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Abstract. The problem of identification of optimal weights of observed variables finds its 
applications in a variety of fields: In marketing, psychometrics, geography, and molecular biology, 
briefly, in any practical situation where a classification or clustering model is appropriate. Knowledge 
of optimal weights associated with observed variables allows to make decision about the importance 
of any given variable characterizing a group of given objects. In his pioneering paper, De Soete 
(1986) proposed a method for estimation of optimal variable weights intended for ultrametric or 
additive tree reconstruction. This paper extends De Soete’s method to the case of K-means 
partitioning. We also discuss some new features and improvements to the algorithm proposed by De 
Soete (see also Makarenkov and Legendre, 2001). Monte Carlo simulations have been conducted 
using different error conditions. In all cases (i.e., ultrametric or additive trees, or K-means 
partitioning), the simulation results indicate that the optimal weighting procedure should be used to 
eliminate noisy variables that do not contribute relevant information to the classification structure. 
However, if the data involve error-perturbed variables that are relevant to the classification or outliers, 
it seems better to cluster or partition the entities by using variables with equal weights. A new 
computer program, OVW carries out improved algorithms for optimal variable weighting for 
ultrametric and additive tree clustering, and includes a new algorithm for optimal variable weighting 
for K-means partitioning.  

 

1. Introduction 

 In two pioneering papers, De Soete (1986, 1988) proposed a numerical method for 
estimating optimal weights for variables intended for ultrametric or additive tree 
reconstruction. The present paper extends De Soete’s method to least-squares K-means 
partitioning. We will also point out some properties of the algorithm proposed by De Soete 
that seem to have gone unnoticed; an understanding of these properties leads to improvements 
in the methods.  

 We carried out Monte Carlo studies for optimal variable weighting applied to additive 
tree reconstruction and K-means partitioning (the details on these studies are not reported 
here, see Makarenkov and Legendre, 2001). These studies conducted using different error 
conditions confirmed the ability of the method to identify and reduce the effect of ‘noisy’ 
variables. We did not test the ability of the method for recovering clusters in the framework of 
ultrametric clustering procedures because a Monte Carlo study had already been carried out 
and discussed in detail by Milligan (1989). Considering the complexity of the algorithms that 
we discuss, a computer program is made available to the scientific community to encourage 
researchers to use optimal variable weighting. 



  

 There is an appreciable literature about variable weighting. DeSarbo, Carroll, Clark, and 
Green (1984) described SYNCLUS, a program that solves for both variable weights and 
produces K-means clustering. Fowlkes, Gnanadesikan, and Kettenring (1988) also proposed a 
method, here called FGK, for selecting weights — in that case, binary (0 and 1) weights. 
These authors proposed a model that selects subsets of variables from the original data and 
produces binary weights for the variables; their procedure was applied to complete linkage 
hierarchical clustering. 

 In a later paper, Gnanadesikan, Kettenring, and Tsao (1995) compared Fowlkes et al.’s 
(1988) FGK procedure to De Soete’s OVWTRE and to DeSarbo et al.’s (1984) SYNCLUS 
models. Gnanadesikan et al. (1995) determined that the FGK forward selection procedure 
performed reasonably well compared to its competitors. Subsequent to the FGK algorithm, 
Carmone, Kara, and Maxwell (1999) proposed a variable subset selection method based on 
Hubert and Arabie’s (1985) adjusted Rand index. Their method was designed for partitioning 
using continuous variables. The procedure proposed by Carmone et al. (1999) in the context 
of partitioning clustering, called HINoV, was described as a heuristic method based upon the 
adjusted Rand statistics. These authors conducted a series of Monte Carlo simulations, using 
synthetic data with noise of various kinds added, including masking variables. The results 
indicated that variables selected using the HINoV procedure outperformed the all-variable 
cases in 70 out of 72 different computer runs. In contrast to the good results found by 
Carmone et al. (1999), in real data set analyses using HINoV, Green, Carmone, and Kim 
(1990) had earlier found mixed results in the ability of SYNCLUS to recover the correct 
variable weights.  

 

2. Description of the Method 

 Given a rectangular (i.e., object-by-variable, or two-way, two-mode) data matrix Y, 
containing measurements of n objects on m variables, our algorithm computes weights w = 
{w1, w2, ... wm} for the m variables such that the resulting matrix of predicted dissimilarities D 
= [dij] among objects, where 

 dij ==== wp(yip −−−− y jp )2
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, (1) 

optimally satisfies either (a) the ultrametric or (b) the additive inequality, or (c) optimally 
corresponds to a K-means partition with a fixed number of groups K. Equation (1) is the 
weighted form of the familiar Euclidean distance formula. The weights are constrained to be 
nonnegative with their sum equal to one.  

 The ultrametric inequality which defines dendrograms (Hartigan 1967) is satisfied 
when:  

 dij ≤  max(dik, djk) (2) 

for all triplets i, j, and k, whereas the additive-tree inequality (four-point condition: Buneman 
1974) is satisfied when: 

 dij + dkl ≤  max (dik + djl, dil + djk) (3) 



  

for all quadruplets i, j, k, and l. The K-means partitioning problem can be defined as follows: 
Find a partition of n objects into K groups, or clusters, such that the sum, over all groups, of 
the sums of within-group squared distances to the centroids is minimum. 

 For each of the three clustering problems, a particular loss function (L) is defined to 
compute optimal weights. In the ultrametric case (dendrograms), optimal weights are found by 
solving the optimization problem as described by De Soete (1986): 

 LU (w1, w2, ... wm) = 

(dik −−−− djk )2

ΩΩΩΩU
∑∑∑∑

dij
2

i<<<< j
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     →     min, (4) 

where ΩU= {(i, j, k) | dij ≤  min(dik, djk), and dik ≠  djk} denotes the set of ordered triplets for 
which the distances violate the ultrametric inequality (De Soete 1986). The minimization is 
done subject to the following constraints: 

 w1, w2, ... , wm ≥  0,  (5) 

 w1 + w2 + ... + wm = 1. (6) 

 In the case of additive trees, the optimization problem is also formulated as in De Soete 
(1986): 

 LA (w1, w2, ... wm) = 
(dik ++++ d jl −−−− dil −−−− djk )2

ΩΩΩΩA
∑∑∑∑

dij
2

i<<<< j
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     →     min, (7) 

subject again to constraints (5) and (6); ΩA= {(i, j, k, l) | (dij + dkl) ≤  min(dik + djl, dil + djk), and 
dik + djl ≠ dil + djk } denotes the set of ordered quadruplets for which the distances violate the 
additive inequality (De Soete 1986). 

 In the case of K-means partitioning, the minimization problem can be formulated as 
follows for a partition of n objects into a fixed number of clusters K: 

 LP (w1, w2, ... wm) = dij
2
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K
∑∑∑∑ / nk      →     min, (8) 

subject to constraints (5) and (6); values dij
2  are the squared distances among objects in cluster 

k, and nk is the number of objects in cluster k. The function LP consists in the sum of the 
within-cluster sums of squared errors (the external sum in Equation 8), each one being 
computed as the mean of the squared distances among cluster’s members (the internal sum in 
Equation 8). 

 We used the Polak-Ribière optimization procedure (see Press, Flannery, Teukolsky and 
Vetterling 1986, p. 303, and later editions, or Polak 1971, p. 53) to carry out the minimization 
of LU, LA and LP. First, following De Soete (1986), we reduced the problem, which was 
originally formulated with constraints (5) and (6), to an unconstrained form, using the type of 
transformation of variables suggested by Gill, Murray, and Wright (1981, p. 270). The Polak-
Ribière optimization method uses first partial derivatives of the functions LU, LA and LP with 



  

respect to the introduced weights. It has proved successful in applications to unconstrained 
minimization problems; see Press et al. (1986, p. 277, and later editions). 

 When optimal variable weights have been obtained using LU or LA, the dissimilarity 
matrix D among objects can be computed using Equation 1 and subjected to any of the 
existing ultrametric or additive-tree fitting procedures; see, for example, Arabie, Hubert, and 
De Soete (1996, pp. 65-199) for an overview of existing fitting algorithms. Alternatively, 
matrix D can be subjected to K-means partitioning if optimization has been carried out using 
loss function LP . K-means partitioning can be computed from either a dissimilarity matrix or a 
rectangular data matrix; see for instance P. Legendre and L. Legendre (1998, p. 351). The 
latter option is the most commonly available in computer programs. There are two ways of 
passing the weights on to a K-means algorithm: (a) one can incorporate the weights into the 
calculation of distances and sums of squares in the K-means algorithm itself, as was done in 
the simulations conducted by Makarenkov and Legendre (2001), or (b), one can transform D 
into a rectangular object-by-variable matrix, preferably by metric scaling (also called principal 
coordinate analysis, Gower 1966), prior to K-means partitioning. Metric scaling is the only 
way of totally preserving the distance relationships among objects in the subsequent K-means 
procedure; nonmetric scaling would modify the distance relationships among objects.  

 The optimization methods described above may sometimes produce a local instead of a 
global minimum of LU, LA, or LP. Hence, a good choice of initial weights is essential. While 
experimenting with our new program, we realized that making all weights equal to 1/m as an 
initial guess (where m is the number of variables), as implemented in the De Soete program 
OVWTRE, does not guarantee that the global minimum is always going to be reached. An 
interesting feature of our optimal variable weighting (OVW) program, compared to 
OVWTRE, is that it allows users to restart the optimization procedure any number of times, 
using different random initial configurations for the weights. As a consequence, OVW usually 
obtains better results than OVWTRE in the case of ultrametric clustering and additive tree 
reconstruction. Optimization for K-means partitioning, which is offered in program OVW, is 
not available in OVWTRE. 

 An important detail not reported in De Soete (1986, 1988) is that the global minimum of 
LA or LU can sometimes be reached with several different sets of optimal weights w. This 
nonuniqueness may lead to different dissimilarity matrices D, from which different clustering 
hierarchies or additive trees can be inferred. 

 Moreover, in the optimization for additive tree reconstruction, degenerate solutions, 
which are trivial, represent a pervasive problem. Such solutions, which consist in giving a 
weight of 1 to any one of the variables and weights of 0 to all others, are frequently produced 
by De Soete’s OVWTRE program. The theorem proved in Makarenkov and Legendre (2001) 
shows that any trivial solution of the type (1, 0, ..., 0), (0, 1, ..., 0), ..., or (0, 0, ..., 1) provides a 
perfect fit for the additive loss function LA. In program OVW, we found a way of avoiding, 
where possible, this trivial solution which leads in most cases to a sub-optimal additive tree: 
users of the method can set a maximum value for the weight permitted for any single variable. 
This option effectively prevents obtaining a weight of 1 for a variable, which corresponds to a 
trivial solution. A numerical example in Section 3 shows how the program OVW works in 
practice. 

 An extensive Monte Carlo investigation of De Soete’s variable weighting algorithm for 
hierarchical cluster analysis, based on results provided by De Soete’s program OVWTRE, can 



  

be found in Milligan (1989). The simulations reported in Makarenkov and Legendre (2001) 
focused rather on additive tree reconstruction and K-means partitioning. 

 

3. Numerical Example 

 To demonstrate the effectiveness of the OVW program, we carried out computations on 
the synthetic data considered by De Soete (1986) to illustrate the usefulness of his weighting 
procedure for ultrametric trees. De Soete’s data, reported in Table 1, possess a clear 
predefined structure; the first two variables perfectly determine the separation of the objects 
into clusters. The three clusters {1, 2, 3, 4}, {5, 6, 7, 8} and {9, 10, 11, 12} can easily be 
deduced from the first two variables which have a clear partitioning structure. The values in 
variables 3 and 4 are uniform random deviates, unrelated to the other variables and, thus, 
should not be taken into account when creating the cluster structure, which should be based 
solely on variables 1 and 2. We will apply to this data set the variable weighting algorithm 
designed for additive and for ultrametric clustering as implemented in OVW; note that in his 
paper, De Soete (1986) only applied the optimal variable weighting procedure for ultrametric 
trees to this data set. 
Table 1. Synthetic data used by De Soete (1986, Table 1) illustrating the application of his optimal 
variable weighting procedure for ultrametric trees.  
_______________________________________________________________________________ 

Objects  Variables 

 _________________________________________________________________ 

  1 2 3 4 

________________________________________________________________________________ 

 1  0.4082  0.000  0.0564 –0.0188 

 2 0.4082  0.000  0.7104  0.8879 

 3 0.4082  0.000 –0.5435  0.4931 

 4  0.4082  0.000 –0.0227 –0.6123 

 5 –0.2041  0.3536  0.6128  0.9475 

 6 –0.2041  0.3536 –0.7937 –0.7604 

 7 –0.2041  0.3536 –0.2072 –0.0368 

 8 –0.2041  0.3536  0.3818  0.1197 

 9 –0.2041 –0.3536  0.9152  0.3362 

 10 –0.2041 –0.3536 –0.6031 –0.9367 

 11 –0.2041 –0.3536  0.4861  0.2143 

 12 –0.2041 –0.3536 –0.3770 –0.0060 

________________________________________________________________________________ 

 First consider the case of the additive tree clustering. Results were produced by OVW 
using the following options: (a) the optimization procedure was restarted 10 times with 
different initial estimates; (b) to avoid a trivial solution when a weight of 1 was assigned to a 
single variable, the maximum allowed weight of a single variable was set to 0.9 (in fact, to 
force the program to skip a trivial solution, we could choose any other value smaller than 1). 



  

The following vector of optimal weights w was obtained: w1=0.395, w2=0.605, w3=0.0, 
w4=0.0; the value of the objective function LA dropped from 0.329523 (when all weights were 
equal to 0.25) to 0.000007 (for the optimum weights). The correct additive tree structure 
effectively separating the three clusters could be found from the matrix of weighted distances 
provided by the program. For the same data set, De Soete’s OVWTRE program failed to 
provide relevant results with the additive tree clustering option and produced only a trivial 
solution with w1=0.0, w2=0.0, w3=1.0, w4=0.0; the corresponding value of LA was 0. 
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Figure 1. Classification structures obtained for the Table 1 data using optimal weights 
computed by OVW. (a) Dendrogram from ultrametric clustering; (b) additive tree; (c) K-
means partition. 

 However, when OVWTRE was launched with the ultrametric clustering option, it was 
able to discover a good classification, finding the following set of optimal weights: w1=0.558, 
w2=0.439, w3=0.000, w4=0.003. Running the OVW program with the ultrametric clustering 
option provided a different set of optimal weights: w1=0.708, w2=0.292, w3=0.000, w4=0.000, 
which also led to the correct classification. 

 Finally, when OVW was run on the data from Table 1 using the K-means partitioning 
option, with a correct partition vector supplied to the program separating the 12 objects into 3 



  

groups as (1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3), our K-means variable weighting procedure detected 
the ‘noisy’ variables in the data and assigned weights of zero to variables 3 and 4. The optimal 
weights assigned to variables 1 and 2 were respectively 0.906 and 0.094, after 10 starts of the 
optimization procedure using different initial random configurations for the weights, whereas 
the minimum value of the objective function LP dropped from 1.815205 for all weights equal 
to 0.000000 for the optimal weights. When an incorrect classification vector (1, 2, 3, 1, 2, 3, 1, 
2, 3, 1, 2, 3) was supplied to OVW, the following weights were obtained for the four 
variables: w1=0.909, w2=0.091, w3=0.000, w4=0.000; the minimum value of the objective 
function LP corresponding to the solution was 0.937442. This value, which is remote from 0, 
indicated that the classification vector supplied to the program was not optimal. 

 The classification structures obtained for the data of Table 1 using optimal weights 
computed by OVW are depicted in Figure 1. The dendrogram is represented in Part A, the 
additive tree in Part B, and the K-means clusters in Part C of the Figure. In the dendrogram 
and the additive tree, the interior nodes are numbered 13 to 22. 

 

4. Discussion 

 The optimal weighting algorithm should be used prior to ultrametric or additive tree 
clustering, or K-means partitioning, if one assumes that the data may contain irrelevant or 
noisy variables. When the data mostly include error-perturbed variables or outliers, we suggest 
processing such data using equal weights. Equal or optimal OVW weights can be employed 
when the data are supposed to be free of errors. It is very difficult to handle error-perturbed 
data, which is the most complicated case of error condition. As for the outlier condition, we 
would like to suggest a new strategy which could be tested through simulations. If the data 
being analyzed are likely to contain more noisy objects than noisy variables, the following 
strategy could be employed: instead of assigning weights to the variables, weights can be 
associated with the objects. Using a weighting function that assigns weights of 0 or 1 to the 
objects would lead to a new objective function to be minimized for ultrametric and additive 
trees as well as for K-means partitioning. Such a strategy may allow one to detect noisy 
objects rather than noisy variables; weights of 0 would be assigned to the noisy objects. The 
resulting matrix of predicted dissimilarities D = [dij] among objects would be computed as 
follows: 

 dij ==== (viyip −−−− vjy jp )2

p====1
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where vi and vj are weights associated with the object i and j, respectively. Variants of the 
objective functions LU, LA and LP should be considered: dij should be excluded from the 
objective function if vi or vj equal 0. A much more complicated model involving weights for 
both variables and objects may also be explored. Although the latter model would contain two 
sets of weights, it may allow one to reduce, at the same time, the effect of noisy variables and 
noisy objects or outliers. Investigation of weighting strategies implying weights for objects, or 
for both objects and variables, would constitute an interesting and relevant topic for future 
research. The OVW program including the methods discussed in this paper is freely available 
at the following URL: <http://www.fas.umontreal.ca/biol/casgrain/en/labo/ovw.html>. 
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