
[Water]? combined, etc.) would be sufficient to describe
the main environmental axes of variation of the data.

The equations generated by the polynomial regres-
sion algorithm to approximate the q values of the first
species (Sp. 1: Al. accentuata) are the following:

Xi1s = —0.4167 — 0.0464x,, — 0.0708x,,
+ 0.000241x3 — 0.007547x;, Xi4
— 0.000091x2,
Xiz3 = 0.1440 — 0.0030x,, + 0.0075x;5
— 0.000034x% — 0.000071X;,Xi3
— 0.000390x2,
G (Sp- 1) = Xisazs

= —0.0101 + 1.0157Xy, + 0.9915X, 5
+ 0.508529%,1 X2

where x, is water content, X, is reflection of the soil
surface, X5 is percent cover by Calamagrostis, and x,
is percent cover by Corynephorus. The three equations
above illustrate the approximation process for the first
species: in the first iteration, the explanatory variables
X, and x, were combined to form a new variable x,,
(first equation), x, and X5 in the second iteration to form
X,3 (second equation), the new combined variables x,,
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Fic. 5. Polynomial CCA biplot (scaling type 2) for the spider species data presented in Table 1; the numerical results of
the analysis are in Appendix E. Dots are the sampling sites (sites scores are from matrix V, Eq. C.7 [see Appendix CJ);
numbers are the site numbers. Full lines without arrowheads represent the species (species scores are from matrix F, EqQ.
C.9). Full arrows represent the biplot scores of environmental variables for the individual terms of the polynomial (Eg. C.12);
dashed arrows represent the biplot scores of environmental variables based upon the multiple correlations of the linear and
quadratic terms with the axes (Egs. 12 and 13). The lengths of the environmental variable arrows have been multiplied by
five for clarity; this does not change the interpretation of the diagram. The insert shows details of the ordination of the species

and sites in quadrant 1.

and X,; were joined in the third iteration to form X, s
(third eguation), which is equal to the estimated value
of the response variable . The development of this
regression procedure is depicted in Fig. 2.

The polynomial model does not necessarily provide
such good results for all data sets; there are indeed

TaBLE 5. Canonical eigenvalues obtained using linear CCA
for the data in Table 1.

Canonical axes

I 1 11 v
Eigenvalues (with respect to total variance in Q-= 1.92296)
0.54518  0.17247  0.09789  0.02682
Fraction of total variance in (5
28.35114  8.96922  5.09045 1.39477

Cumulative fraction of total variance in Q accounted for by
axes -1V

28.35114 37.32036 42.41081 43.80558

cases where the response variables in Y are only lin-
early related to the explanatory variables. Using the
principle of parsimony of the 14th century logician and
philosopher William Ockham, *‘pluralites non est po-
nenda sine necessitate,”’ the linear model must be seen
as the best representation of the data, in such cases,
because it contains fewer parameters. Our test of sig-
nificance of the difference between the two models
points users towards the most appropriate one.

DiscussioN

Researchers often want to test hypotheses relating
response (e.g., species data) to explanatory (e.g., en-
vironmental) variables; canonical analysisis appropri-
ate in such studies. In many instances, the hypotheses
do not specify that the relationships between the two
data sets are linear; they are not, in most cases, when
analyzing species composition data. We have described
how redundancy analysis (RDA) and canonical cor-
respondence analysis (CCA) can be modified to express
polynomial relationships between the response (Y) and
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explanatory variables (X), instead of linear relation-
ships as in classical RDA and CCA.

An empirical polynomial regression algorithm was
developed to do so. Consider acanonical analysis prob-
lem with a fairly small number of environmental var-
iables, e.g., 10. The number of combination terms con-
taining these variables in the first and second degree
is very large. It may often be greater than the number
of observations; this, in turn, would jeopardize the in-
version [X'X] - required to estimate the regression co-
efficients. Methods of selection of the most important
terms of the polynomial equation are required to avoid
overfitting. The problem can be approached from two
angles. (1) The first angle is to reduce the number of
variables in the model. Users of the method who are
considering many explanatory variables may compute
polynomial RDA or CCA with different combinations
of explanatory variables to discover the combination
providing the most significant polynomial model. In
fact, some data may be better explained by including
linear and quadratic contributions of some variables
and only linear contributions of the others. Further-
more, when working with m explanatory variables, at
any iteration number k (1 = k < m — 1), one could
check the level of significance of the intermediate lin-
ear regression of y on the reduced matrix X comprised
of m — k columns. Such a strategy would allow users
to select an intermediate regression model which would
be neither a classical linear model nor a complete qua-
dratic polynomial. Our polynomial regression algo-
rithm could easily be adapted to accommodate these
modifications. (2) When the variables to include in the
model have been selected, the second angleisto reduce
the number of terms (combinations of the original var-
iables) in the model. This could be done in a variety
of ways, all of which would be heuristic. Our method
contains a heuristic selection strategy meant to opti-
mize the least-squares loss function, at each step and
also in general. Actualy, the algorithm performs a
number of linear multiple regressions one after the oth-
er. The loss function minimized by the method is the
same as in classical multiple regression. In our algo-
rithm, each variableislimited to a power of two in any
term of the polynomial equation. Like any heuristic
procedure, this one may find a local minimum instead
of the global one; its main advantage is that it runsin
polynomial time with respect to the size of the data
matrices, whereas a procedure that would try in turn
all possible subsets of the full polynomial model would
be running in exponential time and would thus be in-
applicable to real data sets. Our recommendation to
users is to use polynomial RDA or CCA on data sets
containing more than (3m — 1) observations.

Polynomial regression does not guarantee to always
produce a model with greater significance than the lin-
ear model. If both the linear and polynomial models
prove to be significant, a permutation test may be used
to assess the difference in variance accounted for by

VLADIMIR MAKARENKOV AND PIERRE LEGENDRE
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the two models and determine which is the most ap-
propriate one to describe the data. In the real-data ex-
amples reported in this paper, the polynomial models
of the explanatory variables fitted to the data were de-
monstrably better than the linear models. From the eco-
logical point of view, they fitted the horseshoe or arch
representing the gradient present in the data much more
efficiently than the linear forms of analysis. From the
statistical point of view, they accounted for greater per-
centages of the total variance of the response variables
than classical RDA and CCA based upon linear re-
gression, and explained a significant part of the vari-
ation which had remained unexplained by the linear
models. On the other hand, simulations have shown
that if the response variables are linearly related to the
explanatory variables, the test of significance of the
difference in explained variation will point to the linear
canonical model as being the most appropriate; if the
response-to-explanatory relationships are polynomial,
the test will point to the polynomial model as the most
appropriate one.
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APPENDIX A

A more detailed consideration of the issues of the number of degrees of freedom and the number of independent parameters
involved in the computation of the polynomial regression procedure is available online in ESA’s Electronic Data Archive:
Ecological Archives E083-018-A1.

APPENDIX B

A description of the direct computational approach to redundancy analysis (RDA) is available online in ESA's Electronic
Data Archive: Ecological Archives E083-018-A2.

APPENDIX C

A description of the direct computational approach to canonical correspondence analysis (CCA) is available online in
ESA's Electronic Data Archive: Ecological Archives E083-018-A3.

APPENDIX D

A description of the permutational methods used in polynomial RDA and CCA to test the significance of the relationships
between the response and explanatory data matrices, and to assess the difference in variance accounted for between the
polynomial model and the linear model nested into it, is available online in ESA’s Electronic Data Archive: Ecological
Archives E083-018-A4. The appendix also reports the results of simulations showing that the tests have correct type | error.

APPENDIX E

A table of results of polynomial CCA of the spider data (selected output) is available online in ESA's Electronic Data
Archive: Ecological Archives E083-018-A5.

SUPPLEMENT

Software to compute nonlinear canonical analysis (program PoLyNoMIAL RDACcA: source code, compiled versions for
Macintosh and Windows, program documentation, and example datafiles) isavailable onlinein ESA's Electronic DataArchive:
Ecological Archives E083-018-S1. Also available on the WWWeb site <http://www.fas.umontreal.ca/biol/legendre/>.
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APPENDIX A
EcoLoacicaL ArcHIVES E083-018-Al

NUMBER OF | NDEPENDENT PARAMETERS ESTIMATED BY THE POLYNOMIAL REGRESSION PROCEDURE

This Appendix will consider in more detail the issues of the number of degrees of
freedom and the number of independent parameters involved in the computation. Since the
new polynomial algorithm goes through a number of complex steps, thisissue may be a
source of confusion for non-statistically-oriented readers who may be afraid of overfitting the
data. The large number of terms which can be obtained in the complete polynomia form does
not reflect the number of independent parameters estimated by the polynomia agorithm.
Consider the four (m) environmental variables and the first response variable (species 1) in
Table 3 of the main paper, used to illustrate polynomial CCA in the second numerical example
of the paper; n = 28.

* During the first iteration, in the first step of multiple linear regression (Eq. 1 of the main
paper), m = 4 parameters were estimated (plus the intercept, which will not be mentioned
again), one for each of the variables x4, X,, X3 and Xx,.

* During step 3 of the algorithm, 5 parameters were estimated using Eq. 3; they pertain to x4,

X4, xf , X1X4, and xﬁ . Two of these parametersrefer to variables x, and x,. Since we already
had initial estimates for these 2 parameters (from Eqg. 1, previous paragraph), they were
combined with the new estimates of these parameters obtained from Eq. 3. This provided the

vector of fitted values called x4 (Eq. 4) which was calculated using atotal of 5 parameters.

Considering the parameters estimated above for X, and X5, our total up to now is 7 parameters.
The 5 parameter estimated during step 3 are dependent upon the estimates initially obtained

for parameters X, X,, X3 and x,. Non-independent parameter estimates are discussed further
below.

* During the second iteration, 5 parameters again were estimated to provide the vector of fitted

values denoted X,3; they belong to x,, X5, x% : x% , and X,X5. Two of these pertainto X, and X,
for which we aready had initial estimates, with which they were combined using Eg. 4. Our
total up to now is 10 parameters, but again, the group of 5 parameter estimates are dependent

upon the parameters previously estimated for X;, X4, ad X4 4.

* During the third and final iteration of the algorithm, 3 parameters were estimated during step
3 (Xq4 Xp3and X44Xo3), but only one of them, for the cross-product X;,4X,,, Was a new

parameter. The parameters involved in the construction of x;,4 and X4, in the previous 2
paragraphs, were not re-estimated during the last computation step.

The total number of parameters is 11 in this example. They include the 4 independent
parametersinitially computed for the linear terms, plus all the other parameters estimated
during the following steps, that depended partly upon them. So, the number of degrees of
freedom used by the equation to estimate the fitted values §; (Sp. 1) is afractional number

between 4 and 11 in this example.



In our polynomial regression procedure, for amatrix of environmental variables with
m columns, the actual number of estimated parameters is 3m-1; they are not all estimated
independently of one another, however. Independent estimates are obtained when parameters
are estimated simultaneoudly, as part of the same estimation process (e.g., when they pertain to
the same regression equation). Each parameter estimate is a partial estimate which takesinto
account the values of all the other parameters present in the equation. The number of degrees
of freedom used by the estimation processis given by the number of independent parameter
estimates. This number can be fractional. When parameters are estimated from residuals of a
model, the new estimates are not independent of the model parmeters used to compute these
residuals. (Fractional numbers of degrees of freedom are found in other methods of data
analysis used by ecologists, for instance in tests of significance for spatially autocorrelated
data.) In our algorithm for polynomia regression, estimating some parameters in a non-
independent way reduces the fit of the model to the data by some small amount, but it
increases the power of the tests of significance. Some authors might prefer to use the opposite
strategy, sacrificing power to precision; the problem is, however, that the polynomia
regression procedure would be computationally much slower on presently available hardware,
impairing the permutation tests described in the section “ Tests of significance in polynomial
RDA and CCA” even for fairly small data sets.

The actual number of degrees of freedom left for statistical testing is (n—1) minus the
number of independent parameters. The number of independent parametersis a number larger
than m and smaller than or equal to (3m-1); misthe number of independent parameters
estimated during the first iteration of the algorithm; (3m-1) is the total number of parameters
estimated during al cycles of the dgorithm, including the independent and dependent
parameters.

The maximum number of non-zero canonical eigenvalues and corresponding canonical
axes that can be obtained in polynomial RDA and CCA is min[p,(n—1)]. Our recommendation
to preserve good power in statistical testsisto only use polynomial RDA or CCA on data sets
containing more than (3m—1) observations.



APPENDIX B
EcoLoacicaL ArcHIVES E083-018-A2

OuTLINEOF CLASSICAL REDUNDANCY ANALYSIS(RDA)

The direct computational approach to redundancy analysis proceeds as follows
(Legendre and Legendre 1998). The mathematics behind RDA is summarized here to make it
easier for readers to understand the modifications required by polynomial RDA. Matrices Y
and X have been described in the section “Redundancy Analysis and its Polynomial
Generalization”.

1) Data preparation and multiple regression. For convenience, the variablesin Y and X are
centered on their respective means. The first step consists of carrying out multiple linear
regressions for each variablein Y on al variablesin X and computing the fitted values. The

matrix of fitted values Y used in the following stepsis obtained from the equation:
Y = XB = X[X'X]IX'Y (B.1)

where B isthe matrix of regression coefficients of the response variables Y on the regressors
X. An extra column with 1's should be added to matrix X, before the multiple regression, to
alow estimation of the intercepts. (In linear RDA, centering the variables in Y and X
eliminates the intercepts; thisis not necessarily the case in polynomial RDA. Centering X
offers the additional advantage of reducing the collinearity between the linear and quadratic
terms of the polynomial, as explained in step 1 of the polynomial regression algorithm.)

2) The covariance matrix S of the matrix of fitted values Y is computed as follows:
S=[UMn-1] Y'Y (B.2)
or, incorporating the development from Eq. B.1:

S=[U(M-1)] Y'X[X' XXy (B.3)

3) Principa components of the table of fitted values Y are computed to reduce the
dimensionality of the solution. This corresponds to solving the eigenval ue problem:

where| |, denotes the k-th eigenvalue and u,, the associated eigenvector. The matrix containing
the normalized canonical eigenvectorsiscalled U. The elgenvectors give the contributions of
the descriptors Y to the canonicad axes. In linear RDA, matrix U is of size
(p" min[p, m, n—1]) because the number of canonical egenvectors cannot exceed the
minimum of p, mand (n—1).

4) The canonica ordination of the objects (rows of Y) in the space of the response variables Y
is obtained directly from the centered matrix Y, using the standard equation for principal
components and eigenvectors u, of Eq. B.4:

cor d(gpace of response variable Y )k = Y Uk (B.5)

The ordination vectors defined in this equations are caled the vectors of “site scores’;
Palmer (1993) calls them the “minimally constrained scores’. These vectors have variances
that are close but not equal to the corresponding eigenvalues.



Likewise, the canonical ordination of objectsin the space of the explanatory variables
X is obtained from the following formula:

Cord(spa&:eof explanatory variables X)k = Y Uk = XBUy (B.6)

In this case the ordination vectors are constrained linear combinations of the explanatory
variables X. Thisisthe reason why these constrained ordination vectors are also called “fitted
site scores’; Palmer (1993) calls them the “maximally constrained scores’. They have
variances equa to the corresponding eigenvalues.

The “site scores’ of Eq. B.5 are obtained by projecting the original data of matrix Y

onto axisk; they approximate the observed data containing residuas(Y = Y + Y, es)- Onthe
other hand, the “fitted site scores’ of Eq. B.6 correspond to projecting the fitted values of

matrix Y onto axisk; they approximate the fitted data. Both sets can be used in biplots, asin
Fig. 5 of the main paper.

5) The other important information needed for interpreting the relationships between the
variablesin X and Y isthe contribution of the explanatory variables to the canonical axes. To
assess this contribution, correlations are computed between the variablesin X, on the one
hand, and the canonical ordination axesin either space Y (Eqg. B.5) or space X (Eq. B.6) on
the other. The correlations between the variablesin X and the canonical ordination axesin
space X can be used to represent the explanatory variablesin biplots.

6) In RDA, biplot diagrams can be drawn that contain three sets of data points: the Site scores
(from Eq. B.5 or B.6), the response variables from Y, and the explanatory variables from X.
Each pair of sets of pointsforms a biplot. Biplots primarily serve to interpret the relationships
between sites in terms of the Y and/or X variables. If there are too many sites or too many
variablesin X or Y, separate diagrams can be drawn and presented side by side. Two main
types of scaling can be used in RDA biplots; for details on their properties and interpretation
see ter Braak (1994) or Legendre and Legendre (1998). The biplot produced by type 1
scaling, called distance biplot, preserves the distances among sites. The biplot produced by
type 2 scaling, called correlation biplot, focuses on the correlations among the response
variables.

In RDA scaling of type 1, used in the “Numerical examples’ section, the eigenvectors
in matrix U, representing the response variable scores, are scaled to lengths 1. Thefitted site
scores from Eq. B.6 have variances equal to | | whereas the site scores from Eq. B.5 have

variances which are usually dightly larger than | . Each explanatory varidble x can be
represented in the biplot by means of the correlations of x with the fitted site scores. These

correlations have to be multiplied by a coefficient ¢, :

¢, =/l «/Total varianceinY (B.7)
wherel | isthe eigenvalue corresponding to axisk; this correction accounts for the fact that, in
this scaling, the variances of the site scores differ among axes.
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OUTLINE OF CLASSICAL CANONICAL CORRESPONDENCE ANALYSIS(CCA)

The direct computational approach to canonical correspondence analysis proceeds as
follows (Legendre and Legendre 1998). The mathematics behind CCA is summarized here to
make it easier for readersto understand the modifications required by polynomial CCA.
Matrices Y and X have been described in the section “ Canonical Correspondence Analysis
and its Polynomia Generalization”.

1) Data preparation and multiple regression. Absolute frequencies (i.e., the individual species
abundances in matrix Y) are represented by Yij whereas relative frequencies (also caled
probabilities or proportions) by Pij> Pj isthe frequency Yij incell ij divided by thesum y, , of
they; j’s over the whole frequency table. Row weight p;, isequal to y;, /y, . wherey;, isthe

sum of valuesinrow i. Likewise, column weight Py isequal to y,/y,, where Vi isthe sum
of vauesin column j. CCA is computed from a matrix denoted Q (" p):

= 1= 1_ P -p.p, U
Q :[q] = 1t
LN O

Thevalues q; j only differ by a constant from the contributions to chi-square (¢ ;) computed

(C.1)

incell ij of acontingency table during two-way contingency table analysis: ('qij = cy/, /y++ .
This causes al the eigenvalues of Q to be smaller than or equal to 1, as shown by Legendre
and Legendre (1998, section 9.4). Values q; j may be calculated directly from the y; j 'S

q” — yijy++ - yi+y+j
' y++\'yi+y+j

Thevariablesin X are centered on their respective means, asin step 1 of RDA and for
the same reason, except that the means used to center X are computed here as the sums of the

columns of D(p;,)X, where D(p, ) isadiagona matrix containing the row weightsp, , .

(C.2)

Asin RDA, multiple linear regression of Q on the matrix of explanatory variables X
is computed. Matrix X isweighted during this regression; the weights for the explanatory

variables are given by adiagona matrix, D(p; )1/ 2 of the sguare roots of the rows weights of
Y. The weighted matrix of explanatory variables, Xy, isthus:

Xw= D(p;,)"2X (C3
The equation for the matrix of fitted values Q isthefollowi ng:

- , 1 v =
Q = XwB = Xw [Xw Xw] Xw Q (C.4)
Thisisaso equal to:

& = D(p;,)V2XB = D(p;,)Y2X [X D(p.) X]7X D(p,,)Y2Q  (C5H)



2) - 3) Asin step 2 of RDA, the covariance matrix S = Q'Q iscomputed (thereisno division
by degrees of freedom in CA and CCA), followed by eigenvalue decomposition (referred to as
principal component analysisin step 3 of RDA) to reduce the dimensionality of the solution.
CCA isthus aweighted form of RDA, approximating chi-square distances among the rows
(sites) of matrix Y, subject to the constraint that the canonical axes are weighted linear
combinations of the explanatory variables. In CCA, the number of canonical egenvectors
cannot exceed theminimumof p—1, m,and n—1.

4) - 5) - 6) Two main types of scaling, which may be applied to matrix U of the eigenvectors
of S, are commonly used by biologists to draw biplot ordination diagrams when analyzing
species presence-absence or abundance data. Other types of scaling are described by ter
Braak (1987, 1990), ter Braak and Smilauer (1998) and L egendre and Legendre (1998).

* Scaling type 1 — Assuming that sites are rows and species are columnsin Y, thisscaling is
the most appropriate if oneis primarily interested in the ordination of sites: the sites (whose
coordinates are found in matrix F, below) are plotted at the centroids of the species (whose
coordinates are found in matrix V, below). In full-dimensional matrix F, distances among the
sites are equal to the chi-square distances among the rows of matrix Y.

* Scaling type 2 — Assuming that sites are rows and species are columnsin Y, thisisthe
most appropriate scaling if one is primarily interested in the relationships among species: the
species (whose coordinates are found in matrix E, below) are plotted at the centroids of the

sites (whose coordinates are found in matrix V , below). In full-dimensional matrix F,
distances among the species are equal to the chi-square distances among the columns of
matrix Y.

The construction and interpretation of CCA biplotsis discussed in more detail by ter Braak
and Verdonschot (1995, Table 2), ter Braak and Smilauer (1998) and Legendre and Legendre
(1998).

Matrix V of species scores (for scaling type 1) and matrix V of site scores (for
scaling type 2) are obtained from U using the weighs given by the diagona matrices

D(p.,; )'1/ 2 and D(p; +)'1/ 2 containi ng inverses of the square roots of the column and row
weights of Y, respectively:

V =D(p,;)V?U (C.6)
V =D(p,) M2 Qua? ()

where A_ll2 isadiagona matrix containing inverses of the square roots of the eigenvalues of

S. Matrices F (site scores for scaling type 1) and F (species scores for scaling type 2) are
found using:

F=vaAY? (C8)
E=val? (C.9)

The site scores which are weighted linear combinations of the explanatory variables,
corresponding to Eq. B.6 of RDA (Appendix B), are derived from Q asfollows:

For scaling type 1: cor d(space of explanatory variables X) = D(p; ., )‘1/ 2 Qu (C.10)

, _ _ 12 Ay L2
For scaling type 2: cord(spaceofexmanamryvariabmx)—D(pH) 1 QUA (C.11)



Weighted linear correlations between variables x of X and constrained ordination axes
cord in spaceX (from Eq. C.10 or C.11) are used for representing the explanatory variables

in biplots; the weight w; associated with eachrow i of cord and x is p,,. The weighted linear
correlation Reord,x 1S calculated asfollows:

n A 3 A
(élwcordi)g - ((_fillWiX )(%1V\I.C0rdi)/(§1W. )

(C.12)

RCOfd,X: n n n n n n
JOG W) - (& wx ) K& w)))(E wicord?)- (@ weord ) /(4 w)))

With scaling type 2, the correlations are used directly as biplot scores for the environmental
variables. With scaling 1, the correlations have to be weighted using Eq. B.7 before they are
used as biplot scores.
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TeSTSOF SIGNIFICANCE IN PoLynomiaL RDA anp CCA

Description of the permutation testing procedure

Permutation tests can be carried out in linear or polynomial RDA or CCA. The most
genera null hypothesis states that there is no special relationship between the response and
explanatory variables (independence of Y and X), or that the model is not a significant
representation of the response data. (Tests of significance for individual canonical eigenvalues
are not discussed here; they are described in ter Braak and Smilauer [1998] and in Legendre
and Legendre [1998]). RDA or CCA is computed as described in Fig. 1 of the main paper
and the following pseudo-F statistic is computed for the unpermuted data:

variance of ¥ (or Q)

pseudo- F = - - = =
Total variance of Y (or Q) - varianceof Y (or Q)

(D.1)

We call this statistic a*“pseudo-F” because the degrees of freedom are not included in the
numerator and denominator. The full F-statistic customarily used in canonical analysis, which
iIsalso sometimes caled “pseudo-F’ but with a different meaning, contains degrees of
freedom; it is described in the above-mentioned books. Degrees of freedom are multiplicative
constants through the permutations; thus, including them, or not, does not change the outcome
of the tests. They are not included here because the number of parametersin the polynomial
model may change from permutation to permutation; this number is used in the formulafor
computing the degrees of freedom of aregular F-statistic. Simulations, reported in the next
section, show that a permutation test of significance based upon the pseudo-F satistic
described in Eq. D.1 has correct type | error.

Compute RDA or CCA as in Fig. 1
Calculate the pseudo-F statistic
for the real (i.e., unpermuted) data

l

RDA: permute the rows of Y to obtain Yperm
CCA: permute the rows of Q to obtain Qperm

v

Linear or polynomial regression to
N AN
obtain fitted values (matrix Yperm Or Qperm)

v

Calculate the pseudo-Fperm statistic

Is pseudo-F 3 pseudo-Fpem?

V

Calculate the P-value

Fic. D.1. Permutation testsin linear and polynomial RDA and CCA.



To generate the null distribution (Fig. D.1), therowsof Y (or Q) are permuted at
random to obtain the matrix Yperm (Or Qperm) Linear or polynomia regression is

computed usi ng the (unpermuted) matrix of explanatory variables X to obtain a matrix of
fitted values Yperm (or Q perm)- 1he pseudo-F .. statistic can be directly estimated for the

permuted data from the variancesin Yperm (0r Qperm) and in \?perm (or Qperm) using

Eq. D.1. After repeating the permutation and calculation of the pseudo-F . statistic alarge
number of times, the probability (P-value) of the data under the null hypotheas Is computed

as the proportion of pseudo-F,,,, values that are larger than or equal to pseudo-F. Following
Hope (1968), the pseudo-F valUe obtained for the unpermuted data is included in the null
distribution of pseudo-F,,,, vaues. Generdly, analyses providing P-vaues smaller than or
equal to 0.05 are consi dered significant. A lower significance level should be used for many
ecological problems in view of the fact that spatial autocorrelation is present most field
ecological data sets (Legendre 1993).

Which model is the most appropriate to describe the dataif the linear and polynomial
models are both significant? To answer this question, we used a permutation procedure to
assess the difference in variance accounted for between the polynomial model and the linear
model nested into it. Essentially, the procedure is the following:

1) Polynomial RDA (or CCA) is used to find the variance of Y (or Q) accounted for by the
polynomia modd, Var

polynomial *

2) Linear RDA (or CCA) is used to find the variance of Y (or Q) accounted for by the linear
moded, Var,,,-

3) The vaiance of the difference between the two models is obtained by subtraction:
Var - Var,,,- Calculate the pseudo-F statistic for thisdifference, using Eq. D.2:

polynomial

Varpolynomial = V&inear
Total variance of Y (or Q) — Vargynomial

pseudo- F = (D.2)

This equation is constructed in the same way as that of an F-datistic for testing the
significance of additional explanatory variables in nested regression models. Simulation,
reported in the next section, show that atest of significance for the difference in explained
variation between nested models, based upon this statistic, has correct type | error.

4) Permute matrix Y (or Q), to obtain matrix Y e (OF Q wem)- REPERL the calculations for the

permuted matrix Y ... (or Q ), from which apseudo-F,, statistic is obtained. Repeat this
step alarge number of times.

5) Test the significance of the pseudo-F statistic against the distribution of the pseudo-F ., as
above, after incorporating the pseudo-F value into the distribution. The smaller the P-value for
the difference between the two models, the more appropriate is the polynomia mode.

Permutation of the rows of matrix Y (or Q), as performed here, is adequate in all
instances where there are no covariables. For the test of the difference between the two
models, an alternative would be to implement a procedure based upon permutation of the
residuals of areduced or afull regression model, as described in ter Braak and Smilauer
(1998) and Legendre and Legendre (1998). These methods would procure an improvement in
type | error, over the permutation of the rows of matrix Y, only in cases where the covariable
matrix contains extreme outliers (Anderson and Legendre 1999).



10

Do the Permutation Tests Have Correct Type | Error and Good Power?

This section aims at establishing that the probabilities obtained from the permutation
tests described in the previous section have correct type | error (and thus provide valid tests of
significance), and that they have good power, allowing to discriminate between the linear and
polynomial relationships. To accomplish this, we ran alarge number of numerical smulations
using computer-generated data sets whose properties were known. Simulations are a standard
approach in statistics because they allow verification of the properties of statistical procedures
In Situations where the answer is known (seg, e.g., Milligan 1996).

First, we generated many data tables Y (response) and X (explanatory) containing
random numbers. They represented situations where the null hypothesis of the test was true.
So, acanonical analysis should not find these data sets to be related, except by chance; finding
unrelated data sets to be significantly related is referred to as type | error. A test of
sgnificanceis said to have correct regection rate at significance level a (decided a priori by the
user) if the null hypothesisis rejected in a proportion of the cases approximately equal to a,
when using data generated to correspond to the null hypothesis. The test is said to be valid if
the rgection rate is not larger than the significance level a, for any value of a, when the null
hypothesisis true (Edgington 1995).

Two series of simulations were carried out, corresponding to two standard applications
of RDA. Inthefirst series of 1000 simulations, the datain Y were random numbers drawn
from amultivariate normal distribution with variances of 1 and covariances of O; in this series,
Y smulated a matrix of standardized physical variables. In the second series of 1000
simulations, the datain Y were drawn at random from a standard lognormal distribution, to
simulate species abundance data. In both series, the datain X, representing the explanatory
variables, were multivariate random normal.

Matrices X and Y had the following parameters. n, the number of rowsin Y and X,
was 10; p, the number of columnsin Y, was 5; m, the number of columnsin X, was 5. For
each data set, 499 random permutations of the rows of Y were done. We tallied the rates of
rejection of the null hypothesis for 20 different values of a for standard linear RDA (using
linear multiple regression), for polynomia RDA, and for the difference between the
polynomial and linear solutions. We also computed confidence intervals for two commonly
used values of significancelevel: a = 0.05and a = 0.10.

Results of this study are presented in TablesD.1 and D.2. They show that in all cases,
the null hypothesis (H,) was rejected with frequencies very closeto a; the 95% confidence
intervals of the rejection rates always included the corresponding a values. We repeated the
simulations with different values of matrix parameters n, p and m (n varying from 5to 25, p
from 5to 15, and m from 5 to 10). The results, not reported in detail here, are very similar to
those found in Tables 1 and 2. The simulation results confirm that the permutation tests
described in the previous section have correct a-significance level. In other words, if no
relationship exists between Y and X, the tests make type | errors at the rate predicted by the a-
significance level.

Secondly, we designed and ran simulations for type Il error, to determineif the test of
significance for the difference between the two models (Eq. D.2) led to correct decisions.

1) We generated data sets where each of the Y variables(n=10, p=5, m=3) was an
independently-constructed linear function of the 3 variablesin X, plus error. With normal
error (results are not presented in detail here), the linear and polynomial RDA models were
both significant, but the difference in explained variation between the polynomial and linear
models was nearly never significant, as expected, whentesting at a = 0.05 or a = 0.10. The
few instances of significant differences represent type | error for the test of difference between
the two models (Eg. D.2); since the null hypothesis of no difference was true in these
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simulations, the test was expected to reject the null hypothesisin afraction a of the smulated
data sets. Similar results were obtained when using log-normal error.

2) We dso generated data sets where each of the Y variables (n = 25, p = 10, m = 3) was an
independently-constructed polynomial function of the 3 variablesin X, plus error. The results
were the opposite: the polynomia model was always significant; so was the difference
between the polynomial and linear models, even when the linear model was aso significant.

We conclude that the test of significance for the difference between the two models led
to the correct decision in nearly all cases, finding the linear model to be the most appropriate
when matrices X and Y had been generated to be linearly related, and the polynomia model to
be the most appropriate when a polynomia relationship had been built between the two
matrices.
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TaBLE D.1. First set of simulations. random normal datain Y and random normal datain X.
The upper portion of the table reports rejection rates of the null hypothesis at the significance
levels found in the left column, after studying 1000 pairs of random data sets; 499
permutations were used for each test. The lower portion reports 95% confidence intervals of
the rgjection rates for two widely used significance levels, a = 0.05 and a = 0.10.

Rate of regjection of H, for

Significance Linear regresson  Polynomial regression  Differencein explained

variance between polynomia

leved a (L) (P) and linear models (P-L)
0.05 0.050 0.047 0.046
0.10 0.098 0.086 0.098
0.15 0.149 0.156 0.146
0.20 0.196 0.195 0.197
0.25 0.246 0.247 0.250
0.30 0.306 0.295 0.294
0.35 0.349 0.335 0.349
0.40 0.401 0.383 0.401
0.45 0.450 0.441 0.449
0.50 0.502 0.491 0.493
0.55 0.553 0.546 0.546
0.60 0.601 0.594 0.594
0.65 0.637 0.641 0.646
0.70 0.692 0.702 0.697
0.75 0.731 0.754 0.747
0.80 0.767 0.803 0.795
0.85 0.826 0.851 0.853
0.90 0.884 0.905 0.903
0.95 0.949 0.951 0.953
1.00 1.000 1.000 1.000

Significance Linear regresson  Polynomial regression Difference P-L
leved a C1 C2 C1 C2 C1 Cc2
0.05 0.0365 0.0635 0.0339 0.0601 0.0330 0.0590
0.10 0.0825 0.1135 0.0714 0.1006 0.0825 0.1135

Abbreviations: C1 and C2 are the limits of the 95% confidence intervals, for a = 0.05 and
0.10, computed for the rejection rates found after analyzing 1000 random data sets. Type 1
error of atest is correct if the confidence interval of the empirical rgection rate includes a.
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TaBLE D.2. Second set of simulations: random lognormal datain Y and random normal data
in X. The upper portion of the table reports rejection rates of the null hypothesis at the
significance levels found in the left column, after studying 1000 pairs of random data sets;
499 permutations were used for each test. The lower portion reports 95% confidence intervals
of the rgection rates for two widely used significance levels, a = 0.05 and a = 0.10.
Abbreviationsasin Table D.1.

Rate of regjection of H, for

Significance Linear regresson  Polynomial regression  Differencein explained

variance between polynomia

leved a (L) (P) and linear models (P-L)
0.05 0.045 0.044 0.039
0.10 0.088 0.092 0.091
0.15 0.136 0.137 0.135
0.20 0.195 0.188 0.188
0.25 0.237 0.231 0.251
0.30 0.279 0.269 0.306
0.35 0.326 0.332 0.356
0.40 0.360 0.393 0.396
0.45 0.408 0.442 0.453
0.50 0.445 0.496 0.500
0.55 0.511 0.543 0.543
0.60 0.566 0.592 0.604
0.65 0.623 0.647 0.650
0.70 0.690 0.697 0.698
0.75 0.738 0.746 0.749
0.80 0.782 0.794 0.798
0.85 0.840 0.847 0.853
0.90 0.885 0.895 0.908
0.95 0.953 0.950 0.962
1.00 1.000 1.000 1.000

Significance Linear regresson  Polynomial regression Difference P-L
leved a C1 C2 C1 C2 C1 Cc2
0.05 0.0321 0.0579 0.0313 0.0567 0.0270 0.0510

0.10 0.0733 0.1028 0.0770 0.1071 0.0760 0.1060
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Canonical axes

Datatype | I 1l IV Vv VI
Eigenvalues (with respect to total variancein Q = 1.92296)
0.62894 0.37511 0.24337 0.17653 0.04974 0.02939

Fraction of total variancein Q

32.70698 19.50712 12.65596 9.17995 258668 1.52812
Cumulative fraction of total variancein Q accounted for by axes| to VI

32.70698 52.21410 64.87006 74.05001 76.63669 78.16481
Species scores from Eq. C.9, matrix F (scaling type 2)
Al. accentuata 155036 -0.14821 0.26633 0.81398 0.40180 -0.30755
Al. cuneata -0.17992 -0.19077 -0.00205 -0.12488 0.14257 -0.40530
Al. fabrilis 252533 095247 0.21864 1.05935 -0.42174 0.37730
Ar. |utetiana -0.53087 0.25503 -0.44826 0.10140 -0.33373 0.19051
Ar. perita 3.91140 210706 -1.24542 -2.67197 0.11346 -0.11043
Au. albimana -0.38288 0.14117 -0.41733 0.12523 0.20572 0.16340
Pa. lugubris -0.32128 0.61698 2.00915 -0.52270 0.39451 0.25796
Pa. monticola 0.53335 -1.36366 0.05890 -0.28172 -0.08014 0.10428
Pa. nigriceps —-0.45556 0.20890 -0.45936 0.09609 0.16259 0.19589
Pa. pullata -0.36954 0.11816 -0.37024 0.07745 0.13450 0.02186
Tr. terricola -0.31803 0.22305 0.15007 -0.05952 -0.14189 -0.08913
Zo. spinimana -0.41098 0.32522 0.16851 0.06653 -0.49435 -0.08025
Site scores from Eq. C.7, matrix V (scaling type 2)
Sitel 0.19190 -0.83192 -0.09555 0.13373 0.48920 -1.22681
Site 2 -0.55696 043411 -0.51925 0.15622 0.05135 0.21341
Site3 -0.07859 -0.25295 -0.23664 0.18236 0.60622 —1.50035
Site4 -0.51493 0.33292 -0.58710 0.19071 -0.09421 -0.13048
Site5 -0.58522 0.40912 -0.89278 0.23397 0.86853 1.06013
Site 6 -0.49729 0.26545 -0.25896 0.03908 -2.16265 -0.47017
Site7 -0.47088 0.14143 -0.70784 0.10572 0.13999 0.95180
Site 8 -047263 0.88678 4.11220 -1.56466 3.47613 2.48576
Site9 0.68911 -2.95056 0.15118 -1.14120 -0.97201 2.02230
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Site 10 1.09945 -2.92298 0.36349 -0.55441 -0.84824  1.94692
Site11 1.03033 -2.92079 0.32830 -0.57574 -0.43813 1.41973
Site 12 0.71979 -242159 0.22390 -0.58130 -0.01566 -0.36876
Site 13 -0.40555 0.05911 -0.46141 0.01814 0.11136 -1.19280
Site 14 -0.48114 0.26181 -0.17299 -0.01462 -1.38733 -0.74329
Site 15 -0.51500 0.77094 195994 -0.71338 -1.58809 -1.06710
Site 16 -0.51036 0.65473 151807 -0.59788 -1.33662 -1.80145
Site 17 -0.51238 0.65955 1.17666 -0.45481 -2.59198 -2.28087
Site 18 -0.49480 0.69538 1.81713 -0.74849 -0.94208 -1.62016
Site 19 -0.51398 0.87640 2.88123 -1.05265 0.21075 0.45227
Site 20 —0.49909 0.86903 3.12334 -1.17034 0.65863 0.22280
Site21 -0.47251 0.86246 3.66255 -1.37506 151583 1.67290
Site 22 359010 1.75540 0.07743 216450 -2.54873 3.89519
Site 23 311351 1.06618 0.29769 0.99498 0.60038 0.35883
Site 24 362149 159815 0.12049 2.33853 -1.91440 3.27871
Site 25 0.81245 -0.04527 0.44939 126706 -1.45461 0.53678
Site 26 510899 4.10097 -2.96940 -7.93872 0.39989 -1.03919
Site 27 3.14631 0.75153 0.46391 3.08143 3.28692 -4.00636
Site 28 272787 0.35159 0.68754 3.38685 -0.29284 0.75589
Biplot scores of environmental variables, from Eq. 12

Water -0.92432 0.18650 -0.23523 -0.18804 -0.37686 -0.31522
Reflection 0.84674 -0.60030 -0.32579 -0.53371 0.21990 -0.28005
Caamagrostis -0.52146 0.22616 -0.70727 0.14786 0.30211 0.52232
Coryneporus 0.78682 -0.68336 0.08988 -0.17240 0.05986 0.17525
Biplot scores of environmental variables: weighted correlations

Water -0.66479 0.17312 -0.23287 -0.04559 -0.33191 -0.19449
Reflection 0.76280 -0.28002 -0.28547 -0.03780 0.14508 -0.27962
Caamagrostis -0.49123 0.22202 -0.69103 0.14315 0.28329 0.16033
Corynephorus 056135 -0.66456 0.08976 -0.00597 0.04519 0.04974
Water? 0.60755 0.07809 -0.04507 0.17987 -0.19515 -0.25764
Reflection’ 0.73372 0.28057 -0.03136 -0.46095 -0.05465 -0.14486
Calamagrostis’ 0.18803 0.03716 0.16909 0.03316 -0.11249 0.49264
Corynephorus? 0.32062 -0.67672 0.08182 -0.06862 0.02769 -0.01521
Water x Refl. -0.79020 -0.10389 0.14754 0.10273 0.22799 0.03177
Water x Calam. 0.60467 -0.16110 -0.04745 0.05545 0.42990 0.10455
Water x Corynep. 054738 052220 -0.02685 -0.12139 0.01754 0.06717
Refl. x Caam. -0.65178 0.14440 0.52247 -0.00110 -0.31599 -0.29830
Refl. x Corynep. 0.50857 -0.46226 0.17410 -0.05155 -0.00590 0.17733
Caam. x Corynep. —0.45070 0.66288 0.15644 -0.04998 -0.15946 -0.11593

Notes: Matrix Y: hunting spider species 1 to 12. Matrix X: water content, reflection of soil
surface, percent cover by Calamagrostis epigejos, percent cover by Corynephorus canescens.
Either set of biplot scores can be used to represent the environmental variablesin biplots.



Erratum

Page 1158 column 2: the equation for x..,, should read

123

2 2
Xin3 = 0.1440 —0.0030x; 5 + 0.0075x;,, —0.000034x; ,—0.000071x; , X, ,—0.000390x; ,





