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Abstract

A major challenges facing landscape geneticists studying adaptive variation is to include

all the environmental variables that might be correlated with allele frequencies across

the genome. One way of identifying loci that are possibly under selection is to see which

ones are associated with environmental gradient or heterogeneity. Since it is difficult to

measure all environmental variables, one may take advantage of the spatial nature of

environmental filters to incorporate the effect of unaccounted environmental variables in

the analysis. Assuming that the spatial signature of these variables is broad-scaled,

broad-scale Moran’s eigenvector maps (MEM) can be included as explanatory variables

in the analysis as proxies for unmeasured environmental variables. We applied this

approach to two data sets of the alpine plant Arabis alpina. The first consisted of 140

AFLP loci sampled at 130 sites across the European Alps (large scale). The second one

consisted of 712 AFLP loci sampled at 93 sites (regional scale) in three mountain massifs

(local scale) of the French Alps. For each scale, we regressed the frequencies of each AFLP

allele on a set of eco-climatic and MEM variables as predictors. Twelve (large scale) and

11% (regional scale) of all loci were detected as significantly correlated to at least one of

the predictors (R2
adj > 0.5), and, except for one massif, 17% at the local scale. After

accounting for spatial effects, temperature and precipitation were the two major

determinants of allele distributions. Our study shows how MEM models can account

for unmeasured environmental variation in landscape genetics models.
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Introduction

Studying adaptive genetic variation in natural environ-

ments is a major objective of landscape genetics (Holde-

regger et al. 2008; Manel et al. 2010). Genome scans are

widely used to detect loci linked to genomic regions of

adaptive relevance (Bonin et al. 2006; Oetjen & Reusch

2007; Bonin 2008; Herrera & Bazaga 2008). One way of

identifying loci that might be under selection is to see

which ones are correlated with environmental gradients
nce: Stéphanie Manel, Fax: 0476514279;
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using allele distribution models (Joost et al. 2007;

Holderegger et al. 2008; Manel & Segelbacher 2009).

The basic assumption of allele distribution models is

that natural selection along environmental gradient or

heterogeneity generates gradual changes (i.e. clinal vari-

ation) in allele frequencies at loci linked to selected

genes (Endler 1986; Hamilton et al. 2002; Hirao & Kudo

2004; Skot et al. 2005; Schmidt et al. 2008). However,

one of the major challenges facing landscape geneticists

studying adaptive variation is to include in the analysis

all the environmental variables that might be correlated

with loci across the genome.
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The investigation of allele distribution in response to

environmental factors parallels a research question of

great interest in ecology, namely the explanation of spe-

cies distribution patterns (Legendre 1993; Gaston &

Blackburn 2009), since beta diversity (i.e. the variation

in species composition among sites) is highly relevant

for environmental protection and management policies

(Legendre et al. 2005). In addition to multi-facetted

competition, the distribution of species is influenced by

many environmental variables, many of which are spa-

tially structured. In consequence, patterns of species

distribution are space-dependent (Legendre 1993; Wag-

ner & Fortin 2005). At large scale, geographical and

environmental variations are mostly inter-dependent,

leading to respective patterns at broad spatial scales

(Wiens 1989). In contrast, biotic processes such as dis-

persal, mating or competition mostly invoke spatial pat-

terns at intermediate or small spatial scales.

Recently, Jombart et al. (2009) reviewed several

options to consider spatial variation in ecological data.

The method of Moran’s eigenvector maps (MEM) was

identified as a particularly promising tool for separating

and modelling spatial patterns comprised within envi-

ronmental variation (Borcard & Legendre 2002; Dray

et al. 2006; Garcia et al. 2009). MEM analysis allows the

identification of relationships between a variable of

interest (e.g. allele frequency) and environmental vari-

ables at multiple spatial scales in regression or canoni-

cal analyses. In this study, the MEM analysis will

provide proxies for unaccounted environmental vari-

ables that will be used as predictors in regressions to

explain allele frequencies distribution. MEM variables

are the eigenvectors of a spatial weighting matrix calcu-

lated from the site geographic coordinates. MEM analy-

sis produces uncorrelated spatial eigenfunctions used to

dissect the spatial patterns of the studied variation

(allele frequencies in the present context) across a range

of spatial scales. The first few MEM variables, which

have large Moran’s I coefficients (this is a measure of

spatial autocorrelation; Epperson 2003), can be used to

model broad-scale processes (e.g. environmental varia-

tion in space), whereas subsequent MEM variables with

smaller Moran’s I coefficients can be used to model the

spatial autocorrelation generated by biotic processes

such as individual dispersal (Dray et al. 2006). The

MEM method provides a flexible approach to incorpo-

rate geographic relationships in model structure dealing

with patterns at multiples scales (Diniz-Filho et al.

2009). Examples of its application are rare because of its

recent development (but see Borcard et al. 2004; Dray

et al. 2006; Garcia et al. 2009; Gazol & Ibanez 2010 for

examples).

Once the purely geographical component in an allele

distribution model is considered, another question
� 2010 Blackwell Publishing Ltd
related to space arises: what is the best spatial scale to

study adaptation? Adaptation likely operates at differ-

ent spatial scales, as pointed out by Savolainen et al.

(2007). Until recently, molecular biologists expected

adaptation to occur in a repeated and predictive way at

broader spatial scales, at least in mobile species. Recent

studies, however, have challenged this belief, showing

that molecular adaptation is often local (Conover et al.

2006), a view shared by most ecologists. In reality,

adaptive processes probably form a complex multi-scale

continuum, with natural selection being the result of

this complex continuum of scales. In addition, for appli-

cation and in the light of global changes, identifying the

working scales of adaptive genetic variation is crucial

for species conservation (Stockwell et al. 2003). Given

the complexity of scale-dependence in ecological pat-

terns, it is essential to evaluate adaptive responses

along a range of spatial scales (Thompson & McGarigal

2002).

In the present study, we aim at identifying loci signif-

icantly correlated with environmental variables (i.e. loci

linked to genes under selection and therefore of ecologi-

cal relevance) in the alpine plant Arabis alpina at three

spatial scales, i.e. large, regional, and local scales. We

introduce a new approach to correlate allele frequencies

derived from genome scans with a wide array of envi-

ronmental variables and broad-scaled MEM variables,

the latter representing unmeasured broad-scale environ-

mental variation. Since it is difficult to measure all envi-

ronmental variables, our approach takes advantage of

the spatial nature of environmental gradients to include

unaccounted environmental variation in the analysis.

We addressed the following specific question: are

explanatory (i.e. environmental) variables driving pat-

terns of adaptive genetic variation the same at different

spatial scales?
Materials and methods

We used two published genetic data sets (Gugerli et al.

2008; Alvarez et al. 2009; Herrmann et al. 2010; Poncet

et al. 2010), which allowed for analyses at three differ-

ent scales. The first data set was sampled over the

entire European Alps (large scale) (Alvarez et al. 2009;

Thiel-Egenter et al. 2009) (Fig. 1a). The second one,

obtained in the French Alps (regional scale) (Herrmann

et al. 2010; Poncet et al. 2010), included three separate

mountain massifs of the French Alps (local scale;

Fig. 1b).
Study species, study areas and genotyping

Arabis alpina L. (Brassicaceae) is a perennial arctic-

alpine rosette herb, which is widely distributed in the



Fig. 1 Geographical arrangement of sampling locations (a) across the European Alps (crosses indicate the sampled populations) and

(b) in the French Alps with three mountain massifs (Chartreuse, Vercors, southern French Alps) of (c) the Crucifer Arabis alpina. The

grey square in (a) indicates the sampling area in the French Alps.
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European Alps (Bovet et al. 2006; Ehrich et al. 2007). It

has a large altitudinal distribution, ranging from the

montane to the alpine and even nival vegetation belt. A.

alpina prefers open, moist and rocky habitats but also

grows at nutrient-rich, densely vegetated sites. It mainly

reproduces sexually through seeds or asexually via sto-

loniferous growth (Ansell et al. 2008).

The samples of the first data set were collected and

genotyped in the course of the European project IN-

TRABIODIV (Gugerli et al. 2008). Leaf samples of A.

alpina were collected across the European Alps (latitude:

44�48¢ to 48�36¢; longitude: 5�20¢ to 15�40¢) within a 12¢
latitude · 20¢ longitude rectangular grid system (ca.

23 km · 25 km) during summer of 2004. The elevation

of the sampling locations ranged from 640 m to 2820 m

above sea level. Three plants (at a minimum distance of
10 m) were sampled in 130 cells, resulting in a total of

385 samples distributed over 171¢350 km2 (Fig. 1a).

Samples were dried in silica gel, and AFLP data were

generated using a protocol inspired from Vos et al.

(1995) as described in Gugerli et al. (2008). After elec-

trophoresis on an ABI 3100 automated sequencer

(Applied Biosystems), 140 polymorphic AFLP loci were

scored for presence ⁄ absence using GENOGRAPHER

(http://hordeum.oscs.montana.edu/genographer/). A

mean error rate of 1.3% per locus was estimated based

on 46 duplicated samples.

The second data set was sampled in the French Alps

(Herrmann et al. 2010; Poncet et al. 2010). Plants were

collected from 93 locations in three mountain massifs

(Vercors, Chartreuse, southern French Alps; Fig. 1b).

Elevation of the sampling locations ranged from 691 m
� 2010 Blackwell Publishing Ltd
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to 3133 m above sea level. Fresh plant material from

three to nine individuals per location was collected in

the summer of 2006 and dried in silica gel. AFLP data

were generated as outlined in Herrmann et al. (2010).

After electrophoresis on an ABI 3100 automated

sequencer, 1731 AFLP markers were scored for pres-

ence ⁄ absence from 321 individuals using GENEMAPER 3.7

(Applied Biosystems). An error rate of 1.2% per locus

was estimated by duplicated analyses of 39 samples.

Using the R script described in Herrmann et al. (2010),

we automatically determined the presence or absence of

AFLP fragments based on criteria related to peak height

distribution, and we further removed loci of low repro-

ducibility. This procedure resulted in a final data set

containing 712 polymorphic AFLP loci. Note that the

two genetic data sets described above did not comprise

the same AFLP loci. We could thus compare the per-

centages of detected loci and of environmental predic-

tors correlated to allele distributions but not directly of

corresponding genomic regions between large vs. regio-

nal and local scales. For further analysis, we used the

allele frequencies at AFLP loci per location.
Environmental variables and PCA

Fourteen monthly and annual environmental variables

related to temperature, precipitation and topography

were extracted per sampling location from published

GIS eco-climatic layers from 1980 to 1989 (200-m resolu-

tion; Zimmermann & Kienast 1999) (Table 1). A princi-

pal component analysis (PCA) was applied to these

environmental variables to examine possible correla-

tions between eco-climatic variables and elevation and

remove redundant variables (i.e. variables that were

correlated at |r| > 0.8 and which were logically

related). We first identified variables correlated to each
Table 1 Environmental (climatic and topographic) variables used to

morphism (AFLP) loci in Arabis alpina. Variables finally included in th

Yearly climatic layers

(period 1980–1989)

ddeg: annual degree d

prcpangy: mean annu

srad: annual mean of

tmaxavgiy: number of

tmaxavgty: mean annu

tminavgiy: number of

tminavgty: mean annu

Seasonal climatic layers

(period 1980–1989)

prcp0305: spring seaso

prcp0608: summer sea

Topography dem: altitude

slp: slope [%]

asp: aspect

topo: integrated topog

twi: potential soil hum

� 2010 Blackwell Publishing Ltd
retained axis, creating groups of variables. Within each

group, we kept only one (or two) variables considered

to be the most pertinent in terms of local adaptation in

plants.
Statistical analysis

For the identification of AFLP loci of ecological rele-

vance, we applied the suite of analyses described below

for each of the three spatial scales separately (i.e. large,

regional and local) with the objective of explaining

AFLP allele distributions by environmental predictors.

First, we used only the environmental variables iden-

tified as being uncorrelated from the PCA analysis.

These environmental variables, except aspect, were

used both untransformed and transformed into cubic

polynomials, the latter to account for nonlinear relation-

ships between AFLP allele frequencies and these vari-

ables (Legendre & Legendre 1998). Aspect was

transformed into sin(aspect) and cos(aspect), rendering

this variable appropriate for use in linear models. Since

environmental and geographical variation are consid-

ered to covary at broad spatial scales (see Introduction),

we assumed that the spatial signature of unaccounted

environmental variables was mostly broad-scaled.

Therefore, we used broad-scaled MEM (i.e. the first half

of the MEM eigenfunctions that model positive spatial

correlation). They were used as proxies for unaccounted

environmental variation. MEM are spatial eigenfunc-

tions, computed from the geographic coordinates of the

study sites, that describe the spatial relationships

among the sites at all scales that can be perceived by

the sampling design. The type of MEM variables com-

puted in the present study were formerly called princi-

pal coordinates of neighbour matrices (PCNM) (Borcard

& Legendre 2002; Borcard et al. 2004; Dray et al. 2006).
explain allele frequencies at amplified fragment length poly-

e analyses are in bold

ays above 0�C from daily climate maps [�C · days]

al precipitation sum [cm]

daily global radiation (horizon- terrain-corrected) [kJ ⁄ m2 ⁄ day]

days with maximum temperature below freezing

al maximum temperature [�C]

days with minimum temperature below freezing

al minimum temperature [�C]

nal precipitation: number of rain days from March to May

sonal precipitation: number of rain days from June to August

raphic exposure map

idity
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Fig. 2 Representation of the standardized variables on a prin-
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Two joint tables of explanatory variables (i.e. predictors)

were produced. The first one comprised the untrans-

formed environmental variables (i.e. linear effects only,

except for the cos ⁄ sin transformed aspect) and the

broad-scale MEMs, while the second contained the

transformed variables (i.e. polynomial effects and

cos ⁄ sin aspect) and the broad-scale MEMs.

Second, for the large and regional scales, two multi-

ple regressions were computed, between the allele fre-

quencies per location and the two joint tables

comprising respectively the linear and the polynomial

effects. For the local scale, a multiple regression

between allele frequencies per location was computed

using only the first joint table containing the linear

effects; the number of explanatory variables tested in

the joint table with polynomial effects was too large

given the number of study locations. Adjusted R2 val-

ues were computed, which are unbiased estimators of

the explanatory power provided by a particular set of

variables (Ohtani 2000). Loci with an adjusted R2 ‡ 0.5

were considered to be significantly correlated to at least

one predictor. In principle, several criteria could be

used to identify loci of ecological relevance. (1) For

example, one could test whether the regression of the

loci on the environmental and broad-scaled MEM vari-

ables is significant, to identify the loci whose spatial

variation can, at least to some extent, be explained by

the environmental variables. This would be a liberal cri-

terion: many loci with significant albeit small explained

variation would be retained. One should, of course, use

a correction for multiple testing (e.g. the Holm or Hoch-

berg corrections; see Wright 1992) in order to have an

experiment-wise error rate approximately equal to the

significance level. (2) On the other hand, and as applied

in this study, one could use the more conservative crite-

rion of the proportion of variation of each locus

explained by the environmental variables. One would

use the adjusted R-square, R2
adj, which is an unbiased

estimator of the explained variation, and determine a

threshold (here 0.50) combined with the criterion of a

significant relationship; any other convenient threshold

value could have been used.

Finally, we used linear regressions between allele fre-

quencies at each of the identified significantly correlated

loci and each predictor separately in order to estimate

the explanatory power provided by each environmental

variable, using R2
adj values.
cipal component plot, with PCA axis 1 as the abscissa and axis

2 as the ordinate. The circle delimiting the graph corresponds

to the circle of maximum fit of the standardized variables in

the plot (i.e. correlation circle). The angles between variables

and between variables and axes indicate their correlations. Per-

centage of variation explained by axes 1 and 2 respectively: (a)

European Alps: 42%, 17%; (b) French Alps: 56%, 12%. For

abbreviations of variables, see Table 1.
Results

PCA analysis of environmental variables

The first two axes of the PCA explained 60% of the

variation in the environmental variables for the Euro-
pean Alps and 68% for the French Alps. At both

scales, all temperature variables and elevation were

highly correlated (|r| > 0.8) with the first PCA axis

(Fig. 2). In the French Alps (Fig. 2b), precipitation

variables were also correlated with the first PCA axis

but less strongly than the temperature variables. For

the European Alps (Fig. 2a), the precipitation vari-

ables (except summer seasonal precipitation, prcp0608)

were correlated with the second PCA axis. We thus

retained one variable from those correlated with axis

1 and two variables from those correlated to axis 2.

Since we were interested in the biological interpreta-

tion of these variables, we preferred non-synthetic

variables (by opposition to synthetic variable like PCA
� 2010 Blackwell Publishing Ltd
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loadings, but see Manel et al. 2009 for a correspond-

ing analysis and discussion). We retained the same

eight environmental variables for the analysis at all

scales: mean minimal temperature per year (tmi-

navgty), annual mean of daily global radiation (srad),

spring seasonal precipitation (prcp0305), summer sea-

sonal precipitation (prcp0608), slope (slp), aspect (asp),

integrated topographic exposure map (topo), and

potential soil humidity (twi).
Detecting loci of ecological relevance

MEM analysis identified 11 broad-scaled MEM vari-

ables for the European Alps, 5 for the French Alps and

2 for each of the three local-scale analyses. The multiple

linear regressions between allele frequencies and the

joint table containing the transformed variables (i.e.

polynomial effects and cos ⁄ sin aspect) and these broad-

scaled MEMs, based on the R2
adj criterion, detected 12%

and 11% of all AFLP loci of ecological relevance at the

large and regional scales, respectively (Fig. 3a, c;

Table 2). Consideration of the linear environmental

variables only reduced the percentages of loci with eco-

logical relevance to 10% and 3%, respectively (Fig. 3b,

d; Table 2). At the local scale and considering the linear

explanatory variables only, we detected 3% of the loci

as being of ecological relevance in Chartreuse (Fig. 3e),

16% in Vercors (Fig. 3f), and 17% in the southern

French Alps (Fig. 3g; Table 2). Nine of the 21 loci of

ecological relevance with a linear response identified at

regional scale in the French Alps were also detected at

the scale of single massifs (eight in the southern French

Alps, one in Vercors). Two out of the 13 loci classified

as being of ecological relevance in Chartreuse were also

detected in Vercors, and Chartreuse and the southern

French Alps also only shared two loci. Ten out of the

78 loci of ecological relevance identified in Vercors were

also of ecological relevance in the Southern French

Alps.
Environmental variables acting as potential selective
pressures

To quantify the influence of the explanatory variables,

R2
adj values were estimated in separate regressions

between each locus of ecological relevance and each of

the eight explanatory variables, and then cumulated by

explanatory variable using a bar plot (Fig. 4). At the

scale of the European and French Alps, MEM variables

had the highest explanatory power with high cumu-

lated R2
adj values over all loci of ecological relevance

(Fig. 4a–d). The influence of MEM variables was less

clear at the local scale (Fig. 4g). At that scale, however,

only two explanatory MEM variables were used
� 2010 Blackwell Publishing Ltd
compared with 11 and 5 MEM variables at the large

and regional scales.

After accounting for spatial effects through MEM

variables, tminavgty was the environmental variable

with the best explanatory power. It had the highest

cumulated R2
adj value at all spatial scales, except for the

large scale (cubic polynomial) and for the local scale in

massifs Vercors and Chartreuse where its scores came

second after those of prcp0608 or prcp0305 (Fig. 4). The

second major environmental driver of AFLP allele dis-

tributions was precipitation (prcp0608 or prcp0305;

Fig. 4).
Discussion

This paper proposes a new approach to identify loci

linked to adaptive variation owing to their correlation

with environmental variables, while also considering

their spatial variation unaccounted for by the avail-

able environmental variables. This approach allowed

us to identify loci of ecological relevance under

natural conditions (Hamilton et al. 2002; Skot et al.

2002; Karrenberg & Widmer 2008; Schmidt et al.

2008). The originality of our approach lies in the use

of broad-scaled MEM variables to model the spatial

variation of the loci not accounted for by the

environmental predictors included in the analysis

(Borcard & Legendre 2002; Borcard et al. 2004; Dray

et al. 2006). Moreover, large scale geographical effects

on the structure described by genetic markers, which

are also retrieved by MEM variables, relate to the

influence of historical dynamics of A. alpina. This

refinement of environmental association analysis pro-

vides a basis for identifying and characterizing geno-

mic regions under selection and to subsequently

evaluate their functionality using molecular and

experimental approaches (Holderegger et al. 2008).
Methodological issues

Our approach combines a simple algorithm (i.e. linear

regression) and a powerful measure of model validity

(the adjusted R2, Ohtani 2000). Other algorithms could be

used instead of linear regression (e.g. logistic regression),

but measuring the fit of the model would be more diffi-

cult because R2
adj statistics are not available in generalized

linear models (GLM) (Joost et al. 2007; Manel et al. 2009;

Poncet et al. 2010). However, multi-model inferential

approaches have been developed (Burnham & Anderson

2002) and can also be used in GLM to identify relevant

selective pressures and select best models. Future studies

on allele distribution models need to consider previous

work on algorithms to model species distributions, such

as comparative algorithm studies (Elith et al. 2006; Elith
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Fig. 3 Frequency of R2
adj values from multiple linear regressions of Arabis alpina AFLP allele frequencies per locus and eight environ-

mental variables (see Table 1) and broad-scaled MEMs. Environmental variables (except aspect) were either considered as linear (LE)

or as cubic polynomials (PE). Aspect was sin- and cos-transformed. (a) European Alps—PE (17 out of 140 markers had

R2
adj > 0.5 = 12%; (b) European Alps—LE (14 out of 140 = 10%); (c) French Alps—PE (76 out of 712 = 11%); (d) French Alps—LE (21

out of 712 = 3%); (e) Chartreuse—LE (13 out of 509 = 3%); (f) Vercors—LE (78 out of 498 = 16%); (g) Southern French Alps—LE

(101 out of 588 = 17%).
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& Graham 2009) or review and perspective analyses

(Guisan et al. 2002; Thuiller et al. 2008).

If possible, it would also be useful to double-check

the ecological relevance of the identified loci using pop-

ulation genomic approaches (Beaumont & Balding 2004;

Foll & Gaggiotti 2008). Such approaches are used to

detect outlier loci, i.e. those loci more strongly differen-

tiated among populations than expected under neutral-
ity (Beaumont & Nichols 1996; Beaumont & Balding

2004; Foll & Gaggiotti 2008). However, these genomic

methods only deal with random samples from genetic

populations, hence, they are not suitable for analyzing

individuals continuously sampled over space. In our

case, the adopted study designs of our two data sets

precluded the application of methods relying on genetic

population-based allele frequencies.
� 2010 Blackwell Publishing Ltd



Table 2 Number of sites and loci analysed at each of three scales. Number of loci of ecological relevance detected either using cubic

polynomials of the environmental variables and MEM variables or linear environmental variables and MEM variables as explanatory

variables in multiple regressions

Scale Study area

Number

of sites

Number

of loci

Number of

loci (cubic)

Number of

loci (linear)

Large European Alps 44 140 17 14

Regional French Alps 93 712 76 21

Local Chartreuse 39 509 ⁄ 13

Vercors 26 498 ⁄ 78

Southern French Alps 30 588 ⁄ 101

SCALE AND ADAPTIV E GENETIC V ARI ATI ON 3831
Consistency of environmental predictors across
different scales

The spatial variation measured by MEM variables

seems to be more influential at large and regional scales

than at a local scale (Fig. 4). A first explanation for this

result is that 11 and 5 MEM variables explained AFLP

allele frequencies at the larger scales, while only two

MEM variables were identified at the local scale. A sec-

ond explanation is that at smaller scales, environmental

variables are less influenced by broad-scale spatial pat-

terns.

After accounting for broad-scale spatial effects by

MEMs, which represent purely geographical variation

as well as the effects of unaccounted environmental

variables, temperature and precipitation were identified

as the two major drivers of allele distributions at all

spatial scales, although this was less evident at a local

scale (Fig. 4). A similar result was obtained for A. alpina

sampled in the French and the Swiss Alps (Poncet et al.

2010). These authors used generalized estimation equa-

tions and found AFLP loci correlated with tminavgty,

prcp0305, slp and twi. They identified 43 (5.2%) loci sig-

nificantly related with mean annual minimum tempera-

ture in the French Alps, not considering massifs, and 10

(1.2%) in the Swiss Alps. The slightly higher percentage

(12% and 11% at large and regional scales, respec-

tively) of putative loci with adaptive relevance identi-

fied in the present study can partly be explained by the

use of MEM variables that modelled the unaccounted

environmental variation and by the higher number of

environmental variables used.

Previous studies have shown the importance of tem-

perature and precipitation in plant adaptation (Hamilton

et al. 2002; Skot et al. 2002; St Clair et al. 2005; Richard-

son et al. 2009), and not only in alpine environments

(Körner 2003). For example, Richardson et al. (2009)

found an effect of both temperature and precipitation

on AFLP loci in western white pine, Pinus monticola,

from western North America, using population-based

outlier loci detection methods (Beaumont & Balding
� 2010 Blackwell Publishing Ltd
2004). We see the coincidental responses of tempera-

ture and precipitation as a result of these two clinal

variables being highly correlated to elevation in the

European Alps (Körner 2003). Therefore, both variables

vary often in parallel at any scale. On the other hand,

the topography-related variables included in our analy-

sis did not co-vary with elevation and thus represented

a rather local component of environmental variation.

This scale-dependent responsiveness of groups of envi-

ronmental predictors should be considered in future

studies associating adaptive genetic variation to envi-

ronmental gradients.

A. alpina occurs across a large altitudinal range,

which requires specific adaptations to the respective

clines in environmental conditions. At the same time,

the species may be found in various types of habitats at

a local scale, such as scree slopes, rocky outcrops, moist

or eutrophic sites. Our analysis did not consider such

small-scale micro site variation, which may be the rea-

son why topography-related environmental variables,

e.g. topo or twi, revealed low values of R2
adj (Fig. 4). As

such, the inferred pattern of adaptation at different

scales nicely fitted the ecological niche of A. alpina in

the study ranges.
Scale-specific patterns of adaptation

Our approach detected AFLP loci of ecological rele-

vance at all spatial scales considered. Two and 8% of

the loci showed a non-linear relationship of allele fre-

quencies with the environmental variables at the large

and the regional scales, respectively, and no significant

relationship was detected when considering linear

responses. This result illustrates that adaptation was

not always a direct linear response to the environment.

In addition, we found a higher proportion of loci of

ecological relevance responsive to linear environmental

predictors at a local scale, namely in the Vercors and

the southern French Alps (16% and 17%, respectively);

lower percentages of adaptive loci were related to linear

predictors at the regional scale of the French Alps and



0

2

4

6

8

10
A

dj
us

te
d 

R
2

srad prcp0305 slp twi PCNM

0

2

4

6

8

10

srad prcp0305 slp twi PCNM

A
dj

us
te

d 
R

2

0

5

10

15

20

25

sr
ad

pr
cp

06
08

pr
cp

03
05

tm
ina

vg
ty slp to

po tw
i

as
p

PCNM

A
dj

us
te

d 
R

2

0

2

4

6

8

10

sr
ad

pr
cp

06
08

pr
cp

03
05

tm
ina

vg
ty slp to

po tw
i

as
p

PCNM

A
dj

us
te

d 
R

2

0

0.5

1

sr
ad

pr
cp

06
08

pr
cp

03
05

tm
ina

vg
ty slp to

po tw
i

as
p

PCNM

A
dj

us
te

d 
R

2

0

2

4

6

8

10

sr
ad

pr
cp

06
08

pr
cp

03
05

tm
ina

vg
ty slp to

po tw
i

as
p

PCNM
A

dj
us

te
d 

R
2

0

2

4

6

8

10

12

sr
ad

pr
cp

06
08

pr
cp

03
05

tm
ina

vg
ty slp to

po tw
i

as
p

PCNM

A
dj

us
te

d 
R

2

(a) (e)

(f)

(g)

(b)

(c)

(d)

Fig. 4 Bar plots of R2
adj values for the loci of ecological relevance presented in black in Fig. 3. R2

adj values were calculated from

simple linear regressions between allele frequencies and the eight environmental variables (either considered as linear (LE) or cubic

polynomials (PE)), multiple regressions on sin(aspect) and cos(aspect), or multiple regressions on the broad-scale MEM variables.

(a) European Alps—PE (11 MEMs); (b) European Alps—LE; (c) French Alps—PE (5 MEMs); (d) French Alps—LE; (e) Chartreuse—LE

(2 MEMs); (f) Vercors—LE (2 MEMs); (g) Southern French Alps—LE (2 MEMs).
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at the local scale of the Chartreuse massif. However,

43% of the loci of ecological relevance were in common

between the regional and local scales.

The above results suggest that there may be two dif-

ferent types of adaptive responses acting on A. alpina.

Many loci are probably involved in site-specific local
adaptation, hence the large number of loci of ecological

relevance at local scale, while other ecologically relevant

loci are mainly involved in more general adaptive

responses at larger geographical scales. The latter type

likely reflects selective pressures consistent across scales

in alpine plants (Körner 2003), such as adaptation to
� 2010 Blackwell Publishing Ltd
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altitude or frost. In contrast, adaptive fine-tuning of

gene regulation and expression acts at a local scale. The

involvement of many genes in ecologically important

traits as well as the action of local networks of gene reg-

ulation have recently been reviewed for plants and, in

particular, for Arabidopsis thaliana (Alonso-Blanco et al.

2009). However, the interpretation of our comparisons

across scales is preliminary for two reasons. First, there

is large variation in the number of loci of ecological rel-

evance among replicates at the local scale (3–17% of the

loci). Second, we have no replicates available at the

regional and large scales and, therefore, cannot assess

the level of confidence in these estimates. Additional

studies across various scales are needed before general-

izations can be made.
Limitations and perspectives

Until recently, the AFLP technique was the most con-

venient method for obtaining large numbers of molec-

ular markers for genomic studies in non-model

organism, for which no a priori sequence knowledge

was available (Meudt & Clarke 2007). We took advan-

tage of this circumstance, making use of two large

data sets to introduce our new approach. While the

AFLP loci used in our study were not the same at

large versus regional and local scales, we obtained a

similar result for all scales, namely that temperature

and precipitation are the major drivers of allele distri-

butions after spatial signals were accounted for. This

congruence gives strong support for the significance

of the loci identified as ecologically relevant. Recent

advances in next-generation sequencing technology

and their increasing affordability (Hudson 2008) will

allow us to replace AFLP by other, more informative

markers such as expressed sequence tags (ESTs) or

single-nucleotide polymorphisms (SNPs) (Manel et al.

2010) and to rely on more comprehensive genomic

resources in environmental association studies. The

very near future will see large SNP data sets with

functional information for each SNP and large envi-

ronmental databases (Manel et al. 2010) becoming

available. However, whether SNPs (from candidate

genes) or AFLPs are used, scarcely matters for this

study: the only claim we make here is that our loci

of ecological relevance are linked to genomic regions

under selection. Even though it may be appealing to

study SNPs within coding sequences, these may still

refer to synonymous mutations with no change in

protein function and, therefore, be non-adaptive like

any anonymous marker. Experimental proof of the

truly selective nature of a particular marker will ulti-

mately be required in the case of AFLPs as well as

SNPs.
� 2010 Blackwell Publishing Ltd
Conclusions

Our results illustrate the potential of allele distribution

models for identifying loci that are potentially influ-

enced by natural selection along complex environmental

gradients. Accounting for spatial and possibly unidenti-

fied environmental variation using MEM spatial eigen-

functions allowed us to detect a high number of loci of

ecological relevance. However, allele distribution mod-

els only identify loci that are physically linked to geno-

mic regions harbouring genes that display relevant

adaptive variation. Simultaneously, they identify poten-

tial selective pressures. Hence, the next steps in the

analysis of the adaptive value of such loci will be to

characterize them using genomic information, pinpoint

the underlying genes and their variation on a molecular

basis, and test their ecological relevance in selection

experiments (Gienapp et al. 2008; Hoffmann & Willi

2008). The rapid increase in sequence availability

(Martin & Martin 2010), including sequences from

non-model organisms, should pave the way for rapid

progress in the study of adaptive response to environ-

mental variation and change.
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