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Abstract 

Statistical and deterministic simulation modelling rely on a complex process made of trials, errors, and gradual 
improvement of the simulations. The major problem is to be able to quantify the quality of the simulations in order 
to know if a modification of the concepts, the laws simulating the processes, or the parameters improve it. To try to 
quantify the quality of simulations using a mathematical criterion we focus on simple linear regression parameters: 
the values of the slope (a) and the y-intercept (b). The estimated values of these parameters differ depending on 
which kind of regression model (model I or II) is used. An artificial dataset illustrates that ordinary least-squares 
regression (OLS; model I regression) leads to results that are not those expected; but using major axis regression 
(MA; model II regression) instead of OLS leads to the correct answer. The value of a, when it significantly differs 
from 1, indicates a difference between observed and simulated values proportional to the values of the variable. The 
value of b, when it significantly differs from 0, indicates a systematic and constant difference between observations 
and simulations. Taking into account the values of a and b, we define four possible outcomes which allow, at first, to 
define the quality of a simulation without considering the coefficient of determination, r2: (i) a n.s.d. (not 
significantly different from) 1 and b n.s.d. 0 (perfect agreement between observations and simulations), (ii) a n.s.d. 1 
and b s.d. 0 (significant constant difference between observations and simulations) or a s.d. 1 and a s.d. 0 and b 
n.s.d. 0 (differences proportional to the values of the variable), (iii) a s.d. 1 and a s.d. 0 and b s.d. 0 (superimposition 
of a constant difference and a proportional difference), and (iv) a n.s.d. 0 (no relation between simulations and 
observations). The value of r 2 is used to rank two simulations pertaining to the same group. That classification of 
the quality of the simulations is applied to a real-data example: a simulation of the temporal change in chlorophyll a 
in a high-rate algal pond. 
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I. Introduction 

Statistical and deterministic simulation mod- 
elling rely on a complex process made of trials, 
errors, and gradual improvement of the simula- 
tions. As "predictive models (calculation tools) 
are judged for their usefulness on how accurately 
they can predict aspects of the real w o r l d . . . "  
(Loehle, 1983), the major problem is to be able to 
quantify the quality of the simulations in order to 
know if a modification of the concepts, the laws 
simulating the processes, or the parameters would 
improve it. 

Comparing modelling techniques is different 
from comparing simulations. Comparing several 
techniques requires to take into account the con- 
ceptual foundations of the models and to com- 
pare the models on the whole, i.e., considering all 
the simulated variables and other components 
such as the number of forcing variables, for in- 
stance. The criterion may be a scalar (i.e., a single 
figure) or better  a vector since, according to Hal- 
fon and Reggiani (1978), several pieces of infor- 
mation are generally required to compare differ- 
ent models. Estimating a simulation quality, on 
the other  hand, simply consists of comparing the 
observed and simulated patterns of a variable 
without questioning the model. It offers the ad- 
vantage of allowing to compare simulations pro- 
duced under different models, relying on differ- 
ent mathematical techniques (statistical and de- 
terministic models, for instance: Keller, 1989), or 
having different numbers of parameters (Robin- 
son, 1986). 

This estimation of simulation quality may be 
carried out qualitatively, i.e., visually (Andersen 
et al., 1987; Smith and Putz, 1993), but that 
remains very subjective. "There  are many models 
in the literature which are depicted together with 
such comparisons but on which it is hard to agree 
with the authors' optimism regarding similarity 
with reality". (Stra~kraba and Gnauck, 1985). It is 
more satisfying to try to quantify the quality of 
simulations with the help of a mathematical crite- 
rion even if its choice remains somewhat subjec- 
tive. 

Some tests a n d / o r  criteria allowing to validate 
a simulation are described in the literature. Tra- 

ditional methods include ordinary least-squares 
(OLS) regression (Reckhow and Chapra, 1983; 
Costanza and Sklar, 1985; Stra~kraba and Gnauck, 
1985; Robinson, 1986; Keller, 1989; Mayer and 
Butler, 1993; Smith and Rose, 1995), chi-square 
test (Stra~kraba and Gnauck, 1985; Costanza, 
1989; Valentin and Coutinho, 1990) or t - tes t  
(Rose et al., 1988) and its nonparametric alterna- 
tive the Mann-Whi tney-Wilcoxon test (Reckhow 
and Chapra, 1983). More recent techniques may 
be found in the literature, such as the bootstrap 
(Halfon, 1989), the multiple resolution procedure 
proposed by Costanza (1989), the mean squared 
error of predictions (Wallach and Goffinet, 1989), 
or the modelling efficiency, regarded by Mayer 
and Butler (1993) as " . . .  the best overall measure 
of agreement between observed and simulated 
values". 

Therefore,  while several tests or criteria have 
been proposed in the literature, most are actually 
difficult to apply, either because they are not 
sufficiently detailed and documented, or the pro- 
cedures to implement them are too heavy. This 
concurs with a statement by Wallach and Goffinet 
(1989): "The  evaluation of model quality is obvi- 
ously an essential aspect of the modelling activity. 
However, if one considers the modelling litera- 
ture, one finds few indications as to how to evalu- 
ate a model". 

In the present paper, we focus on simple linear 
regression because it is simple to use and it 
certainly represents the most widely used mod- 
elling technique in ecology. Simple linear regres- 
sion between observed and computed data, and 
its associated parameters, are sufficient to check 
simulation quality but modellers have to consider 
carefully which simple linear regression model 
they have to use. First, we develop the concepts 
underlying the use of simple linear regression to 
quantify the fit of data computed by several de- 
terministic or empirical (statistical) models. Sec- 
ondly, we consider OLS, the widely-used model I 
method of simple linear regression, which, ac- 
cording to many authors (listed above), seems 
adequate to check simulation quality; we will 
show that it is not. It has been used for this 
purpose by many authors (e.g., Keller, 1989; Sum- 
mers et al., 1991), including ourselves (Mespl6 et 
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al., 1995b,1996). Thirdly, we suggest to use major 
axis regression (MA), one of the model II  meth- 
ods of simple linear regression, instead of OLS; 
and finally, we apply this method to examples 
bearing on real data. 

2. The concepts underlying goodness of fit 

As noted above, simple linear regression may 
be used to compare  observed and simulated data 
and to quantify the quality of simulations, as well 
as its improvement  or deterioration. The method 
is described in all textbooks of biological statis- 
tics, including Sokal and Rohlf  (1995). The pa- 
rameters  we are interested in are: the slope (a)  
and the y-intercept (b)  of the regression line, the 
95% confidence intervals associated with these 
parameters  (if one adopts the widely-used a = 
0.05 confidence level), and the coefficient of de- 
termination ( r 2 ) .  A simulation perfectly reflecting 
natural variability would lead to the following 
linear regression comparing simulated to ob- 
served values: Xobser~ed = Xsimulated'.+'E that is to 
say, the parameters  of the regression equation 

Xobserved = a • ) ( s i m u l a t e  d "+" b + e would be: a = 1 
and b = 0, and the angle 0 between the regres- 
sion line and the x-axis would be 45 ° (Fig. la). 

So, when comparing a 'good'  simulation to 
observed data, the following should be found: 
1. a ~ 0, i.e. the slope a is significantly different 

from 0; 
2. a = 1, i.e. the slope a is not significantly differ- 

ent from 1; 
3. b = 0, i.e. the intercept b is not significantly 

different from 0. 
If  a is not significantly different from 0 - -  in 

other words, if (1) is not true - -  then the ob- 
served data do not provide enough information to 
help evaluate the simulation, even though (2) may 
be true. If  a ~ 0, it tells us something about the 
discrepancy between observations and simula- 
tions, showing on average whether  the simulation 
overestimates (a > 1) or underest imates (a < 1) 
the observations proportionally to their value. In 
order to know if there is a relation between the 
observations and the simulations, we will test first 
whether  a is significantly different from 0 (H0: 
a = 0; H i :  a > 0) and, if so, whether  it signifi- 
cantly differs from 1 (H0: a = 1). 

If  a is found not to be significantly different 
from 0, there is no relation between simulations 
and observations and it is useless to consider b. 
This situation raises the problem of power, how- 
ever. When a statistical null hypothesis is re- 
jected, one knows what the probability is of tak- 
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Fig. 1. (a) Regression line reflecting a perfect simulation (a = 1, b = 0); (b) ordinary least-squares regression line (OLS) (a = 0.86, 
b = 0.77) and major axis (MA) regression line (a = 0.96, b = 0.29) calculated with the artificial dataset. 
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ing the wrong decision; this is given either by the 
a significance level of the test, or by the com- 
puted probability associated with the test statistic. 
When the null hypothesis cannot be rejected, 
however, one does not know the probability of 
making a mistake if one concludes that, there- 
fore, the null hypothesis must be true. The proba- 
bility of this kind of error (type II  error) is usually 
referred to as /3. Its one-complement ,  1-/3, is 
called the power of a test. The power of a test is 
the probability of successfully rejecting the null 
hypothesis when indeed it should be rejected. 
The importance of power analysis in ecological 
studies has been stressed by Peterman (1990). For 
the most usual tests of significance, power can be 
determined by looking up published tables, as in 
Kraemer  and Thiemann (1987) or Cohen (1988). 
In the present  case, it is easy to determine the 
power of the one-tailed test of the correlation 
coefficient ( r )  since published tables are avail- 
able. A test of r = 0 is exactly the same as a test 
of a = 0. A statement  about power, or about the 
probability of a type II  error, should be made 
whenever one cannot reject the null hypothesis 
and wants to conclude that this hypothesis should 
therefore be accepted, in order to draw conclu- 
sions about the quality of the simulations. Power 
of this test can be increased in a variety of ways: 
by increasing a (the probability of a type I error), 
by increasing the sample size n, by using a one- 
tailed instead of a two-tailed test (this is always 
the case with the present  problem, however), and 
by increasing the smallest value of correlation 
one wants to be able to detect (ex. r = 0.20). 

The intercept paramete r  b can be tested (H0: 
b = 0) by calculating its 95% confidence interval 
(or confidence interval, C.I., at some other prese- 
lected significance level) and verifying that it in- 
cludes the value 0. If  n is high enough to allow 
rejecting the null hypothesis a = 0, then it is 
likely to provide enough power as well to the test 
of significance of the intercept b. 

Five outcomes are possible all together: 
1. (a = 1, b = 0). The model may be regarded as 

perfectly simulating, on average, the observa- 
tions; 

2. (a -- 1, b :g 0). The simulation overestimates or 
underestimates,  on average, the observations; 

3. (a 4~ 1, b = 0). The gap between the simulated 
and observed curves is proportional to the 
values of the respective points; 

4. (a 4= 1, b ~ 0). Superimposition of outcomes 
(2) and (3); 

5. a - - 0 .  No relation between simulations and 
observations. 
Coefficients of determination (r  2) are useful 

to discriminate among simulations that belong to 
the same of the first four groups, and indicate 
which one is to be preferred.  

If  the results of a simulation classify it in the 
first group (a = 1, b -- 0), then that simulation is 
bet ter  than another  one that would be in the 
other four groups. If  the results put a simulation 
in group 4 (a 4= 1, b :/: 0), then that simulation is 
worse than another  one that would be in groups 1 
to 3. The worst of all is group 5, where the 
simulation results are linearly unrelated to the 
observations. There  is, however, some ambiguity 
concerning the two intermediate groups (2 and 
3). They cannot be arranged along a linear scale 
since a simulation pertaining to the second group 
(a = 1, b ~ 0) has a systematic and constant dif- 
ference with the observations, while a simulation 
of the third group (a :/: 1, b = 0) shows a differ- 
ence proportional to the variable's value. Each of 
these differences brings an information about the 
weaknesses of the model and we cannot state that 
a simulation pertaining to group 2 is bet ter  or 
worse than a simulation pertaining to group 3. 

3. Ordinary least-squares regression (OLS) 

This method is the most popular  of the simple 
linear regression methods, because it is easy to 
compute,  taught in elementary courses of  statis- 
tics, and implemented in all statistical software 
packages. But besides the assumption that the 
variables under study are linearly related, model I 
regression also makes the assumption that the 
independent  variable is controlled (i.e. the values 
along the abscissa are known a priori by the 
observer or experimenter),  or measured without 
error. It may seem that any given simulation 
generates a unique series of values, without error; 
but since the forcing variables or functions, the 
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parameters ,  and sometimes even the functions 
describing the processes are est imated with error, 
one should realize that the simulated values ob- 
tained from a model possess an error. Modellers 
are certainly aware of this fact because one of the 
steps of the modelling procedure  is to perform a 
sensitivity analysis in order to know how the 
model reacts to variations in the forcing variables, 
the parameters  or the functions; its objectives are 
(i) to determine if the model could be used in 
other  comparable  conditions (other ecosystems, 
other  seasons) described mathematical ly by other 
values of the forcing variables, functions and pa- 
rameters,  and (ii) to make sure that the model is 
not too sensitive to the uncertainty associated 
with those forcing variables, functions and pa- 
rameters.  According to JOrgensen (1994) "The  
relative change in the pa ramete r  value is chosen 
based on our knowledge of the certainty of the 
parameters" .  Reckhow and Chapra  (1983) pro- 
pose to evaluate a type of confidence interval of  a 
simulation, computing it many times with param- 
eters issued from their confidence intervals. 

A consequence of the errors, associated with 
the observations and the simulations as well, is 
that a model I regression is not appropr ia te  for 
our purpose; this is illustrated using an artificial 
dataset. We generated a variable X containing 
100 random values drawn from a uniform distri- 
bution [0,10] and two other variables, N1 and 
N2,  made of random numbers  drawn from a 
normal distribution N(0, 1). We combined these 
variables to create two new variables X + N1 and 
X +  N2.  OLS regression produces the following 
results; the cloud of points and the regression 
line are shown in Fig. lb: 

( X + N 2 )  = 0 . 8 6 ( X + N 1 )  + 0.77 + e. 

The angle between the regression line and the 
x-axis is 40.9 ° . 

The 95% confidence interval of the slope a is 
[0.78,0.95]; it does not include 0 nor 1. That  the 
slope is significantly different from 0 is confirmed 
by the coefficient of determination: r 2-- 0.814, 
P < 0.0001. 

The confidence interval of the y-intercept is 
[0.27, 1.28]; it does not include 0. While one would 
have expected a regression line with a slope equal 

/v 
x 

Fig. 2. Illustration of the differences between the ordinary 
least-squares regression (OLS) and the major axis (MA) re- 
gression. The OLS regression line minimizes the e~ when the 
MA regression line minimizes the ~'i. 

to, or near  1, and a y-intercept equal to, or near  
0, the results are different. What  went wrong? 
Simply that we used the wrong model of linear 
regression. Instead of OLS, we should have used 
major axis regression (MA), one of the model II 
regression techniques. 

4. Major axis regression (MA) 

According to Sokal and Rohlf  (1995), when 
both variables are subject to error and are in the 
same physical units, major axis regression is to be 
used. The major axis is actually the first principal 
component  of the scatter of points in Fig. lb. 
While the OLS regression line is that which mini- 
mizes the sum of squares of the vertical residuals 
(e i) between the observed values and the regres- 
sion line, the MA regression line minimizes the 
sum, over all points, of the squared Euclidean 
distances (~'i) of the points to the regression line 
(Fig. 2). The parameters  of the major axis are 
simple to compute; the method is described in 
Sokal and Rohlf  (1995, Box 15.6) for instance. 

Using the same data set as above, MA regres- 
sion gives the following results (Fig. lb): 

( X +  N2)  = 0 .96(X + N1)  + 0.29 + ~" 

The angle between the regression line and the 
x-axis is 43.8 ° . 
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Fig. 3. P h y t o p l a n k t o n  in pond  A: c o m p a r i s o n  of  observed  
(points)  and  s imula ted  data  (sol id lines),  a and  b: respect ive ly  
major  axis s lope  and  y - in tercept  o f  the  M A  regress ion  of  
s imula ted  on observed  data  (partly f rom Mesp l6  et  al., 1995a). 

The 95% confidence interval of the slope a is 
[0.87, 1.06]; it does not include the value 0 but it 
includes 1. The first part of this statement, that a 
is significantly different from 0, is confirmed by 
the correlation coefficient: r = 0.897, P < 0.0001. 

The intercept value b follows from the slope 
and the coordinates of the centroid of the distri- 
bution. Therefore, the confidence interval of b 
can be computed as in OLS regression. For this 
test data set, the confidence interval of the y-in- 
tercept is estimated to be [-0.21,0.80]; it does 
include the value 0. 

5. Real-data example 

Let us apply the proposed criteria, forming the 
couple (a, b) calculated from MA regression, to a 
concrete example: a deterministic model simulat- 
ing the temporal change in chlorophyll a concen- 
tration in a high-rate algal pond (Mespl6 et al., 
1995a). Simulations are conducted under three 
models, respectively called ' in /out '  (changes in 
chlorophyll a concentration depend only on in- 
flow and outflow, which are related in turn to the 
mean water residence time in the pond), 'without 
grazing' (phytoplankton growth and death added, 
but not grazing), and 'with grazing' (grazing ef- 
fect added). The models were calibrated with the 
data set from pond A, and then validated using 
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Fig. 4. Phytop lankton  in pond B: compar i son  of  observed  
(points)  and  s imulated  data  (solid l ines),  a and  b: respect ive ly  
major  axis s lope  and y - in tercept  o f  the M A  regress ion  of  
s imula ted  on observed  data  (partly f rom Mesp l6  et  al., 1995a). 
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the dataset  from pond B (both sample sizes, n 
equals 105). Those ponds were studied in paral- 
lel: the only difference between them was that 
mean water  residence time in pond A varied from 
2 to 12 days (shortest residence time in summer  
in order  to limit the development  of zooplankton) 
when mean  water  residence time in pond B was 
fixed and equal to 8 days. The results of the 
simulations are shown in Fig. 3 for pond A and in 
Fig. 4 for pond B. The results of the MA regres- 
sion of simulated on observed values are pre- 
sented in Table 1. They lead to the following 
observations: 

5.1. Pond A (calibration of the models) 

Chlorophyll a concentrations of the ' i n / o u t '  
model are not correlated to the observed concen- 
trations (a = 0), but they are (a 4= 0) for the other 
two models (with and without grazing). The value 
of the slope (a)  can, in the model without graz- 
ing, be considered equal to 1 but not in the model 
with grazing. The value of the y - in te rcep t  (b) 
increases dramatically f rom -3.86 ( ' i n / o u t '  

model) to -0.38 (model without grazing) and 
-0.54 (model with grazing); it can never be con- 
sidered to be equal to 0. 

If  a correlation were present  between the ob- 
servations and the simulations using the ' i n / o u t '  
model, we would expect it to be at least of 
medium size, i.e. r = 0 . 3 0  ( r 2 = 0 . 0 9 )  (Cohen, 
1988). With n = 105, the one-tailed test of such a 
correlation, at significance level a = 0.05, would 
give us power of about 93%, or a probability of a 
type II error of 7% (Cohen, 1988). The observed 
value of r = 0.167 ( r  2 =  0 . 0 2 8 )  is much smaller 
than 0.30, which allows us to state that the data 
really support  the null hypothesis (r  = 0, a = 0), 
with a probability of type II  error not exceeding 
7%. 

5.2. Pond B (validation of the models calibrated 
with pond A data) 

In the results of the ' i n / o u t '  model, the slope 
of the regression line (a)  significantly differs from 
0 and 1 and the y-intercept differs from 0. Mod- 
elling the evolution of chlorophyll a concentra- 

T a b l e  1 

R e s u l t s  o f  t h e  m a j o r  axis  r e g r e s s i o n  o f  s i m u l a t e d  c h l o r o p h y l l  a o n  o b s e r v e d  v a l u e s  fo r  t h e  two  p o n d s ;  a = s lope ,  b = y - i n t e r c e p t  o f  

t h e  r e g r e s s i o n  l i ne  (Xobse rved  = a "Xsimulate d q'- b + f )  

C h l o r o p h y l l  a P a r a m e t e r s  V a l u e s  L o w e r  l imi t  U p p e r  l i m i t  C o n c l u s i o n s  

s i m u l a t i o n  ( 9 5 % )  ( 9 5 % )  

P O N D  A 

i n / o u t  

m o d e l  

w i t h o u t  

g r a z i n g  m o d e l  

w i t h  g r a z i n g  

m o d e l  

P O N D  B 

i n / o u t  

m o d e l  

w i t h o u t  

g r a z i n g  m o d e l  

w i t h  g r a z i n g  

m o d e l  

a 5 .54 - 38.80 2.48 a = 0 

b - 3 . 8 6  - 4 . 1 9  - 3 . 5 3  b 4 : 0  

r 2 0 .02756  - - - 

a 0 .83 0.52 1.26 a v~ 0; a = 1 

b - 0 . 3 8  - 0 . 7 4  - 0 . 0 2  b 4 : 0  

r 2 0 .17594  - - - 

a 1.50 1.11 2.11 a 4: 0; a 4 :1  

b - 0 .54 - 0.83 - 0.25 b 4 : 0  

r z 0 .27736  - - - 

a 3 .57 2.68 5.23 a 4: O; a 4 :1  

b - 1.95 - 2.36 - 1.56 b 4 : 0  

r e 0 .26596  - - - 

a - 0 . 1 7  - 1.96 0.96 a --- 0 

b 1.75 1.25 2.25 b 4 : 0  

r e 0 .00154  - - - 

a 3 .30 2.66 4.31 a 4: 0; a ~ 1 

b - 1.82 - 2.22 - 1.43 b 4 : 0  

r 2 0 .40237  - - - 
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tions without considering the grazing process de- 
teriorates simulation quality, as there is no longer 
a correlation between simulated and observed 
data. As discussed above, power on the test of 
significance of r = 0.045, or r e =  0.002, is very 
good, so that we can state that the data actually 
support  the null hypotheses r = 0 and a = 0; since 
our alternative hypothesis was one-tailed (we ex- 
pected to find a positive relation, if any), finding 
a negative slope gives us further confidence for 
accepting the null hypothesis. Adding the grazing 
process allows to find again a correlation (even 
though the slope of the regression line is differ- 
ent from 1) and a y-intercept (b) that are differ- 
ent from 0. 

Considering pond A, the best simulation 
(model without grazing) is in the group (a = 1, 
b ~ 0 )w i th  a = 0.83 and b = -0 .38 ;  the ' i n / o u t '  
model gives a = 0, and the model with grazing is 
in the group (a ~ 1, b 4: 0). Thus, the maximum 
theoretical simulation quality (a = 1, b = 0) is not 
reached: adding growth and death processes to 

the ' i n / o u t '  model have improved the simulation 
quality, but adding grazing process has reduced 
it. In pond B, increasing the number  of processes 
from the simple ' i n / o u t '  model to the model 
without grazing decreases the simulation quality 
as we go from (a 4: 1, b ~ 0) to (a = 0); J0rgensen 
(1992) underlines this point: " I t  has often been 
argued that a more complex model should be 
able to account more accurately for the reactions 
of a real system, but this is not necessarily true. 
Additional factors are involved. A more complex 
model contains more parameters  and increases 
the level of uncertainty, because parameters  have 
to be estimated either by more observations in 
the field, by laboratory experiments, or by cali- 
brations, which again are based on field measure- 
ments. Parameter  estimations are never com- 
pletely without errors, and the errors are carried 
through into the model and will thereby con- 
tribute to its uncertainty". Going up one more 
step in the complexity of the model (from the 
model without grazing to the model with grazing) 

m a >  

4- 

+ 

"~' ~3 

L . . - -  a ~ 

Quality of 
simulation 

I t! regarded as perfectly 

[ ~ b = 0 simulating, on average, 
the observations 

a = ]  4 "  
The simulation over- or 

b ¢ 0 underestimates, on Effect 1 
average, the observations + 

lr2 In each group, 
considered 

The gap between the independently 
simulated and observed from the others, 

b = 0 curves is proportional E the quality of 
to the value of the the simulation 

a ~ 1 respective points + increases when 
A r 2 increases 

b ¢ 0 I Effects 1 + 2 J r  2 

m 

I No relation between 
0 simulations and 

observations 

Fig. 5. The five possible outcomes of a major axis simple linear regression model: Xoh,e~c d = a "Ssimulate d q-b + ~" and the four 
groups (in the ellipses) allowing to determine the quality of a simulation ( = : not significantly different from). 



F. Mespl~ et al. / Ecological Modelling 88 (1996) 9-18 17 

increases the s imula t ion  quality, as it falls in the 
same group than  the ' i n / o u t '  model  (a 4: 1, b 4: 0) 
with a greater  coefficient of de t e rmina t ion  ( r  2 =  
0.402 vs r 2 = 0.266). The  conclusion is that,  as the 
deve lopment  of zoop lank ton  increases with in- 
creasing res idence time, it becomes  more  and  
more  impor tan t  to take into account  grazing pro- 
cess in the model.  

In  order  to synthesize what  is p resen ted  above 
and to provide guidel ines,  one  can refer to Fig. 5. 
De t e rmin ing  the quali ty of a s imula t ion  using 
major  axis l inear  regression requires  two steps: 
• First, consider  a. The re  is a hierarchy of possi- 

bilities: a = 0 or a 4: 0; if a 4:0,  then  a = 1 or 
a 4 : l .  

• Secondly, consider  b when  a 4: 0. There  are 
two possibilities: b = 0 or b 4: 0. 

S imula t ion  results fall in one  of the four groups 
def ined  by the various combina t ions  of a and b. 

Compar ing  the qtlality of two s imulat ions  re- 
quires a third step if they fall in the same group. 
In  that  s i tuat ion,  the value of the coefficient of 
de t e rmina t ion  allows to grade the s imulat ions;  
the higher  the value of r 2, the be t te r  the quali ty 
of the s imulat ion.  

6. Conclusion 

We have a t t empted  to measure  s imula t ion  
quali ty only, and  not  model  quality; these are two 
different  things. A n  advantage  of cons ider ing  
s imulat ions  only is that  it is possible to compare  
s imulat ions  coming from different  kinds of mod- 
els (determinis t ic  and  statistical, for example);  a 
drawback is that  our  measures  of s imula t ion  qual-  
ity are not  re la ted to model  complexity. In  any 
case, fu ture  ecological models  cal ibrated or vali- 
da ted  against  field data  using l inear  regression 
should (i) use major  axis regression instead of 
ordinary  least-squares  regression, and  (ii) be pre-  
sen ted  with some objective cr i ter ion of s imula t ion  
quality, like the couple  (a,  b) proposed in this 
paper.  But, even in a perfect  s imulat ion,  Bard 
(1974) (referred to in Halfon,  1985) insists on the 
fact that  " . . . w h e r e a s  a lack of fit const i tu tes  a 
s t rong grounds  for reject ing or at least a m e n d i n g  
the model ,  a good fit does not  prove that  the 

model  is correct. A good fit merely  establishes 
the fact that  there  is no reason to reject the 
model  on the basis of the data  on hand.  In  fact, 
no a m o u n t  of data  can ever prove a model ;  all 
that  we can hope is that it does not  disprove it". 
Meanwhi le ,  Thom (1979) holds a somewhat  op- 
posite point  of view, stat ing that  if a model  empir-  
ically s imulates  observat ions with good accuracy, 
even without  our  unde r s t a nd i ng  why, there  is no 
reasons  to forego using that  unexp la ined  agree- 
men t  in pragmat ic  ways. 
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