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Summary

1. Ecological data analysis frequently calls for the assessment of the relationship between species

composition and a set of explanatory variables of interest. The assessment may have to be pursued

while taking into account the influence of another set of explanatory variables. The hypothetical

nature and structure of the influence of an explanatory set on the effect of a distinct explanatory set

guides the proper choice ofmodelling methodology for a combined explanatory assessment.

2. Here, we describe a framework where the relationship between the response data and a main set

of explanatory variables is not linear. It may, for example, take the form of abrupt changes in the

response following thresholds of the explanatory variables, or any other nonlinearizable relation-

ship. The influence of a second set of explanatory variables is determined a posteriori, after the influ-

ence of the main explanatory set has been taken into account. This is useful when one of the sets is

thought to have an effect that varies as a function of the other.

3. To achieve this type of assessment, we propose a cascade of multivariate regression trees

(CMRT). We decompose the total dispersion of a response matrix between two explanatory data

sets in a nested manner. By handling each leaf (group) resulting from the first-level multivariate

regression tree (MRT) analysis as separate independent data sets in following analyses, we can

separate the explanatory power of the first partition from those of the subordinate partitions

computed using a second explanatory set. A preliminary biological hypothesis will guide the choice

of which set of explanatory variables should be used to compute the main partition. The method

could be extended to more than two explanatory data sets whose effects on the response data are

hierarchical.

4. Cascade of multivariate regression trees allows the users to impose a nested structure to their

causal hypotheses in MRT analysis. To illustrate this new procedure, we use the well-known and

readily available Doubs fish and oribatid mite data sets and provide the necessary R functions in a

package available onCRAN (http://cran.r-project.org).

Key-words: cascade, multivariate regression tree, nested explanatory assessment, species

composition drivers

Introduction

Modelling field data in ecology often translates into the study

of the effect of more than one set of explanatory variables on a

response data set (Legendre & Legendre 2012). Species assem-

blages, in particular, can respond to a great number of environ-

mental factors, and most of these may play an important

explanatory role, but their effects on the response are not

necessarily independent from one another.

The most common methodologies used to assess the influ-

ence of multiple explanatory data sets in ecology are linear

regression modelling and anova, as well as their multivariate

extensions: canonical analysis [redundancy analysis (RDA),

and canonical correspondence analysis (CCA)] and manova

(Legendre & Anderson 1999; Anderson 2001a,b; McArdle &

Anderson 2001). In the linear modelling framework, where we

want to model a response as a function of two sets of explana-

tory variables, we use partial linear regression in the univariate

case and partial canonical analysis in the multivariate case

(partial RDA: Davies & Tso 1982; partial CCA: ter Braak

1988). The effect of two or several explanatory data sets on
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response data can be untangled by variation partitioning (Bor-

card, Legendre, & Drapeau 1992; Borcard & Legendre 1994;

Anderson & Gribble 1998; Peres-Neto et al. 2006). The effects

of both explanatory sets are then hypothesized to be additive.

Partial RDA and partial CCA both allow a constrained ordi-

nation of the responsematrixY on the explanatory variablesX

to be computed while controlling for the linear effect of a

matrix of covariables W. In the manova case, the effect of two

(or more) factors is assessed, and interaction can be tested if

replicates are available.

In this study, we use available statistical tools in a new

combination to show how to tackle ecological data assess-

ment when the relationship between a main explanatory data

set and the response is nonlinear. An extreme example is

when strong discontinuities in species composition exist

along particular variables of a main explanatory data set. In

such a case, thresholds better describe the relationship

between the two data sets than linear models. Subsequently,

the variation in each leaf (or group at the end of the tree)

depicted by the discontinuities is to be independently

explained by other explanatory variables of interest in a

(possibly) different manner. Thus, we study the effect of both

explanatory sets simultaneously by keeping in mind that the

effect of one set might change as a function of the other.

Multivariate regression tree analysis (MRT) is the perfect

tool to undertake such a task, and we call the global proce-

dure by the name cascade multivariate regression tree analy-

sis (CMRT).

Multivariate regression tree analysis has stimulated grow-

ing interest in several ecological fields during the past few

years. For instance, we find applications of MRT in

microbial ecology (Auguet, Barberan, & Casamayor 2010),

limnology (Davidson et al. 2010), forestry (Chen et al. 2010),

reefs studies (DeVantier et al. 2006), entomology (Koivula &

Vermeulen 2005), ornithology (Ouellette et al. 2005), arach-

nology (Pinzón & Spence 2010) and wetland studies

(Sheaves, Abrantes, & Johnston 2007). This method, intro-

duced in the ecological literature by De’ath (2002) and

Larsen & Speckman (2004), is a recursive binary partitioning

algorithm that allocates objects of the response matrix to

homogenous groups, with partition criteria imposed by the

explanatory variables. MRT is particularly useful to detect

abrupt changes in community composition along an environ-

mental gradient, because thresholds in the explanatory vari-

ables are used to delimit the leaves. In the procedure, the

data set is split a large number of times to form the tree,

then a pruning procedure is applied to reduce the large tree

and obtain the best predictive tree size.

Cascade of multivariate regression trees is a procedure mod-

elling the response data by means of two sets of explanatory

variables that are taken into account in an order that reflects

their hypothesized nested influence. The explanatory variables

may be of any mathematical type as quantitative and qualita-

tive explanatory variables can be used by MRT analysis.

Moreover, because it is based on MRT analysis, this new pro-

cedure does not require that the relationships between the

response and explanatory variables be linear, or the residuals

normally distributed. It can also deal with missing values.

These features make CMRT a valuable modelling technique

for ecological data, where stringent statistical assumptions are

seldommet.

Materials and methods

CMRT: THE PROCEDURE

Because CMRT is a new procedure, we first provide the necessary

associated terminology (see Box 1 for illustration). We use the

word wave to describe each level of the nested structure imposed

by the user, and the word drop for each data set analysed at each

level; see Fig. 1 for a diagram of the general structure. The num-

ber of waves is equal to the number of explanatory data sets in

the user’s nested structure. Before launching the procedure, it is

essential to identify which of the explanatory sets will have the

main effect and which will have the subordinate effect. This

decision should not be taken lightly because it strongly influences

the inferences that can be drawn from the resulting model; see

Discussion.

Let Y be the response matrix, A and S be, respectively, the main

and subordinate explanatory tables. First, an MRT model is com-

puted with Y as the response and A as the explanatory table. Vari-

ables in A may represent spatial scales: broad, medium and fine

scales, or else landscape and microhabitat variables, which are

another representation of scales. The hierarchy can also be based on

the nature of the explanatory data sets, for example morphometry of

a river (main) and land use (subordinate). See the Nested hypotheses

in ecology subsection of theDiscussion for more examples. Cross-val-

idation is carried out to prune the tree and complete the first wave of

the cascade.

Pruning is achieved by a resampling method called v-fold cross-val-

idation (Breiman et al. 1984). First, the response data set is randomly

split into v test subsets of roughly equal numbers of objects. These test

subsets correspond to randomly chosen response row vectors, e.g.

sites, with their corresponding species abundances. Then, v trees are

built from v learning sets constructed by removing each of the v test

sets one at a time from the whole set of objects. All trees are fully

grown, and for each tree size, the cross-validated relative error is cal-

culated as follows:

CVRE ¼

Pn

i¼1

Pm

j¼1
yijðkÞ � ŷjðkÞ
� �

Pn

i¼1

Pm

j¼1
yij � �yj
� �

where yij(k) is one observation in test set k, ŷjðkÞis the predicted value of

this observation in the k-th tree computed from the corresponding

learning set, n is the number of observations, and m is the number of

variables in the response matrixY. Cross-validation for the v test sub-

sets produces predicted values for all n observations, which are all

included in the calculation of the CVRE statistic. If the response data

contain species abundances, the predicted response for observation i

is a particular species composition.

The first wave thus consists of analysing a single drop containing

all observations through anMRTmodel. The response set is hypothe-

sized to vary as a function ofA (main effect). The first wave will iden-

tify the groups of sites with the most homogeneous species

composition, split by the explanatory variables coded inA.

The complexity parameter of an MRT model is the minimum con-

tribution to theR2 of the tree for a split to be considered. The value of
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the complexity parameter selected for the first drop shapes the parti-

tion produced by this first wave by controlling the number of splits.

The value is determined by the user: a split will not be performed

unless it explains at least as much variation as the chosen R2 value.

For the first wave of analysis, it is important to set the complexity

parameter high enough to identify only the main factors determining

variation in species composition.

Let g be the number of leaves resulting from the first wave (see

Fig. 1b). In a second step, the variation in the response data in each

leaf (the leaf response tables are notedYh for h = 1,…, g) is modelled

independently with the S explanatory table to form the subordinate

drops. For these drops, the complexity parameter may be reduced to

a small value as the second wave is intended to model finer variation

in species composition. The default value of the complexity parameter

is 0Æ01 in the mvpart() R function; it is passed from rpart.control();

both functions are found in the mvpart package (available on cran.

r-project.org).

The algorithm used to fit all MRT models is the standard recur-

sive greedy splitting algorithm described in the study by Breiman

et al. (1984) and De’ath (2002). Each tree is fully grown and its

final size is chosen by v-fold cross-validation, where v is often cho-

sen to be 10 (Breiman et al. 1984). The user may choose between

the ‘min’ or ‘1se’ rules (Breiman et al. 1984; De’ath 2002) for the

validation. Breiman et al. (1984) suggested that both rules should

lead to about the same risk. The less complex model, obtained with

the ‘1se’ rule, should be chosen in most cases because the aim is to

minimize both risk and complexity. In the case of a regression tree,

the risk is the cross-validated relative error (the variation between

true and predicted values of test objects divided by the total varia-

tion in the response) and the complexity is the number of splits.

Thus, the risk vs. complexity assessment can be made by examining

the plot of the cross-validated relative error as a function of the size

of the tree, to see whether both rules lead to similar risks. In this

study, the within-group sum of squares around the mean is used as

the criterion to be minimized, even though other criteria could be

used.

The combined model, called cascade, is exactly that: a cascade of

models, depicting in a nested manner the partitioning of the

response data by two sets of explanatory variables (Fig. 1). Two

general conclusions may emerge from a cascade: either the explana-

tory variables or splits of the second wave are the same for all

leaves identified in the first wave, which means that the subordinate

effect is the same over all subordinate data sets, or they are not.

Therefore, the subordinate drops may be examined in turn to iden-

tify the differences in splits and explanatory variables among them.

This approach is conceptually analogous to the search for interac-

tion in manova.

R 2 PARTIT ION

We define the R2 of a single MRT tree as 1 minus the relative error

defined by De’ath (2002). Thus, a single coefficient of determination

Box 1. Terminology review for multivariate regression tree (MRT) and cascade ofmultivariate regression trees (CMRT) analyses. There are four

drops (four trees) in this diagram: one in wave 1 and three in wave 2
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(R2) can be computed for each drop. Consequently, a coefficient of

determination (R2) can be obtained for the global analysis by pooling

the R2 of the first wave with the weighted R2 obtained in the second

wave (Fig. 1b). The CMRT procedure implies that the subordinate

R2 are computed as proportions of the variation in their correspond-

ing leaf as defined in the first wave. Each of these secondary drop R2

must then be reexpressed as a proportion of the total variation in the

response data; the overallR2 is finally obtained by summing theR2 of

the main drop and those of the subordinate drops. This procedure is

valid because the subordinate drops are independent from one

another.

The diagram provided by the CasMRTR2() function of

the MVPARTwrap package takes the form of a square of unit area.

The entire area represents the total variation in the response

data. The proportion of the total response variation explained by

each drop is represented as a shaded box of corresponding area. The

box for the drop of the first wave is at the far left. Its height is 1, so

that its width represents itsR2. The partitioning of the remaining vari-

ation is represented by drawing a box for each drop produced by the

first wave. The widths of these boxes are proportional to the unex-

plained variation of the response table in the corresponding leaves of

the first drop, so their sum is equal to the relative error of the first

drop. The heights of the rectangles represent theR2 of the subordinate

drops within their leaf. Therefore, their areas represent their R2 as

ratios of the total response variation.

CASE STUDIES

We illustrate the CMRT procedure by using two data sets that were

submitted to different types of analyses by Borcard, Gillet, & Legen-

dre (2011) and are readily available in r (R Development Core Team

2010). For both case studies, a complexity parameter of 0Æ10 is used

for the first wave and the usual 0Æ01 value is used for the second wave.

Also, both community response matrices are Hellinger transformed

prior to the analysis (Legendre &Gallagher 2001).

Oribatid mites

The first data set consists of three data tables (species abundances of

oribatid mites, micro-environmental variables and spatial coordi-

nates) extracted from 70 peat moss cores collected in a small area in

the peat blanket surrounding LacGeai (Québec, Canada), going from

the edge of the forest to the open water of this bog lake (Borcard &

Legendre 1994). The sampling area is 2Æ5 m · 10 m in size; the small

size of these arthropods calls for small sampling units and extent. In

the usual MRT analysis run with all variables, water content

(g dm)3) determines the first split of the model (Fig. 2). As oribatids

are not aquatic, in this extremely wet environment some oribatids pre-

fer more or less water, which confers this explanatory variable a direct

effect. The water content also has an indirect effect on the biota by

structuring the vegetation. Other substrate and micro-environmental

variables are available as explanatory variables, in particular density

of the substrate (g dm)3), type of substrate (seven unordered classes),

shrub density (none, few and many) and microtopography (blanket-

hummock). This data set is available in the vegan r package

(cran-r.project.org) as well as in the electronic material provided with

the book of Borcard, Gillet, & Legendre (2011).

In the CMRT analysis, we use the variable ‘shrub density’ as the

main effect because shrubs impose particular microclimate and

microsubstrate changes for the mites: it increases shade and tops

the original substrate (sphagnum moss) with additional woody

matter.

The first drop of the cascade divides the sites into two groups sepa-

rating the sites with no shrubs, with indicator morphospecies Trima-

laconothrus sp., Tectocepheus cf. vietsi and Ceratozetidae sp3, from

the sites with a few ormany shrubs (indicatormorphospeciesTectoce-

pheus velatus, Malaconothrus cf. egregius, Oppiella nova, Fuscozetes

setosus, Hypochthoniella sp1 & sp2 andGalumnidae).

In subordinate drops 2 and 3 (Fig. 3), different explanatory vari-

ables are identified to split each subset of sites into two: for the sites

without shrubs, substrate density is the splitting explanatory vari-

able and the splitting point is 50Æ36 g dm)3 and for sites with

shrubs, water content at 385Æ1 g dm)3 is the delimiter. For the sites

without shrubs, we have only one indicator morphospecies per

group: for low substrate density, we have O. nova and for high sub-

strate density, Trhypochthonius cf. tectorum. For the sites with

shrubs and high water content, the indicator morphospecies are

Nanhermannia coronata, Limnozetes rugosus and Limnozetes cf. cili-

atus, whereas for low water content, we have T. velatus, F. setosus,

Hypochthoniella sp. 2 and Rhysotritia ardua. After forcing the shrub

variable at the top of the model, the R2 of the first drop is low

(0Æ163) and the CVRE is high (0Æ94). Yet, we are still able to extract

new insight from the cascade, not available in the global MRT:

where there is no shrub, substrate density has stronger control over

(a)

(b)

Fig. 1. (a) Diagram of the cascade of multivariate regression trees

procedure along with (b) a general R2 diagram. In (b) partition of the

variation explained by the whole cascade in a square whose total area

represents the total variation in the response data (100%). The shaded

area on the left represents the variation of the response data explained

by the first wave (main analysis). The shaded area or areas (there may

be more than one) on the right represent the variation explained by

the subordinate drops of the second wave. For each shaded rectangle

in the white area on the right, its width represents the proportion of

the relative error (RE, unexplained variation) of the first wave while

its height represents the R2 of the subsequent response explained by

the subordinate drop. The white area is the variation that remains

unexplained at the end of the waves.
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the species composition, whereas where shrubs are present, water

content is the most discriminating explanatory variable. Figure 4

shows the variation partitioning of the original response of the ori-

batid mite data by drops.

Doubs river fish

The Doubs River fish data were collected by Verneaux (1973;

see also Verneaux et al. 2003) who considered the fish species com-

position to be an ecological indicator of water quality along the

Doubs River in the Jura mountains, near the France–Switzerland

border. The data set presented here is a subset of the original data

in Verneaux’s thesis, i.e. 30 sites described by three data tables: the

fish species composition (abundance classes ranging from 0 to 5),

explanatory variables describing the water quality and river

morphology and finally the spatial coordinates of the sites. It is

provided as electronic material with the book of Borcard, Gillet, &

Legendre (2011). In the original MRT analysis (Fig. 5), the distance

from the source provides the first split; actually, this split identifies

two zones that had been identified by Verneaux as the Salmonid

region (upstream) and the Cyprinid region (downstream). To illus-

trate the CMRT procedure, we use the morphological variables

‘mean discharge’ and ‘slope’ as the main explanatory set. It should

be noted that these variables are likely to have been represented in

the CMRT analysis by their proxy, i.e. distance from the source.

We will comment this choice, made for demonstration purposes

only, in the Discussion. The physical and chemical variables

[calcium concentration (hardness), pH, phosphate, nitrate, ammo-

nium, dissolved oxygen and biological oxygen demand] are selected

as the subordinate explanatory set.

The resulting cascade is shown in Fig. 6. In the first drop, the sites

are split by a mean discharge of 23Æ65 m3 s)1. On the left is the Cypri-

nid region of Verneaux (1973) (group 3), whereas the Salmonid region

(group 2) is found in the right-hand branch of the tree. Indicator spe-

cies analysis (Dufrêne & Legendre 1997) with Holm correction for

multiple testing shows that the Salmonid region is characterized by

the brown trout (Salmo trutta fario, a Salmonid) and the common

minnow (Phoxinus phoxinus, a Cyprinid). The Cyprinid region has

the bleak (Alburnus alburnus), the common nase (Chondrostoma

nasus), the ruff (Acerina cernua), the pumpkinseed sunfish (Lepomis

gibbosus), the European bitterling (Rhodeus amarus), the European

eel (Anguilla anguilla), the roach (Rutilus rutilus), the spirlin (Spirlinus

bipunctatus), the common carp (Cyprinus carpio), the whitebream

(Blicca bjoerkna), the common barbell (Barbus barbus), the common

bream (Abramis brama), the rudd (Scardinius erythrophthalmus) and

the south-west European nase (Chondrostoma toxostoma) as indica-

tor species.

Within each zone identified by the first drop, the water quality

variables are used in the subordinate analyses to identify and explain

finer differences in species composition. No further splits are found

in the Salmonid region (v-fold cross-validation pointed to one group).

It is not the case for the Cyprinid region (right-hand leaf of drop 1,

called drop 3 in our analysis), which showed three species assem-

blages responding to two explanatory variables: ammonium concen-

Fig. 2.Multivariate regression tree (MRT) analysis for the oribatid mite data. Details are given in Fig. 3 also. Each node bears its identification

number in parentheses, e.g. (1), corresponds to the one found in the summary.MRT() function of theMVPARTwrap package.Under the number

is the percentage of explained variation. For each leaf, the number in parentheses, e.g. (#3), is the one found in the summary.MRT() function of

theMVPARTwrap package; the number of objects in the leaf is also shown, e.g. n = 7.
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tration and dissolved oxygen; see Fig. 6 for a map of the sites along

the river and the cascade of analyses and Fig. 7 for a summary of the

explained variation.

Group 2 of the tree of drop 3 contains sites 23–25, characterized by

large concentrations of ammonium (‡ 0Æ45 mg L)1) and, by correla-

tion, by large concentrations of phosphorus (r = 0Æ9695) and high

biological oxygen demand (r = 0Æ8858); these two variables, which

would produce the same split, are not shown in the tree. The bleak

A. alburnus, the chub Leuciscus cephalus cephalus and the roach

R. rutilus are the indicator species of this group (sites 23–25). The

bleak is present at sites 21–30 but particularly successful at the highly

eutrophized sites 23–25. This species feeds on zooplankton near the

surface (Horppila & Kairesalo 1992) which is, for this species, an

important habitat for feeding (de Nie 1987) and to lay eggs (Pihu

1996). Thus, the indicator value of this species at sites 23–25 corre-

sponds to the presence of macrophytes, which are in turn associated

with high nutrient concentrations (Carr & Chambers 1998). The same

applies to the roach for which macrophytes are also an important

feeding habitat. As shown by Borcard, Gillet, & Legendre (2011,

Fig. 2Æ5), this group is found in a zone where there is a significant

drop in species richness and where one is more likely to find perturba-

tion-tolerant species.

Group 4, which includes sites 17–20, is also part of drop 3. It is

characterized by high levels of dissolved oxygen (‡ 9Æ65 mg L)1) and

small concentrations of ammonium (< 0Æ45 mg L)1). The indicator

species in this case are the stone loach (Nemacheilus barbatulus,

Kottelat & Freyhof 2007), the western vairone (Telestes soufia agas-

sizi, Kottelat & Freyhof 2007), the common minnow (P. phoxinus,

DORIS 2010b), the south-west European nase (C. toxostoma,

Chappaz, Brun, & Olivari 1989), the spirlin [S. bipunctatus, (Kottelat

& Freyhof 2007)] and the common dace Leuciscus leuciscus (DORIS

2010a). All these species have a common preference for intermediate

to high oxygen levels (see associated references).

Lastly, from drop 3, we get group 5, which is characterized by low

dissolved oxygen levels (< 9Æ65 mg L)1) and small concentrations of

ammonium (< 0Æ45 mg L)1). Low dissolved oxygen levels are found

in stagnant turbid waters linked to muddy bed, to which all the

following species are indicators. First, the European eel (A. anguilla)

is found near river mouths; this species migrates to the sea for repro-

duction and prefers to live close to the bottom in mud or crevasses

Fig. 3. Summary of the CMRTanalysis results for the oribatidmite data with the explanatory variable shrub density as the primary (main) effect.

Details: see legend of Fig. 2. Left: arborescence of the drop; rightwe find: corresponding geographical map of the groups. The number (#) and size

(n) of each leaf are shown. The number and percentage of explained variation are given for each node. The explanatory variables used to split the

data were the shrub states (none, few, many; the variable is noted ‘Shrubs’), the substrate density (dry matter) in g dm)3 noted ‘SubsDens’, and

the water content in g dm)3 noted ‘WatrCont’.
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(Deelder 1984). The bream (A. brama) prefers slow-flowing waters

(Kottelat & Freyhof 2007), and the catfish (Ictalurus melas) is found

in slow current, pools and backwaters (Page & Burr 1991), just like

the northern pike (Esox lucius) (Crossman 1996); A. cernua (or

Gymnocephalus cernua) is favoured by eutrophic conditions (Kottelat

& Freyhof 2007). The carp (C. carpio) prefers warm, deep, slow to

still waters (Kottelat & Freyhof 2007), the silver bream (B. bjoerkna)

still waters (Kottelat & Freyhof 2007), and the pumpkinseed (L. gib-

bosus) vegetated pools (Page &Burr 1991).

We could not identify further splits in the Salmonid region using

the physical and chemical explanatory variables. For the Cyprinid

region, however, the ammonium and dissolved oxygen variables

delimited first a polluted region, sites 23–25. Then, among the less

polluted sites, two groups were discriminated by the low oxygen level,

which is a proxy for less agitated waters, which in turn is a proxy for

the type of river bed.

Discussion

GENERAL REMARKS ON THE PROCEDURE

Cascade of multivariate regression trees offers the opportu-

nity to address ecological hypotheses in a preferential order,

allowing one to override the original explanatory order of

the variables presented in MRT analysis to explore specific

avenues by testing the influence of precise variables on the

response data. Both MRT and CMRT produce a hierarchy;

the peculiarity of the CMRT procedure resides in the possi-

bility to preselect the explanatory set of variables that will be

used to compute the first few bipartitions. Therefore, when

creatively applied with specific hypotheses in mind, the cas-

cade provides new insights into the data structure that would

not have been available in simple MRT analysis. In order to

exploit the CMRT procedure to its full potential, the explan-

atory variables selected for the first wave should be different

from the first bipartition of the simple MRT; if it was the

Fig. 4. Output of the CasMRTR2() function for the oribatid mite

data. The global R2 is 36Æ07%; the portion of the global R2 explained

by subordinate drops 2 and 3 together is 19Æ74. The VA percentage

(16Æ32%) is the proportion of the response variation explained by the

main explanatory variable, here shrub density.

Fig. 5. Original multivariate regression tree analysis of the Doubs River fish data. Details: see legend of Fig 2.
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same, the two analyses would depict the same pattern.

Actually, if we had used in CMRT the same first explanatory

variables that were identified by the simple MRT model,

the resulting CMRT model would have been the same as the

MRT result, but with a smaller number of leaves because

the independent cross-validations conducted in the drops

would have reduced the overall power. This is what

happened with our second example (Doubs fish data), where

the variable selected among those chosen for the first wave,

mean minimum discharge (Fig. 6, drop 1), was represented

by its proxy, distance from the source, in the non-hierarchical

MRT (Fig. 5). Furthermore, because distance from the

source actually explains much of the chemical variation along

the river, it also appears in further splits of the original

MRT. This variable being absent from the CMRT, the corre-

sponding splits have been identified by true physical or chem-

ical variables, leading to similar, if not completely identical

results.

In the linear procedures – partial linear regression and

canonical analysis (RDA) –where we include the use of covari-

ables, the use of residuals is necessary to partial out the varia-

tion explained by one of the explanatory sets (Legendre,

Oksanen, & ter Braak 2011; Legendre &Legendre 2012). Here,

as each leaf of the first wave is treated and modelled separately

by the subordinate set of explanatory variables, there is no

need to use the residuals of the first wave in the second wave.

Fig. 7. Output of the CasMRTR2() function for the Doubs River

fish data. The global R2 is 55Æ6%, the portion of the global R2

explained by the subordinate drop 3 is 14Æ36%, and only that one has

explained any variation in the second wave. The drop number corre-

sponds to the number of the leaf in the tree of the first drop (Fig. 6).

The VA percentage (41Æ24%) is the variation explained by the main

explanatory variable, here the ‘mean discharge’ variable.

Fig. 6. CMRT analysis results for the Doubs River data. Details: see legend of Figs 2 and 3. Three explanatory variables appear in this figure:

meanminimum discharge (deb), ammonium concentration (amm) and dissolved oxygen (oxy).
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Actually, if one uses the residuals of the first wave for the sub-

ordinate analyses, one obtains exactly the same cascade struc-

ture and R2 as with the original data; thus, this practice is

useless.

For the total sum of squares of Y to be meaningful, the

response variables have to be dimensionally homogeneous, so

that the sums of squares of individual variables are additive. If

the variables are not dimensionally homogenous, e.g. environ-

mental descriptors, they have to be standardized prior toMRT

andCMRT analysis.

THE CASE STUDIES

We propose two contrasting case studies to stress the impor-

tance of the choice of the explanatory variables of the first

wave. The oribatid mite example illustrates a case where a

hypothesis about the effect of shrub vegetation leads us to

impose the corresponding variable as a first-level effect. This is

clearly different from the spontaneous order of the variables,

as revealed by the standard MRT, but it allows us to gain new

insights into the hypothesized effect. Therefore, the application

of CMRT adds to our knowledge of the ecological processes at

work.

The Doubs River example, on the contrary, shows that the

choice of a variable representing many of the important

ecological drivers of the river system and strongly correlated to

the first-rank variable identified in the classical MRT is not

adequate. This choice not only leads to a result that closely

resembles the one obtained by classicalMRT, but also leads to

a result that is impoverished by the lack of power induced by

the sequential nature of the CMRT method. Therefore, in this

case, the CMRT has not added to our knowledge of the

system, although, as shown in the Results, this simpler

classification can be well explained in ecological terms.

NESTED HYPOTHESES IN ECOLOGY

Cascade of multivariate regression trees allows for the first

time users to impose a hierarchy to their causal hypotheses in

MRT analysis. Several ecological studies include a natural

hierarchical explanatory configuration. For instance, a land

use impact study of communities (e.g. fish, phytoplankton and

zooplankton) could include explanatory variables about the

lake or river morphometry as the main driver and land use

impact variables as the subordinate effect. With the CMRT

procedure, inherently, for each of the groups identified by the

morphometry explanatory data, the subordinate effect of land

use impact can be studied and identified in a fully independent

manner.

In the analysis of time series, one can use the time sequence

as the basis for a primary segmentation (wave 1 analysis) of the

data in CMRT. This first step, corresponding to a clustering

with chronological constraint, is followed by secondary analy-

ses of each segment using environmental variables, where dif-

ferent explanatory variables may express themselves in

different time segments. The same could be carried out for a

spatial transect. The Doubs River data, which form a spatial

series along the course of the river, could be analysed in that

way. Segmentation of the river by MRT using the distance

from the source variable, which corresponds to wave 1 of this

type of analysis, is shown as an example in Section 4Æ11Æ5 of

Borcard, Gillet, & Legendre (2011). For surveys conducted on

a two-dimensional geographical map, the primary segmenta-

tion could be carried out by clustering, spatially constrained by

the geographical coordinates of the sites (see e.g. Legendre &

Legendre 2012, Chapitre 13).

Another possible application of CMRT is for space–time

surveys. Legendre, De Cáceres, & Borcard (2010) showed how

one can test the space–time interaction in this type of survey

for univariate or multivariate response data. (i) If the interac-

tion is not significant, fairly homogeneous space–time blocks

of observations can be identified by wave 1 analysis in CMRT,

followed by secondary (wave 2) separate analysis of each block

using environmental variables. (ii) If a significant interaction

between space and time is identified, it indicates that the spatial

distribution of the response data, e.g. species community data,

has changed through time or, conversely, that the species com-

position has changed differently through time at the different

sampling sites. In that case, CMRT could be used to analyse

the multivariate time series from each site separately or the

multivariate data across sampling sites from each sampling

time separately.

In some applications, the nested structure inherent in

CMRT may be imposed by the researcher for heuristic

reasons. For space–time studies, time or space can be used as

the main set of explanatory variables. (i) Let us explore a

hypothetical situation where tree community composition has

been collected at n sites in a forest (space) over t time steps, and

the study is concerned with the evolution of the distribution of

a potentially invasive species. In this case, space will be used as

the primary factor. By doing so, we delineate regions of the

forest, i.e. groups of geographically contiguous sites, that are

the most similar through times. Each of these regions with sim-

ilar species assemblages may respond differently in time to dis-

turbances: for example, a local drought could boost the

invasive ability of a species. The secondary analysis, carried

out separately on each region using time as the explanatory

variable, would allow the identification of regions where the

communities changed most over time, possibly as a conse-

quence of the invasion. (ii) Let us now suppose that our main

interest is to study the effect of an unusually long drought

affecting the whole forest. In this case, we would use time as

the main factor to first focus on the evolution of the overall

species composition through time, pointing perhaps at main

extinction events because of this drought. Subsequently, we

could study each assemblage identified along the time line

and see how they are structured in space, or with respect to

environmental factors that may condition the structure of the

community through space. The number of sites affected by the

invasive species may vary greatly from time to time.

In any space–time study, spatial or temporal correlation

between adjacent sites owing to neutral processes of commu-

nity dynamics (see e.g. Legendre & Legendre 2012) may be

present along one or the other sampling axis, or both. Further
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simulations are needed to fully understand the effect and the

extent of this effect on the CMRT modelling process, notably

on the cross-validated estimation of the error made on a pre-

diction, which is the basis to pick the size of the tree.

EXTENSIONS OF THE CASCADE

The procedure described in this study was solely based on

MRT. It is possible to pursue a cascade analysis using other

methods. For example, the first drop may come from a parti-

tion either constructed with another method or simply known

by previous knowledge of the data. A linear model, if the

assumptions of such a procedure are met, may also be used to

model the subordinate drops. Thus, a mixture of modelling

proceduresmay be used in the framework. The computation of

an overall R2 is still valid because the subordinate analyses are

independently conducted in each drop and the calculation of

the R2 is independent in each analysis. This framework is also

applicable to univariate CART classification or regression tree

models. Moreover, more than two waves could be used. This

would require that the data set be large in order to have a suffi-

cient number of sites in the leaves of the secondwave and some

variation left to be explained in the thirdwave of the analysis.

RELATING CMRT TO NESTED MANOVA

The CMRT procedure has some fundamental resemblance to

nested manova but users should be aware of important theoreti-

cal differences. One of them is that in CMRT, the structure

results from splits of the explanatory variables that best explain

the response through an MRT analysis. This means that the

usual calculation of degrees of freedom, which are necessary to

compute an F statistic and carry out the statistical tests that are

computed in manova to test the significance of the main factor,

the subordinate factor and their interaction (Legendre &

Anderson 1999; Anderson 2001a,b; McArdle & Anderson

2001), is not directly applicable (M.-H. Ouellette & P. Legen-

dre, in preparation). For that reason, these tests are not

implemented in CMRT. However, it is possible to subjectively

infer from the cascade if the effect of the subordinate explana-

tory set on the response data changed as a function of themain

set, by examining whether the subordinate explanatory vari-

ables chosen or their splitting values changed as a function of

the groups defined in themain partition.

Finally, the possibility of fitting trees in an additive, non-

nested way has yet to be explored. But this approach would

be conceptually very different from CMRT, it would answer

different questions, and its development would imply the

resolution of several mathematical issues about the nature

and computation of residuals in a nonlinear context.

Conclusion

The CMRT procedure is a framework where nested ecological

hypotheses are privileged. Users must choose in which order

two (or more) explanatory sets are considered in an MRT

structure. It is also possible to partition the explained variation

(R2) among the sets and ultimately obtain a coefficient of deter-

mination for the complete cascade of MRT analyses. The final

CMRT model may be subjectively assessed for interaction

between the explanatory sets, to evaluate whether the effect of

the subordinate set changed as a function of the group

membership produced by the first wave of analysis. The overall

procedure is interesting for fundamental as well as applied

ecological studies and may be applied in other fields such as

geography, oceanography, soil science, as well as outside the

biological domain.
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ches écologiques sur le réseau hydrographique du Doubs. Essai de biotypologie.
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