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Abstract: The Ward error sum of squares hierarchical clustering method has been
very widely used since its first description by Ward in a 1963 publication. It has
also been generalized in various ways. Two algorithms are found in the literature and
software, both announcing that they implement the Ward clustering method. When
applied to the same distance matrix, they produce different results. One algorithm
preserves Ward’s criterion, the other does not. Our survey work and case studies will
be useful for all those involved in developing software for data analysis using Ward’s
hierarchical clustering method.
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1. Introduction

In the literature and in software packages there is confusion in regard
to what is termed the Ward hierarchical clustering method. This relates to:
(i) input dissimilarities, whether squared or not; and (ii) output dendrogram
heights and whether or not their square root is used. Our main objective
in this work is to warn users of hierarchical clustering about this, to raise
awareness about these distinctions or differences, and to urge users to check
what their favourite software package is doing.

We are grateful to the following colleagues who ran example data sets in statistical
packages and sent us the results: Guy Cucumel, Pedro Peres-Neto and Yves Prairie. Our
thanks also to representatives of Statistica, Systat and SAS who provided information on the
Ward algorithm implemented in their package.
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ursale Centre-ville, Montréal, Québec, Canada H3C 3J7, e-mail: pierre.legendre@
umontreal.ca.

Published online: 18 October 2014

DOI: 10.1007/s00357-014-9161-z



In R, the function hclust of stats with the method="ward" op-
tion produces results that correspond to a Ward method (Ward11963) de-
scribed in terms of a Lance-Williams updating formula using a sum of dis-
similarities, which produces updated dissimilarities. This is the implemen-
tation used by, for example, Wishart (1969), Murtagh (1985) on whose code
the hclust implementation is based, Jain and Dubes (1988), Jambu (1989),
in the XploRe (2007) and Clustan (www.clustan.com) software packages,
and elsewhere.

An important issue though is the form of input that is necessary to give
Ward’s method. For an input data matrix, x, in R’s hclust function the fol-
lowing command is required: hclust(dist(x)ˆ2,method="ward")
although this is not mentioned in the function’s documentation file. In later
sections (in particular, Section 4.2) of this article we explain just why the
squaring of the distances is a requirement for the Ward method. In Section
5 (Experiment 4) it is discussed why we may wish to take the square roots
of the agglomeration, or dendrogram node height, values.

In R again, the agnes function of package cluster with the
method="ward" option is also presented as the Ward method in Kaufman
and Rousseeuw (1990) and in Legendre and Legendre (2012), among oth-
ers. A formally similar algorithm is used, based on the Lance and Williams
(1967) recurrence. The results of agnes differ from those of hclust when
both functions are applied to the same distance matrix.

Lance and Williams (1967) did not themselves consider the Ward
method for which the updating formula was first investigated by Wishart
(1969).

What is at issue for us here starts with how hclust and agnes give
different outputs when applied to the same dissimilarity matrix as input.
What therefore explains the formal similarity in terms of criterion and algo-
rithms, yet at the same time yields outputs that are different?

2. Applications

Ward’s is the only one among the agglomerative clustering methods
that is based on a classical sum-of-squares criterion, producing groups that
minimize within-group dispersion at each binary fusion.

In addition, Ward’s method is interesting because it looks for clus-
ters in multivariate Euclidean space. That is also the reference space in
multivariate ordination methods, and in particular in principal component
analysis (PCA). We will show in Section 3.2 that the total sum of squares
in a data table can be computed from either the original variables or the dis-
tance matrix among observations, thus establishing the relationship between

1. This article is dedicated to Joe H. Ward Jr., who died on 23 June 2011, aged 84.
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distances and sum of squares (or variance). This connection is why one can
use an update formula based on dissimilarities to minimize the within-group
sum of squares during Ward hierarchical clustering.

PCA is another way of representing the variance among observations,
this time in an ordination diagram, which can be seen as a “spatial” rep-
resentation of the relationships among the observations. PCA is a decom-
position of the total variance of the data table, followed by selection of the
axes that account for the largest portion of the variance; these axes are then
used for representation of the observations in a few dimensions, usually two.
From this reasoning, we can see that spatial (e.g. PCA) and clustering (e.g.
Ward’s) methods involve different yet complementary spatial and clustering
models that are fit to the data using the same mathematical principle. This
is why in practice the results of Ward’s agglomerative clustering are likely
to delineate clusters that visually correspond to regions of high densities of
points in PCA ordination.

Similar to use in conjunction with PCA, Ward’s method is comple-
mentary to the use of correspondence analysis. The latter is a decomposi-
tion of the inertia of the data table. Ward’s method accommodates weights
on the observations. Ward’s method applied to the output of a correspon-
dence analysis, i.e. to the factor projections, implies equiweighted observa-
tions, endowed with the Euclidean distance. See Murtagh (2005) for many
application domains involving the complementary use of correspondence
analysis and Ward’s method.

Ward’s method can also be applied to dissimilarities other than the
Euclidean distance. For these dissimilarities, ordinations can be produced
by principal coordinate analysis (PCoA, Gower 1966), which is also called
classical multidimensional scaling. When drawn onto a PCoA ordination
diagram, the Ward clustering results often delineate clusters that visually
correspond to the density centers in PCoA ordination.

Ward’s method shares the total error sum of squares criterion with
K-means partitioning, which is widely used to directly cluster observations
in Euclidean space, hence to create a partition of the observation set. This
clustering is done without any structural constraint such as cluster embed-
dedness, represented by a hierarchy. Since K-means partitioning is an NP-
hard problem, an approximate solution is often sought by using multiple
random starts of the algorithm and retaining the solution that minimizes the
total error sum of squares criterion. A more direct and computer-efficient
approach is to first apply Ward’s minimum variance agglomerative cluster-
ing to the data, identify the partition of the objects into K groups in the
dendrogram, and then use that partition as the starting approximation forK-
means partitioning, since it is close to the solution that one is seeking. That
solution can then be improved by iterations of theK-means algorithm.
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3. Ward’s Agglomerative Hierarchical Clustering Method

3.1 Some Definitions

We recall that a distance is a positive, definite, symmetric mapping
of a pair of observation vectors onto the positive reals which in addition
satisfies the triangular inequality. For observations i, j, k we have: d(i, j) >
0; d(i, j) = 0 ⇐⇒ i = j; d(i, j) = d(j, i); d(i, j) ≤ d(i, k) + d(k, j).
For an observation set, I , with i, j, k ∈ I we can write the distance as a
mapping from the Cartesian product of the observation set into the positive
reals: d : I × I −→ R+.

A dissimilarity is usually taken as a distance but without the triangular
inequality property (d(i, j) ≤ d(i, k)+d(k, j),∀i, j, k). Lance andWilliams
(1967) use the term “an (i, j)-measure” for a dissimilarity.

An ultrametric, or tree distance, which defines a hierarchical cluster-
ing (and also an ultrametric topology, which goes beyond a metric geometry,
or a p-adic number system) differs from a distance in that the strong trian-
gular inequality is instead satisfied. This inequality, also commonly called
the ultrametric inequality, is: d(i, j) ≤ max{d(i, k), d(k, j)}.

For observation i in a cluster q, and a distance d (which can poten-
tially be relaxed to a dissimilarity) we have the following definitions. We
may want to consider a mass or weight associated with observation i, p(i).
Typically we take p(i) = 1/|q| when i ∈ q, i.e. 1 over cluster cardinality of
the relevant cluster.

With the context being clear, let q denote the cluster (a set) and q∗ the
cluster’s center. We have this center defined as q∗ = 1/|q|

∑
i∈q i. Further-

more, and again the context makes this clear, we have i used for the obser-
vation label, or index, among all observations, and the observation vector.

Some further definitions follow.

• Error sum of squares:
∑

i∈q d
2(i, q∗).

• Variance (or centered sum of squares): 1/|q|
∑

i∈q d
2(i, q∗).

• Inertia:
∑

i∈q p(i)d
2(i, q∗) which becomes variance if p(i) = 1/|q|,

and becomes error sum of squares if p(i) = 1.
• Euclidean distance squared using norm ∥.∥: if i, i′ ∈ R|J |, i.e. these
observations have values on attributes j ∈ {1, 2, . . . , |J |}, J is the
attribute set, |.| denotes cardinality, then d2(i, i′) = ∥i − i′∥2 =∑

j(ij − i′j)
2.

Consider now a set of masses, or weights,mi for observations i. Fol-
lowing Benzécri (1976, p. 185), the centered moment of order 2, M2(I) of
the cloud (or set) of observations i, i ∈ I , is written: M2(I) =

∑
i∈I mi∥i−

Ward’s Clustering Method 277



g∥2 where the center of gravity of the system is g =
∑

imii/
∑

i mi . The
variance, V 2(I), is V 2(I) = M2(I)/mI , where mI is the total mass of
the cloud. Due to Huygens’ theorem the following can be shown (Benzécri,
1976, p. 186) for clusters q whose union makes up the partition, Q:

M2(Q) =
∑

q∈Q
mq∥q∗ − g∥2,

M2(I) = M2(Q) +
∑

q∈Q
M2(q),

V (Q) =
∑

q∈Q

mq

mI
∥q∗ − g∥2,

V (I) = V (Q) +
∑

q∈Q

mq

mI
V (q).

The V (Q) and V (I) definitions here are discussed in Jambu (1978,
pp. 154–155). The last of the above can be seen to decompose (additively)
the total variance of the cloud I into (first term on the right hand side) vari-
ance of the cloud of cluster centers (q ∈ Q), and summed variances of the
clusters. We can consider the last of the above relations as total variance
decomposed into the sum of between and within cluster variances, or the
sum of inter and intra cluster variances. This relationship will be important
below.

A range of variants of the agglomerative clustering criterion and al-
gorithm are discussed by Jambu (1978). These include: minimum of the
centered order 2 moment of the union of two clusters (p. 156); minimum
variance of the union of two clusters (p. 156); maximum of the centered or-
der 2 moment of a partition (p. 157); and maximum of the centered order
2 moment of a partition (p. 158). Jambu notes that these criteria for maxi-
mization of the centered order 2 moment, or variance, of a partition, were
developed and used by numerous authors, with some of these authors intro-
ducing modifications (such as the use of particular metrics). Among authors
referred to are Ward (1963), Orlóci (1967), Wishart (1969), and various oth-
ers.

3.2 Alternative Expressions for the Variance

As already noted in Section 3.1, the cluster center, i.e. cluster mean,
q∗, is: q∗ = 1

|q|
∑

i∈q i. In the previous section, the variance was written
as 1/|q|

∑
i∈q d

2(i, q∗). This is the so-called population variance. When
viewed in statistical terms, where an unbiased estimator of the variance is
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needed, we require the sample variance: 1/(|q| − 1)
∑

i∈q d
2(i, q∗). The

population quantity is used in Murtagh (1985). The sample statistic is used
in Le Roux and Rouanet (2004), and by Legendre and Legendre (2012).

The sum of squares,
∑

i∈q d
2(i, q∗), can be written in terms of all

pairwise distances:
∑

i∈q d
2(i, q∗) = 1/|q|

∑
i,i′∈q,i<i′ d

2(i, i′).

This is proved as follows (see, e.g., Legendre and Fortin, 2010).
1
|q|

∑
i,i′∈q,i<i′ d

2(i, i′) = 1
|q|

∑
i,i′∈q,i<i′(i− i′)2

= 1
|q|

∑
i,i′∈q,i<i′(i− q∗ − (i′ − q∗))2

= 1
|q|

∑
i,i′∈q,i<i′ ((i− q∗)2 + (i′ − q∗)2 − 2(i− q∗)(i′ − q∗))

= 1
2

1
|q|

∑
i∈q

∑
i′∈q ((i− q∗)2 + (i′ − q∗)2 − 2(i− q∗)(i′ − q∗))

= 1
2

1
|q|

(
2|q|

∑
i∈q(i− q∗)2

)
− 1

2
1
|q|

(∑
i∈q

∑
i′∈q 2(i − q∗)(i′ − q∗)

)
.

By writing out the right hand term, we see that it equals 0. Hence our result.
As noted in Legendre and Legendre (2012) there are many other alter-

native expressions for calculating
∑

i∈q d
2(i, q∗), such as using the trace of a

particular transformation of the distance matrix, and the sum of eigenvalues
of a principal coordinate analysis of the distance matrix. The latter is invok-
ing what is known as the Parseval relation, i.e. the equivalence of the norms
of vectors in inner product spaces that can be orthonormally transformed,
one space to the other.

3.3 Lance-Williams Dissimilarity Update Formula

Lance and Williams (1967) established a succinct form for the up-
date of dissimilarities following an agglomeration. The parameters used in
the update formula are dependent on the cluster criterion value. Consider
clusters (including possibly singletons) i and j being agglomerated to form
cluster i ∪ j, and then consider redefining the dissimilarity relative to an
external cluster (including again possibly a singleton), k. We have:

d(i∪ j, k) = a(i) ·d(i, k)+a(j) ·d(j, k)+ b ·d(i, j)+ c · |d(i, k)− d(j, k)|.

where d is the dissimilarity used – which does not have to be a Euclidean
distance to start with, insofar as the Lance and Williams formula can be
used as a repeatedly executed recurrence, without reference to any other
or separate criterion; coefficients a(i), a(j), b, c are defined with reference
to the clustering criterion used (see tables of these coefficients in Murtagh
1985, p. 68; Jambu 1989, p. 366); and |.| denotes absolute value.

The Lance-Williams recurrence formula considers dissimilarities and
not dissimilarities squared.
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The original Lance and Williams (1967) paper did not consider the
Ward criterion. It did however note that it allowed one to “generate an infi-
nite set of new strategies” for agglomerative hierarchical clustering. Wishart
(1969) brought theWard criterion into the Lance-Williams algorithmic frame-
work.

Even starting the agglomerative process with a Euclidean distance
will not avoid the fact that the inter-cluster (non-singleton, i.e. with 2 or more
members) dissimilarity function does not respect the triangular inequality,
and hence it does not respect this Euclidean metric property.

3.4 Generalizing Lance-Williams

The Lance and Williams recurrence formula has been generalized in
various ways. See e.g. Batagelj (1988) who discusses what he terms “gen-
eralized Ward clustering” which includes agglomerative criteria based on
variance, inertia and weighted increase in variance.

Jambu (1989, pp. 356 et seq.) considers the following cluster crite-
ria and associated Lance-Williams update formula in the generalized Ward
framework: centered order 2 moment of a partition; variance of a partition;
centered order 2 moment of the union of two classes; and variance of the
union of two classes.

When using a Euclidean distance, the Murtagh (1985) and the Jambu
(1989) Lance-Williams update formulas for variance and related criteria (as
discussed by Jambu 1989) are associated with an alternative agglomerative
hierarchical clustering algorithm which defines cluster centers following
each agglomeration, and thus does not require use of the Lance-Williams
update formula. The same is true for hierarchical agglomerative clustering
based on median and centroid criteria.

As noted, the Lance-Williams update formula uses a dissimilarity, d.
Székely and Rizzo (2005) consider higher order powers of this, in the Ward
context: “Our proposed method extends Ward’s minimum variance method.
Ward’s methodminimizes the increase in total within-cluster sum of squared
error. This increase is proportional to the squared Euclidean distance be-
tween cluster centers. In contrast to Ward’s method, our cluster distance is
based on Euclidean distance, rather than squared Euclidean distance. More
generally, we define ... an objective function and cluster distance in terms of
any power α of Euclidean distance in the interval (0,2] ... Ward’s mimimum
variance method is obtained as the special case when α = 2.”

Then the authors indicate what beneficial properties the case of α = 1
has, including: Lance-Williams form, ultrametricity and reducibility, space-
dilation, and computational tractability. In Székely and Rizzo (2005, p. 164)
it is stated that “We have shown that” the α = 1 case, rather than α = 2,
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gives “a method that applies to a more general class of clustering problems”,
and this finding is further emphasized in their conclusion. Notwithstanding
this finding of Székely and Rizzo (2005), viz. that the α = 1 case is best, in
this work our interest remains with the α = 2Ward method.

Our objective in this section has been to discuss some of the ways that
the Ward method has been generalized. After this methodological review,
we will, in the next section, come to our central theme in this article.

4. Implementations of Ward’s Method

We now come to the central part of our work, distinguishing in Sub-
sections 4.2 and 4.3 how we can arrive at subtle but important differences
in relation to how the Ward method, or what is said to be the Ward method,
is understood in practice, and put into software code. We consider: data
inputs, the main loop structure of the agglomerative dissimilarity-based al-
gorithms, and the output dendrogram node heights. The subtle but important
differences that we uncover are further explored and exemplified in Section
5.

Consider hierarchical clustering in the following form. On an ob-
servation set, I , define a dissimilarity measure. Set each of the observa-
tions, i, j, k, etc. ∈ I to be a singleton cluster. Agglomerate the closest (i.e.
least dissimilar) pair of clusters, deleting the agglomerands, or agglomerated
clusters. Redefine the inter-cluster dissimilarities with respect to the newly
created cluster. If n is the cardinality of observation set I then this agglom-
erative hierarchical clustering algorithm completes in n − 1 agglomerative
steps.

Through use of the Lance-Williams update formula, we will focus on
the updated dissimilarities relative to a newly created cluster. Unexpectedly
in this work, we found a need to focus also on the form of input dissimilari-
ties.

4.1 The Minimand or Cluster Criterion Optimized

The function to be minimized, or minimand, in the Ward2 case (see
Subsection 4.3), as stated by Kaufman and Rousseeuw (1990, p. 230, cf.
relation (22)) is:

D(c1, c2) = δ2(c1, c2) =
|c1||c2|

|c1|+ |c2|
∥c1 − c2∥2, (1)

(a term that measures the change in total sum of squares resulting from the
fusion of c1 and c2) whereas for the Ward1 case, as discussed in Subsection
4.2, we have:
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δ(c1, c2) =
|c1||c2|

|c1|+ |c2|
∥c1 − c2∥2. (2)

It is clear therefore that the same criterion is being optimized. Both imple-
mentations minimize the change in variance, or the error sum of squares.

Error sum of squares, or minimum variance, or other related criteria
are NP-complete optimization problems. This implies that a polynomial
bound on computational complexity is not possible. Only exponential search
in the solution space, because it is exhaustive, will guarantee an optimal
solution. Because the error sum of squares and other related criteria are
not optimized precisely in reality, we are content with good heuristics in
practice, i.e. sub-optimal solutions. Such a heuristic is the sequence of two-
way agglomerations carried out by a hierarchical clustering algorithm.

In either form the criterion (1), (2) is characterized in Le Roux and
Rouanet (2004, p. 109) as either the variance index; the inertia index; the
centered moment of order 2; or the Ward index (citing Ward 1963). In the
sequel, given two classes c1 and c2, the variance index is defined as the
contribution of the dipole of the class center, denoted as in (2). The result-
ing clustering is termed a Euclidean classification by Le Roux and Rouanet
(2004).

As noted by Le Roux and Rouanet (2004, p. 110), the variance index
(as they term it) (2) is not guaranteed to satisfy the triangular inequality.

4.2 Implementation of Ward: Ward1

We start with (let us term it) the Ward1 algorithm as described in
Murtagh (1985).

It was initially Wishart (1969) who wrote the Ward algorithm in terms
of the Lance-Williams update formula. InWishart (1969) the Lance-Williams
formula is written in terms of squared dissimilarities, in a way that is for-
mally identical to the following. Cluster update formula:

δ(i ∪ i′, i′′) =
wi + w′′

i

wi + wi′ + wi′′
δ(i, i′′) +

w′
i + w′′

i

wi +wi′ + wi′′
δ(i′, i′′)

− w′′
i

wi + wi′ + wi′′
δ(i, i′) and wi∪i′ = wi + wi′ . (3)

For the minimand (relation 1) of Section 4.1, the input dissimilarities
need to be as follows: δ(i, i′) =

∑
j(xij − xi′j)2. Note the presence of the

squared Euclidean distance in this initial dissimilarity specification. This
is the Ward algorithm of Murtagh (1983; 1985; 2000), and the way that
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hclust in R, which is based on that algorithm, ought to be used. When,
however, the Ward1 algorithm is used with Euclidean distances as the initial
dissimilarities, then the clustering topology can be very different, as will be
seen in Section 5.

The weight wi is the cluster cardinality, and thus for a singleton,
wi = 1. An immediate generalization is to consider probabilities given by
wi = 1/n. Generalization to arbitrary weights can also be considered. Ward
implementations that take observation weights into account are available in
Murtagh (2000).

1
2

∑
j(xij − xi′j)2, i.e. 0.5 times Euclidean distances squared, is the

population variance (cf. Section 3.1) of the new cluster comprising two sin-
gletons, i∪ i′. To see this, note that the variance of the new cluster c formed
by merging c1 and c2 is (|c1|∥c1−c∥2+|c2|∥c2−c∥2)/(|c1|+|c2|)where |c1|
is both the cardinality and the mass of cluster c1, and ∥.∥ is the Euclidean
norm. The new cluster’s center of gravity, or mean, is c = |c1|c1+|c2|c2

|c1|+|c2| ,
where c1 and c2 are vectors of original data or means. By using this expres-
sion for the new cluster’s center of gravity (or mean) in the expression given
for the variance, we see that we can write the variance of the new cluster
c, combining c1 and c2, to be |c1||c2|

|c1|+|c2|∥c1 − c2∥2. So when |c1| = |c2| we
have the stated result, i.e. the variance of the new cluster equaling 0.5 times
Euclidean distances squared.

The criterion that is optimized arises from the foregoing discussion
(previous paragraph), i.e. the variance of the dipole formed by the agglomer-
ands. This is the variance of new cluster c minus the variances of (now ag-
glomerated) clusters c1 and c2, which we can write as Var(c)−Var(c1)−
Var(c2). The variance of the partition containing c necessarily decreases, so
we need to minimize this decrease when carrying out an agglomeration.

Murtagh (1985) also shows how this optimization criterion is viewed
as achieving the (next possible) partition with maximum between-cluster
variance. Maximizing between-cluster variance is the same as minimizing
within-cluster variance, arising out of Huygens’ variance (or inertia) decom-
position theorem. With reference to Section 3.1 (see the additive decomposi-
tion of V (I)) we are minimizing the change in the between-cluster variance,
hence maximizing it, and hence minimizing the within-cluster variance.

Jambu (1978, p. 157) calls the Ward1 algorithm the maximum cen-
tered order 2 moment of a partition (cf. Section 3.1 above). The criterion is
denoted by him as δmot.

4.3 Implementation of Ward: Ward2

We now look at the Ward2 algorithm described in Kaufman and
Rousseeuw (1990) and Legendre and Legendre (2012).
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At each agglomerative step, the extra sum of squares caused by ag-
glomerating clusters is minimized, exactly as we have seen for the Ward1
algorithm above. We have the following. Cluster update formula:

δ(i ∪ i′, i′′) =
( wi + w′′

i

wi + wi′ +wi′′
δ2(i, i′′) +

w′
i + w′′

i

wi + wi′ + wi′′
δ2(i′, i′′)

− w′′
i

wi + wi′ + wi′′
δ2(i, i′)

)1/2 and wi∪i′ = wi +wi′ . (4)

Contrary to Ward1, the input dissmilarities are Euclidean distances
(not squared). They are squared within Equation 4: δ2(i, i′) =

∑
j(xij −

xi′j)2. It is such squared Euclidean distances that interest us, since our mo-
tivation arises from the error sum of squares criterion.

A second point to note is that Equation 4 relates to, on the right hand
side, the square root of a weighted sum of squared distances. Consider how
in Equation 3 the cluster update formula was in terms of a weighted sum of
distances. As a consequence, function δ is not the same in Equations 3 and
4: the function produces a squared distance in the former and a distance in
the latter.

A final point about Equation 4 is that in the cluster update formula it
is the set of δ values that we seek.

Now let us look further at the relationship between Equations 4 and 3
and show their relationship. Rewriting the cluster update formula (4) after
squaring both sides establishes that we have:

δ2(i ∪ i′, i′′) =
wi + w′′

i

wi +wi′ + wi′′
δ2(i, i′′) +

w′
i + w′′

i

wi + wi′ + wi′′
δ2(i′, i′′)

− w′′
i

wi + wi′ + wi′′
δ2(i, i′). (5)

Let us use the notationD = δ2 because then, with

D(i ∪ i′, i′′) =
wi + w′′

i

wi + wi′ + wi′′
D(i, i′′) +

w′
i + w′′

i

wi + wi′ + wi′′
D(i′, i′′)

− w′′
i

wi + wi′ +wi′′
D(i, i′), (6)

we see exactly the form of the Lance-Williams cluster update formula (Sec-
tion 3.3).
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Although the agglomerative clustering algorithm is not fully specified
as such in Cailliez and Pagès (1976), it appears that the Ward2 algorithm is
the one attributed to Ward (1963). See their criterion d9 (Cailliez and Pagès
1976, pp. 531, 571).

With the appropriate choice of δ, different for Ward1 and for Ward2,
what we have here is the identity of the algorithms Ward1 and Ward2, al-
though they are implemented to a small extent differently. We show this as
follows.

Take the Ward2 algorithm one step further than above, and write the
input dissimilarities and cluster update formula using D(i, i′) = δ2(i, i′) =∑

j(xij − xi′j)2. Square both sides of Equation 4. The cluster update for-
mula is now:

D(i ∪ i′, i′′) =
wi + w′′

i

wi + wi′ +wi′′
D(i, i′′) +

w′
i + w′′

i

wi + wi′ + wi′′
D(i′, i′′)

− w′′
i

wi + wi′ + wi′′
D(i, i′) and wi∪i′ = wi + wi′ . (7)

In this form, Equation 7, implementation Ward2 (Equation 4) is iden-
tical to implementation Ward1 (Equation 3). We conclude that we can have
Ward1 and Ward2 implementations such that the outputs are identical.

5. Case Studies: Ward Implementations and Their Relationships

The hierarchical clustering programs used in this set of case studies
are:

• hclust in package stats, “The R Stats Package”, in R version 2.15.
Based on code by F. Murtagh (Murtagh 1985), included in R by Ross
Ihaka and Fritz Leisch.

• agnes in package cluster, “Cluster Analysis Extended Rousseeuw
et al.”, in R, by L. Kaufman and P.J. Rousseeuw.

• hclust.PL, an extended version of hclust in R, by P. Legendre. In
this function, the Ward1 algorithm is implemented by method=
"ward.D" and the Ward2 algorithm by method="ward.D2". That
function is available on the web page http://numericalecology.com, in
the section on R-language functions.

We ensure reproducible results by providing all code used and, to
begin with, by generating an input data set as follows.
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# Fix the seed of the random number generator in order
# to have reproducible results.
set.seed(19037561)
# Create the input matrix to be used.
y <- matrix(runif(20*4),nrow=20,ncol=4)
# Look at overall mean and column standard deviations.
mean(y); sd(y)
0.4920503 #mean
0.2778538 0.3091678 0.2452009 0.2918480 #standard deviations

5.1 Experiment 1: Ward2 Implementation in hclust.PL and agnes

In experiment 1, non-squared distances are used as input. The R code
used is shown in the following, with output produced. In all of these exper-
iments, we used the dendrogram node heights, associated with the agglom-
eration criterion values, in order to quickly show numerical equivalences.
This is then followed up with displays of the dendrograms.

# EXPERIMENT 1 ----------------------------------
X.hclustPL.wardD2 = hclust.PL(dist(y),method="ward.D2")
X.agnes.wardD2 = agnes(dist(y),method="ward")

sort(X.hclustPL.wardD2$height)
0.1573864 0.2422061 0.2664122 0.2901741 0.3030634
0.3083869 0.3589344 0.3830281 0.3832023 0.5753823
0.6840459 0.7258152 0.7469914 0.7647439 0.8042245
0.8751259 1.2043397 1.5665054 1.8584163

sort(X.agnes.wardD2$height)
0.1573864 0.2422061 0.2664122 0.2901741 0.3030634
0.3083869 0.3589344 0.3830281 0.3832023 0.5753823
0.6840459 0.7258152 0.7469914 0.7647439 0.8042245
0.8751259 1.2043397 1.5665054 1.8584163

This points to: hclust.PLwith the method="ward.D2" option be-
ing identical to: agnes with the method="ward" option. This shows that
agnes implements the Ward2 algorithm.

Figure 1 displays the outcome, and we see the same visual result in
both cases. That is, the two dendrograms are identical except for inconse-
quential swiveling of nodes. In group theory terminology we say that the
trees are wreath product invariant.

To fully complete our reproducibility of research agenda, this is the
code used to produce Figure 1:
par(mfrow=c(1,2))
plot(X.hclustPL.wardD2,main="X.hclustPL.wardD2",sub="",xlab="")
plot(X.agnes.wardD2,which.plots=2,main="X.agnes.wardD2",sub="",

xlab="")
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Figure 1: Experiment 1 outcome. The two dendrograms are morphologically
identical.

5.2 Experiment 2: hclust and Ward1 Implementation in hclust.PL

In this experiment, squared distances are used as input. The code used
is as follows, with output shown.

# EXPERIMENT 2 ----------------------------------
X.hclust = hclust(dist(y)ˆ2, method="ward")
X.hclustPL.sq.wardD = hclust.PL(dist(y)ˆ2, method="ward.D")

sort(X.hclust$height)
0.02477046 0.05866380 0.07097546 0.08420102 0.09184743
0.09510249 0.12883390 0.14671052 0.14684403 0.33106478
0.46791879 0.52680768 0.55799612 0.58483318 0.64677705
0.76584542 1.45043423 2.45393902 3.45371103

sort(X.hclustPL.sq.wardD$height)
0.02477046 0.05866380 0.07097546 0.08420102 0.09184743
0.09510249 0.12883390 0.14671052 0.14684403 0.33106478
0.46791879 0.52680768 0.55799612 0.58483318 0.64677705
0.76584542 1.45043423 2.45393902 3.45371103

This points to: hclust, with "ward" option, on squared input being
identical to: hclust.PLwith method="ward.D" option, on squared input.

The clustering levels shown here in Experiment 2 are the squares of
the clustering levels produced by Experiment 1.

Figure 2 displays the outcome, and we see the same visual result in
both cases. This is the code used to produce Figure 2:

par(mfrow=c(1,2))
plot(X.hclust, main="X.hclust",sub="",xlab="")
plot(X.hclustPL.sq.wardD, main="X.hclustPL.sq.wardD",sub="",

xlab="")
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Figure 2: Experiment 2 outcome.

5.3 Experiment 3: Non-Ward Result Produced by hclust and
hclust.PL

In this experiment, with non-squared distances used as input,
we achieve a well-defined hierarchical clustering, but one that differs from
Ward. Code used is as follows, with output shown.

# EXPERIMENT 3 ----------------------------------
X.hclustPL.wardD = hclust.PL(dist(y),method="ward.D")
X.hclust.nosq = hclust(dist(y),method="ward")

sort(X.hclustPL.wardD$height)
0.1573864 0.2422061 0.2664122 0.2901741 0.3030634
0.3083869 0.3589344 0.3832023 0.4018957 0.5988721
0.7443850 0.7915592 0.7985444 0.8016877 0.8414950
0.9273739 1.4676446 2.2073106 2.5687307

sort(X.hclust.nosq$height)
0.1573864 0.2422061 0.2664122 0.2901741 0.3030634
0.3083869 0.3589344 0.3832023 0.4018957 0.5988721
0.7443850 0.7915592 0.7985444 0.8016877 0.8414950
0.9273739 1.4676446 2.2073106 2.5687307

This points to: hclustPL with method="wardD" option being the
same as: hclust with method="ward" option. It shows that hclust with
the “ward” option, used with non-squared distances as recommended in the
R documentation file, implements the Ward1 algorithm.

Note: there is no squaring of inputs in the latter, nor in the former
either. The clustering levels produced in this experiment using non-squared
distances as input differ from, and are not monotonic relative to, those pro-
duced in Experiments 1 and 2.
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Figure 3: Experiment 3 outcome.

Figure 3 displays the outcome, and we see the same visual result in
both cases. This is the code used to produce Figure 3:
par(mfrow=c(1,2))
plot(X.hclustPL.wardD, main="X.hclustPL.wardD",sub="",xlab="")
plot(X.hclust.nosq, main="X.hclust.nosq",sub="",xlab="")

5.4 Experiment 4: Modifying Inputs and Options so that Ward1 Out-
put is Identical to Ward2 Output

In this experiment, given the formal equivalences of the Ward1 and
Ward2 implementations in Sections 4.2 and 4.3, we show how to bring about
identical output. We do this by squaring or not squaring input dissimilarities,
and by playing on the options used.
> # EXPERIMENT 4 ----------------------------------
X.hclust = hclust(dist(y)ˆ2, method="ward")
X.hclustPL.sq.wardD = hclust.PL(dist(y)ˆ2, method="ward.D")
X.hclustPL.wardD2 = hclust.PL(dist(y), method="ward.D2")
X.agnes.wardD2 = agnes(dist(y),method="ward")

Wewill ensure that the node heights in the tree are in “distance” terms,
i.e. in terms of the initial, unsquared Euclidean distances as used in this arti-
cle. Of course, the agglomerations redefine such distances to be dissimilari-
ties. Thus it is with unsquared dissimilarities that we are concerned.

While these dissimilarities are inter-cluster measures, defined in any
given partition, the inter-node measures that are defined on the tree are ul-
trametric.
sort(sqrt(X.hclust$height))
0.1573864 0.2422061 0.2664122 0.2901741 0.3030634
0.3083869 0.3589344 0.3830281 0.3832023 0.5753823
0.6840459 0.7258152 0.7469914 0.7647439 0.8042245
0.8751259 1.2043397 1.5665054 1.8584163
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sort(sqrt(X.hclustPL.sq.wardD$height))
0.1573864 0.2422061 0.2664122 0.2901741 0.3030634
0.3083869 0.3589344 0.3830281 0.3832023 0.5753823
0.6840459 0.7258152 0.7469914 0.7647439 0.8042245
0.8751259 1.2043397 1.5665054 1.8584163

sort(X.hclustPL.wardD2$height)
0.1573864 0.2422061 0.2664122 0.2901741 0.3030634
0.3083869 0.3589344 0.3830281 0.3832023 0.5753823
0.6840459 0.7258152 0.7469914 0.7647439 0.8042245
0.8751259 1.2043397 1.5665054 1.8584163

sort(X.agnes.wardD2$height)
0.1573864 0.2422061 0.2664122 0.2901741 0.3030634
0.3083869 0.3589344 0.3830281 0.3832023 0.5753823
0.6840459 0.7258152 0.7469914 0.7647439 0.8042245
0.8751259 1.2043397 1.5665054 1.8584163

There is no difference of course between sorting the square roots of
the agglomeration or height levels, versus sorting them and then taking their
square roots. Consider the following examples, the first repeated from the
foregoing (Experiment 4) batch of results.

sort(sqrt(X.hclustPL.sq.wardD$height))
0.1573864 0.2422061 0.2664122 0.2901741 0.3030634
0.3083869 0.3589344 0.3830281 0.3832023 0.5753823
0.6840459 0.7258152 0.7469914 0.7647439 0.8042245
0.8751259 1.2043397 1.5665054 1.8584163

sqrt(sort(X.hclustPL.sq.wardD$height))
0.1573864 0.2422061 0.2664122 0.2901741 0.3030634
0.3083869 0.3589344 0.3830281 0.3832023 0.5753823
0.6840459 0.7258152 0.7469914 0.7647439 0.8042245
0.8751259 1.2043397 1.5665054 1.8584163

Our Experiment 4 points to:

output of hclustPL, with the method="ward.D2" option

and

output of agnes, with the method="ward" option

being the same as both of the following with node heights square rooted:

hclust, with the "ward" option on squared input,

hclust.PL, with the method="ward.D" option on squared input.
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Figure 4: Experiment 4 outcome.

Figure 4 displays two of these outcomes, and we see the same vi-
sual result in both cases, in line with the numerical node (or agglomeration)
“height” values. This is the code used to produce Figure 4:

par(mfrow=c(1,2))
temp <- X.hclust
temp$height <- sqrt(X.hclust$height)
plot(temp, main="X.hclust -- sqrt(height)", sub="", xlab="")
plot(X.hclustPL.wardD2, main="X.hclustPL.wardD2", sub="",

xlab="")

6. Discussion

6.1 Where Ward1 and Ward2 Implementations Lead to an Identical
Result

A short discussion follows on the implications of this work. In Ex-
periments 1 and 2, we see the crucial importance of inputs (squared or not)
and options used. We set out, with Experiment 1, to implement Ward2.
With Experiment 2, we set out to implement Ward1. Experiment 3 shows
that Ward1 algorithms produce well-defined but non-Ward hierarchical clus-
tering results. Finally Experiment 4 shows the underlying equivalence of
the Experiment 1 and Experiment 2 results, i.e. respectively the Ward2 and
Ward1 implementations.

On looking closely at the Experiment 1 and Experiment 2 dendro-
grams, Figures 1 and 2, we can see that the morphology of the dendrograms
is the same. However the cluster criterion values – the node heights – are
not the same.

Ward’s Clustering Method 291



From Section 4.3, Ward2 implementation, the cluster criterion value
is most naturally the square root of the same cluster criterion value as used
in Section 4.2, Ward1 implementation. From a dendrogram morphology
viewpoint, this is not important because one morphology is the same as the
other (as we have observed above). From an optimization viewpoint (Sec-
tion 4.1), it plays no role either since one optimand is monotonically related
to the other.

6.2 How and Why the Ward1 and Ward2 Implementations Can Differ

Those were reasons as to why it makes no difference to choose the
Ward1 implementation versus theWard2 implementation, as long as squared
distances are used as input to Ward1. Next, we will look at some practical
differences.

Looking closer at forms of the criterion in (1) and (2) in Section 4.1 –
and contrasting these forms of the criterion with the input dissimilarities in
Sections 4.2 (Ward1) and 4.3 (Ward2) leads us to the following observation.
The Ward2 criterion values are “on a scale of distances” whereas the Ward1
criterion values are “on a scale of distances squared”. Hence to make direct
comparisons between the ultrametric distances read off a dendrogram, and
compare them to the input distances, it is preferable to use theWard2 form of
the criterion. Thus, the use of cophenetic correlations can be more directly
related to the dendrogram produced. Alternatively, with the Ward1 form of
the criterion applied to squared distances, we can just take the square root
of the dendrogram node heights. This we have seen in the generation of
Figure 4.

6.3 Other Software: A Look at Six Other Packages

Readers may legitimately wonder which of the two Ward algorithms
is implemented in various commercial statistical software packages. We ran
examples in several packages; the selected data sets produced dendrogram
topologies that differed between the two algorithms. We found the following
results at the time the final version of this paper was written (December
2012):

• Packages Statistica and Systat implement the Ward1 algorithm.
• Packages Matlab, SAS and JMP implement the Ward2 algorithm.
• The SPSS package implements the Ward1 algorithm but warns users
that, for a correctWard clustering, squared Euclidean distances should
be used instead of Euclidean distances. Indeed, this produces the cor-
rect dendrogram topology, as shown in this paper. The fusion levels
are, however, squared distances.
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• As we have seen throughout this article, in the R language, function
hclust() of package stats implements the Ward1 algorithm up
to R version 3.0.2, whereas function agnes() of package cluster
implements Ward2. In September 2013, a member of the R core de-
velopment team indicated that, as a response to the present work, a
new version of hclust is in preparation that will implement both the
Ward1 (method="ward") and Ward2 (method="ward.D2") algo-
rithms. Ward1 will be kept for back compatibility with previous ver-
sions of the function and a warning will indicate that this method does
not implement Ward’s clustering criterion.

6.4 Other Implementations Based on the Lance-Williams Update For-
mula

The algorithms Ward1 and Ward2 can be used for “stored dissimilar-
ity” and “stored data” implementations, a distinction first made in Anderberg
(1973). The latter is where the dissimilarity matrix is not used, but instead
the dissimilarities are computed on the fly.

Murtagh (2000) has implementations of the “stored dissimilarity” (pro-
grams hc.f, HCL.java, see Murtagh 2000) as well as the “stored data”
(hcon2.f) algorithms. For both, Murtagh (1985) lists the formulas. The near-
est neighbour and reciprocal nearest neighbour algorithms can be applied to
bypass the need for a strict sequencing of the agglomerations. See Murtagh
(1983, 1985). These algorithms provide for provably worst case O(n2) im-
plementations, as first introduced in de Rham and Juan, and published in,
respectively, 1980 and 1982. Cluster criteria such as Ward’s method must
respect Bruynooghe’s reducibility property (Bruynooghe 1977) if they are
to be reversal-free or inversion-free (or with monotonic variation in cluster
criterion value through the sequence of agglomerations). Apart from com-
putational reasons, the other major advantage of such algorithms (nearest
neighbour chain, reciprocal nearest neighbour) is use in distributed comput-
ing (including virtual memory) environments (Murtagh 1992).

7. Conclusions

Having different yet very close implementations that differ by just a
few lines of code (in any high level language), yet claiming to implement
a given method, is confusing for the learner, for the practitioner and even
for the specialist. In this work, we have first of all reviewed all relevant
background. Then we have laid out in very clear terms the two, differing
implementations. Additionally, with differing inputs, and with somewhat
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different processing driven by options set by the user, in fact our two differ-
ent implementations had the appearance of being quite different methods.

The two algorithms at issue here only differ in terms of values in one
algorithm being squared relative to the other algorithm (or, clearly equiv-
alently, a square root of terms in one case relative to the other case). An
upshot of this is that there is no difference from the point of view of com-
putational scaling, i.e. order of magnitude computational complexity. For
the nearest neighbour chain algorithm using either “stored data” or “stored
dissimilarities” implementations, the algorithms discussed by us here are of
O(n2) computational complexity for the clustering of n observations. Thus
the current implementation of hclust() in package stats has complexity
equal to O(n2), as can be shown by numerical simulations.

Two algorithms, Ward1 and Ward2, are found in the literature and
software, both announcing that they implement the Ward (1963) clustering
method. When applied to the same distance matrix, they produce different
results. This article has shown that when they are applied to the same dis-
similarity matrix, only Ward2 minimizes the Ward clustering criterion and
produces the Ward method. The Ward1 and Ward2 algorithms can be made
to optimize the same criterion and produce the same clustering topology by
using Ward1 with squared distances, and Ward2 with the distances them-
selves. Furthermore, taking the square root of the clustering levels produced
by Ward1 used with squared distances produces the same clustering levels
as Ward2 used with the distances themselves. The constrained clustering
package of Legendre (2011), const.clust, derived from hclust in R,
offers both the Ward1 and Ward2 options.

We have shown in this article how close these two implementations
are, in fact. Furthermore we discussed in detail what the implications are
for the few, differing lines of code. Software developers who only offer the
Ward1 algorithm are encouraged to explain clearly how the Ward2 output is
to be obtained, as described in the previous paragraph.
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Editorial 
 

Murtagh and Legendre take the lead in this issue with a painstak-
ing analysis of two different, yet very close implementations of Ward’s 
classic method of hierarchical clustering that can be found in major soft-
ware packages. It all has to do with taking squares or square roots at the 
right time and in the right place. Ward’s method is special due to its intri-
cate connection with K-means, and I believe this comprehensive and au-
thoritative paper is a must-read for anyone interested in the practice of sum 
of squares clustering. 

We then have two papers about supervised classification of func-
tional data, in which the covariates or predictors are correlated as a func-
tion of an ordered parameter such as time. In the first of these papers, 
Escabias, Aguilera, and Aguilera-Morillo consider a multinomial response 
model, in which functional principal components analysis is used to reduce 
the dimensionality of the predictor space, and they test their methodology 
extensively in both simulated and real data. In the second supervised clas-
sification paper, Alonso, Casado, Lopez-Pintado and Romo use the inte-
grated periodogram to classify times series, where the periodograms are 
calculated in local sections of the series to accommodate non-stationarity. 
To make the method robust, they use the L1 distance between any individ-
ual curve and the reference curve of a group as the basis of classification, 
and determine the reference curve as the Į-trimmed mean of the curves in 
the group. In a series of simulation experiments, they show that their 
method has the desired robustness properties and is suitable for classifying 
long time series. 

The last two papers of this issue consider the analysis of proximity 
data which have some special property. In the first of these papers, the 
special property considered is Robinson form, that is the situation where 
the rows and columns of a table of proximities can be reordered so that the 
entries never decrease when going away from the diagonal. Préa and 
Fortin give an optimal quadratic time algorithm to determine if a given 
proximity table has Robinson form or not. In the second paper, the special 
property considered is structural asymmetry, that is the situation where 
there are differences in corresponding entries above and below the diago-
nal that cannot be attributed to noise.  Vicari attacks this problem by first 
decomposing the proximity table in a symmetric part and a skew-
symmetric part, which are uncorrelated. She then offers a family of clus-
tering models which can be the same or different for the two parts, and 
which can also model within and between cluster effects. Alternating least 
squares algorithms are developed for all models, and are shown in a simu-
lation study to perform well, even when error levels are relatively large. 
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