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ABSTRACT 

Ouimet, C. and Legendre, P., 1988. Practical aspects of modelling ecological phenomena 
using the cusp catastrophe. Ecol. Modelling, 42: 265-287. 

Understanding discontinuities helps to better comprehend biological systems. Catastrophe 
theory deals with discontinuities and provides a way of modelling them, but the mathematical 
steps used to do so are often out of reach for many biologists. To solve this problem, graphs 
and nonlinear regression steps are proposed for the cusp catastrophe. A special F statistic is 
used to test if the cusp model fits the data better than a plane model would. Made-up data 
are used to demonstrate how to use the proposed procedure. The last part of the paper is 
concerned with the design of sampling programs adapted to cusp catastrophe modelling; a 
two-step procedure is recommended, when feasible. An Appendix contains a short reminder 
on catastrophe theory, with emphasis on the cusp catastrophe. 

1. INTRODUCTION 

Modelling, in biology and ecology, serves two main purposes. First, a 
model can be used to synthesize the information collected about a system, in 
order to verify its coherence and completeness. Second, confirming the 
predictions derived from a model shows that the data support the hypothe- 
ses built into the model, which gives us new insights into the processes 
controlling the system under study and makes it possible to use these 
predictions for management purpose. In this way, modelling enhances our 
understanding of ecological systems. 

In spite of the many types of mathematics that are currently used in 
modelling, many phenomena cannot be properly modelled. This is the case 
for example for those natural phenomena in which one finds discontinuities 
that cannot be explained by any obvious trigger. This type of discontinuity 
can be dealt with using a mathematical theory stated in 1972 by RenC Thorn, 
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which is called catastrophe theory. The first application of this theory was in 
the modelling of morphogenesis in embryology (Thorn, 1972, 1975). It has 
been widely used in physics (Gilmore, 1981; Poston and Stewart, 1978) and 
in chemistry to describe, from a new angle, such well-known phenomena as 
the caustic effects in light, rainbows, earthquakes, etc. In biology, and 
especially in ecology, progress has been slower, and today only a small 
number of models use catastrophe theory. 

Two major factors explain the slow evolution of this theory in biology: (1) 
catastrophe theory is based on a highly specialised mathematic field, topol- 
ogy; and (2) the steps to follow in order to build a catastrophe model are 
seldom explained in layman’s terms, outside the specialized mathematical 
literature. 

Nevertheless, catastrophe theory could open the door to a better under- 
standing of several ecological phenomena. To do this, the theory uses eleven 
elementary catastrophe shapes, of which the cusp is the most widely used. 
The cusp is often the choice of authors to model phenomena that include 
continuous and discontinuous behaviors, because it is the one catastrophe 
shape that associates a discontinuous response with two control variables. 
This is about as complex an interaction as modellers are usually willing to 
tackle, and it can still be easily represented graphically. Higher levels of 
interaction are more difficult to grasp, and also to communicate to other 
researchers. 

To take advantage of these properties without having to rely upon 
complex mathematics, graphical and non-linear regression steps are sug- 
gested in this paper for building a cusp catastrophe model. An Appendix 
presents a reminder of the basics of catastrophe theory and of the cusp 
catastrophe model. 

2. HOW TO SPOT SIGNS OF A CATASTROPHE IN DATA 

The first step to complete before launching a catastrophe modelling 
project is to determine whether a catastrophe is present or not. This can be 
done from data obtained by sampling the environment, or on theoretical 
grounds alone. Based on some a priori knowledge of the system, one can 
hypothesize that catastrophes are present in the system’s behavior and 
prepare to collect data to demonstrate this. Section 7 explains some im- 
portant principles to follow when sampling with catastrophe theory in mind. 
When the data have been collected, this first step (looking for catastrophes) 
can be carried out by examining graphs of different system variables as a 
function of time, or space, or any other axis used for sampling. This type of 
graph allows one to find out if the discontinuities observed in the data are 
mathematical catastrophes or not. Figure 1 is an example of what might be 
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Fig. 1. Graph representing made-up system variables (a state variable and other environment 
variables), as a function of time, with a small sampling interval. Black circles d: dependent 
state variable with discontinuous behavior; squares s, triangles r, and open circles w: 
independent environmental variables. 

observed. The state variable (d) displays a discontinuous behavior. The first 
discontinuity (1) is linked to a continuous change in variable s, while 
variables Y and w do not show any variation at that moment. Discontinuity 
(1) can therefore be considered as a mathematical catastrophe, if no other 
important predictor has been overlooked. The second discontinuity (2) is 
associated with an abrupt change in the evolution of variable s; therefore it 
is not a catastrophe. The last discontinuity (3) is linked to a continuous 
variation of variable r, while variables s and w are stable. This can also be 
considered as a catastrophe. It is extremely important, in order to use this 
type of graph, that the sampling interval be small. If not, it becomes difficult 
to determine whether the discontinuities are catastrophes or not. This type 
of graph helps the researcher to support the hypothesis of the presence of 
catastrophes in the system under study. This being done, he or she will try to 
confirm or invalidate the catastrophe hypothesis by building a model that 
explains the system. 

3. CHOOSING THE CONTROL VARIABLES 

The way to choose the state (dependent) and the control (independent) 
variables is not special to catastrophe theory. It remains a difficult task in 
any model building process, however. It has been described by various 
authors, including Gold (1977). The choice of the state variable depends on 
the object being modelled and on the goals set. The state variable in 
catastrophe theory is often called x, although this is not a rule (Saunders, 
1980). 



As for the control variables, the choice can be made in many different 
ways. In some cases, it can be based on a specific theory that requires only 
testing. Alternatively, data analysis (clustering, ordinations, regression, non- 
linear path analysis, etc.) can provide clues as to the causal interactions 
among variables; these clues can in turn become a theory after controlled 
experiments in the lab or in nature. A data analysis method as simple as 
plotting the graph in Fig. 1 can also help choose the variables that are 
responsible for the catastrophes. A judicious choice of the control variables 
is essential. If an important variable has been left out and it is one that 
varies abruptly, then what was thought to be a catastrophe is not one. On 
the other hand, if an important variable responsible for the catastrophes is 
left out, then the model should probably pertain to a more complicated 
catastrophe type. In both cases, the model will be incomplete and even false. 
The choice of the control variables has to be made with caution, with full 
knowledge of the pitfalls involved. 

For the cusp catastrophe, the required number of control variables is two. 
These two variables can be read directly from the data set, or they can result 
from combining several variables, for instance by regression or by some 
form of factor analysis (ordination). This procedure is frequently used; then 
the number of variables involved does not matter, since in the end only two 
axes are obtained to form the control surface. The control variables u and u 
are thus functions of the different variables measured in the system. Exam- 
ples of such data reduction are found in Harmsen et al. (1976), Kempf 
(1980) and Rose and Harmsen (1981). Sections and projections of data 
(graphs) will help choose the system variables needed for building the 
model. Here we will use d, Y and s as the names of the actual variables. The 
names X, u and u are generally reserved to represent the theoretical 
variables of the cusp. When one works with real data, one does not know 
from the start if Y = u and s = u, or conversely, if r = u and s = u. Until this 
is known, it is better to use different names for the theoretical variables and 
the data variables. 

The graph of d (the state variable) as a function of s (a control variable), 
with r (the other control variable) constant, represents a section through the 
cusp. If s = u (in other words, if s is the normal factor), this graph has an 
‘S-shape, or a more or less well-defined mirror image of an ‘S’ (Fig. 2). With 
real data, the central part (dashed line in Fig. 2) should not show up in 
sections of the cusp where r < 0 (if r is the splitting factor), because we are 
then in the area of the cusp fold, and in this area the dashed line (central 
sheet) corresponds to an improbable behavior. This graph makes it possible 
to spot the chief properties of the cusp, namely discontinuity, bimodality, 
hysteresis and inaccessibility. Only the divergence property cannot be evi- 
denced by this type of graph. 
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Fig. 2. (a) Theoretical graph of a state variable d, as a function of a control variable S. This 
graph represents a section through the cusp such that r = rl. The reversed ‘S’-shape is 
symmetrical and indicates that s is the normal factor while r is the splitting factor. The 
central part, represented by the dotted line, is the inaccessible zone of the ‘S-shaped section. 

(b) The graph gives the same clues for an ‘S-shape as for a reversed ‘S-shape. 

If the ‘S-shape obtained is symmetrical (Fig. 2) it means that variable s 
is a candidate for the normal factor (u) while variable r could be the 
splitting factor (u) of the theory. In this case, sections of d as a function of 
r, with s = sr, s = s2, s = sj, etc. should give graphs with shapes as in Fig. 3, 
for different values of s. If the graph has an asymmetrical ‘S-shape (Fig. 4), 
this indicates that r and s are conflicting factors. The same is true if both a 
section of d as a function of s, with Y = rr, and a section of d in function of 
r, with s = sr, result in graphs such as Fig. 3a. In the case of conflicting 
factors, either an asymmetrical ‘S-shape, or graphs such as Fig. 3a, will be 
obtained, depending on where on the cusp the section is taken from. 

If the section does not give an ‘S-shape, this could mean that (1) either 
the system does not have a cusp behavior, or (2) we used r = u and s = u 
(for splitting and normal factors) whereas we should have used r = u and 
s = U, or (3) variable transformations are needed to build the model. It is 
also possible that (4) the region where the catastrophe happens has not been 
sampled, or (5) that the sampling interval was not adequate. If situations (4) 
or (5) are the case, the sampling design has to be modified and new data 
obtained before going on with building the cusp model (see Section 7). 

On the other hand, if there are not enough data to draw meaningful 
sections, a projection of d (the state variable) as a function of s (if s is the 
normal factor), for all values of r, would be more suitable (Fig. 5). For the 
same reasons as in the previous paragraph, it is also possible that the 
projection fails to give a graph such as Fig. 5. 

The sections and the projections can help choose the system variables 
needed for building the model. Moreover, they help to see if it is possible to 
go on with the data that have been collected, before getting more deeply 
involved with non-linear adjustment of the model parameters. This is 
especially important when one is using variable combinations, and needs to 
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Fig. 3. (a) Graphs of a state variable d, as a function of a splitting factor r. These graphs 
represent cusp sections obtained for four constant values of s. Squares: points on the upper 
sheet; triangles: middle sheet; circles: lower sheet. (b) Graph representing the relative 
position of the four cusp sections in the space R, X Rf,. For clarity, dots representing the 
central sheet are left out. 

find out which of the two synthetic factors represents the normal variable u 
and which is the splitting factor U. 

4. FITTING THE CUSP MODEL TO DATA USING NON-LINEAR REGRESSION 

When theory, or the graphs obtained in the previous section, support the 
hypothesis of a catastrophic behavior, and when the system can be described 
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Fig. 4. Graph of a state variable d, as a function of a control variable S. This graph 
represents a cusp section with r = rl. The reversed ‘S-shape is asymmetrical, indicating that 
the control variables are conflicting factors. 

by two control variables and one state variable, one can go on and start 
building a cusp model. The next step is to find out the cusp model that best 
fits the data. 

As shown in the Appendix, the behavior, or equilibrium surface, is found 
by equating to zero the first derivative of the cusp equation. The adjustment 
of the model to data can then be done through the equation: 

z=x3+ux+u (1) 

where z, which is a function of (u, u, x), is equal to zero. Zero is the value 
expected from the cusp equation (1) for every point (u, u, x) that lies on the 

d 

Fig. 5. Graph of the projection of the behavior d as a function of s, for all values of r; d: 

state variable; r and S: control variables. 
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Fig. 6. The system’s dependent variable x is not a true function of the control variables u 
and u because, in the cusp area, there are three values of x for each (u, u) coordinate. This 
graph illustrates a slice along the normal factor u, for a specified value u1 of the splitting 
factor u. 

equilibrium surface. When U, u and x are experimental data that contain 
error, an error term e has to be added: 

z=x3+z4x+u+e 

This model can be fitted to data by least squares. 

(2) 

A more usual approach would be to use a form of the equation where x is 
the dependent variable. Such an equation cannot be found, however, with x 
on the left and all control variable terms on the right, because x is not a true 
function of u and u, as illustrated in Fig. 6: in the cusp area, for every 
combination (u, u), there are three values of x that satisfy the equation 
instead of a single one. On the other hand, fitting the model with u or u as 
the dependent variable would produce very large error terms even for points 
located near the curve. Besides the fact that this way of proceeding does not 
make sense, it can easily be shown using artificial data (sampled on the cusp 
surface, with error added to x) that the true cusp equation cannot be found 
in this way. 

Parameters must be added to equation (2) to account for differences in 
position and shape between the theoretical model and a data set. The origin 
of the model, which is located at the origin of the system of axes (point 0, 0, 
0), has to be shifted to the point of origin of the cusp in the data. A shift of 
the origin may also be required by the fact that many biological and 
environmental variables do not have negative values. Similarly, slopes must 
be included to adjust the model to data. This leads to the equation: 

ii=P1(x~ +P2)3 +P3C”i +P4)txi +P*) + C”i +PS) (3) 

No slope parameter is added to variable u, because that would over-de- 
termine the model. 
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The ii’s are the values of variable z as estimated by the model. As in 
ordinary regression, the residuals are computed as (z, - ;,), which is ( - 5,) 
in the present case since all z,‘s are zero. The fitting of the model’s 
parameters of equation (3) is accomplished by nonlinear regression using 
least-squares. Several standard statistical packages contain nonlinear regres- 
sion subprograms that can be used for this purpose, including BMDP 
(subprogram BMDPAR), SAS (subprogram NLIN) and SPSS (subprogram 
NONLINEAR). Subprogram ZXSSQ, from the IMSL subroutine library, 
can also be called from one’s own program for least-squares nonlinear 
adjustment (Levenberg-Marquardt algorithm). 

Testing the adjustment of equation (3) to data is not a simple matter. 
Because the z, are a vector of zeroes, then the total sum of squares of the 
dependent variable is zero, so that the coefficient of determination R2 is 
undetermined and the usual F statistic cannot be computed. According to 
Kempf (1980), the lack of an appropriate method for testing the degree of 
adjustment of a cusp model to data is the chief reason why the use of 
catastrophe theory has progressed so slowly in biology. As an alternative, 
Legendre et al. (submitted) have proposed to test whether a cusp model fits 
the data significantly better than a plane model, also adjusted to the data by 
a nonlinear regression subprogram. They have shown that the plane with 
equation: 

i; = qlxi + q2u; + u, + q3 (4) 

is a model nested in the cusp model of equation (3) with z again a vector of 
zeroes, so that the residual sum of squares (SS Residual) of these two models 
can be used to build a test of significance. An F statistic is constructed, 
where the numerator and the denominator represent two independent mean 
squares: 

F = (SS Residual plane - SS Residual cusp)/2 

SS Residual cusp/( n - 5) (5) 

Of course, the same data set (u, u, x) has to be used to fit equations (3) and 
(4). Legendre et al. (submitted) have demonstrated, using Monte Carlo 
simulations, that this test statistic is distributed like an F at least in the part 
of the F distribution used for testing. They have shown further that this 
procedure is able to detect a cusp even when the data contain a reasonable 
amount of error. This presupposes, of course, that the cusp region has been 
sampled intensively enough, which is the subject of the present paper. 

5. HOW TO LOCATE THE BIFURCATION SET 

When the F test indicates that the cusp model fits the data better than the 
plane model does, one can proceed to locating the bifurcation set on the 
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control surface. To do so, we follow the same steps as those used to derive 
the theoretical bifurcation set equation (A4 in the Appendix): starting from 
equation (3) that contains the slope and shift parameters p1 to pS, we find 
the equation of the points that satisfy both equation (3) and its derivative. 
This equation is: 

It is especially interesting to locate the bifurcation set when analyzing 
data from a preliminary sampling program. To draw the bifurcation set, we 
choose values of variable u (supposing here that Y = u is the splitting factor) 
and calculate, using equation (6), the corresponding values of variable u. In 
this way we get the set of points (u, U) that delimit the cusp and will enable 
us to design a sampling program with variable pace (Section 7). This new 
sampling program will be focused on the cusp catastrophe area and thus will 
make it possible to build a more precise cusp model, as given by equation 

TABLE 1 

Summary of the steps involved in developing a cusp catastrophe model, using graphs and 
nonlinear regressions 

I To spot signs of catastrophes: Check the presence of the different properties, at least 
intuitively. 

II (A) Choosing the state variable: It depends on the objective of the study. 
(B) Choosing the control variables: 

_ intuitive method (for qualitative models); 
_ graphs representing the state and the potential control variable as a function of 

time (or space); 
- graphs of the state variable as a function of the control variables; look for an 

‘S-shape in sections and in projections; 
_ create synthetic control variables by regression, ordination, etc.; 
_ literature; 
_ controlled environment experiments. 

III Cusp catastrophe model: 
(A) To find the best-fitting cusp equation: Nonlinear regression, using a vector of zeroes 

as the dependent variable. 
(B) To test the fit of the cusp model to data: F test of the difference between the 

residuals of the adjustment to a cusp and to a plane model. 
(C) To localize the bifurcation set (the set of points where the catastrophe occurs): Put 

the parameters obtained by nonlinear regression into the equation of the bifurcation 
set (equation 6). 

IV Design a variable-pace sampling program, based upon the position of the bifurcation set 
in the control variables’ space. 
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(3). It is important to notice that equation (3) represents a cusp only if the F 
test indicates that the cusp model fits the data better than the plane model 
does, in which case it is possible to draw the bifurcation set when using the 
parameters obtained in equation (3). Table 1 summarizes the building steps 
of a cusp catastrophe model. 

6. USE OF THE CUSP MODEL BUILDING STEPS: MADE-UP EXAMPLE 

An example was constructed by taking 45 points on the cusp of equation 
x3 + ux + u = 0 and adding errors to them. As above, u and u are the 
control variables while x is the state variable. The points were made to form 
three rows crossing the cusp, which corresponds to a likely sampling design 
for ecologists (Fig. 7). Ecologists should notice that sampling should include 
more than one value of u and u. If a single line of sampling through the 
cusp is available, this is not enough to determine the shape (and the 
parameters) of the cusp surface. Furthermore, the more error there is on the 
measurements, the wider should be the area covered by the sampling design 
on the cusp surface. 

I 
I 1 I .v 

-60 -40 -20 20 40 60 

Fig. 7. Projection of the cusp catastrophe on the (u, u) control surface, showing the position 
of the bifurcation set and of the 45 sample points, before error was added. Closed circles: 
points located on the upper sheet (x coordinate positive); open circles: points located on the 
lower sheet (x negative). Squares: samples taken from outside the bifurcation area, in the 
u > 0 region. 
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In this example, nine points were taken at regular intervals on a line of 
equation u = 5, with a spacing of 5 along the u axis. Eighteen points were 
placed on a line of equation u = - 10, at regular intervals of 5 along u; half 
of them are located on the upper sheet of the cusp, while the other half are 
on the lower sheet. Finally, 18 points were positioned on a line of equation 
u = - 20, at regular intervals of 10 along u; half of them are on the upper 
sheet while the other half are on the lower sheet. No point was positioned on 
the middle sheet of the cusp, since this sheet exerts a repulsive action on 
points. Error terms were produced using the random normal deviate genera- 
tor subroutine GGNML of IMSL, and were added to the point coordinates. 
Since the range of variation on x is not the same as that on u or on u, the 
random normal deviates, drawn from a (0, 1) normal distribution, were 
multiplied by a different factor on each axis, in such a way as to get a mean 
error percentage of 10% on each axis. The mean error percentage, for each of 
the three variables, was computed as the ratio of the standard deviation of 
the error terms over the standard deviation of the data values. 

The resulting data set is shown in Table 2. A cusp and a plane model were 
then fitted to the data set. The results are summarized in Table 3. The F test 
was performed; it shows that the cusp model fits the data better than the 
plane model, with a probability of a Type I error less than lo-‘. The Table 
also shows the confidence intervals, computed for the parameters of the cusp 
model under a linear hypothesis. In the present case, this hypothesis cannot 
be sustained, of course, so that the confidence limits in Table 3 must only be 
taken as general indications of the variability to be expected from the 
estimations of the parameters. Table 3 shows for instance that the confi- 
dence interval of parameter p2 is too small to include the true value of the 
parameter. Sampling a section of the cusp at random would probably have 
made the parameter estimations more accurate, but this an unlikely sam- 
pling design in environmental research. 

Using the parameters of the cusp model, the bifurcation set can be 
located. The bifurcation set equation (6) uses four of the five parameters of 
the cusp model, excluding parameter pz that happens to have poorly 
estimated confidence intervals, under the linearity assumption. The bifurca- 
tion set drawn from the cusp model’s parameters is compared in Fig. 8 to 
the true bifurcation set. Examination of the regression residuals ( - .?) along 
the three transects of Fig. 7 shows that the small jumps that can be observed 
in the residual values, near some of the points located in the zone where the 
cusp has been displaced (Fig. S), are within the bounds of the 45 observed 
residual values. This shows that the difference in the position of the 
bifurcation set is not due to the inadequacy of the nonlinear adjustment 
algorithm under conditions of non-random sampling, as it might have been 
the case, but can rather be attributed mostly to the sampling variance built 
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TABLE 2 

The file with 45 points from Fig. 7, with 10% error added to the u, x and u coordinates 

IA X 0 Z 

6.675592 0.069047 0.216745 0.000000 

4.412278 

5.666038 

5.160128 

5.929957 

3.438756 

7.045749 

5.235439 

6.156060 

- 10.277966 

- 11.966138 

- 9.798377 

- 10.025887 

- 10.878095 

- 10.729467 

- 10.782113 

- 11.231788 

- 10.244176 

- 10.363140 

- 10.981610 

- 9.847771 

- 8.831753 

- 10.508881 

- 8.833925 

- 10.690011 

- 11.543621 

- 9.494024 

- 18.952929 

- 21.690231 

- 18.889130 

- 20.048804 

- 19.562582 

- 19.623815 

- 19.138062 

- 20.089234 

- 19.185577 

- 19.622723 

- 20.876951 

- 19.994242 

- 19.728940 

- 19.572049 

- 19.490899 

- 20.034247 

- 21.496164 

- 19.934037 

- 0.665831 

- 1.608770 

- 1.240045 

- 2.689791 

0.514055 

1.272006 

2.280291 

1.792980 

- 3.893300 

- 4.047400 

- 3.219292 

- 3.177638 

-4.003813 

- 3.842118 

- 2.925062 

- 2.468307 

- 2.069975 

2.779532 

3.258609 

3.555880 

3.306615 

3.675153 

3.361446 

4.225045 

4.309017 

3.547719 

- 5.244735 

- 5.585720 

- 5.757461 

- 5.366251 

- 4.647199 

- 4.732469 

- 4.410649 

- 4.210497 

- 2.963763 

3.054155 

4.534955 

4.308537 

4.168885 

4.735378 

4.411576 

4.792579 

4.755330 

5.375917 

5.411711 

8.768940 

13.399772 

17.298943 

- 5.864243 

- 11.376716 

- 15.642767 

- 22.672084 

29.276534 

28.442475 

20.937932 

14.243360 

11.919988 

6.925697 

1.675152 

- 4.493400 

- 8.713510 

10.352864 

7.385852 

4.204575 

- 1.135777 

- 11.479670 

- 13.271600 

- 24.431465 

- 24.117344 

- 30.413275 

51.050338 

43.212091 

27.918216 

19.591977 

11.867846 

- 1.081610 

- 10.438325 

- 23.171450 

- 31.893922 

34.847526 

20.869703 

12.298238 

- 0.030311 

- 11.587393 

- 21.912514 

- 27.112535 

- 35.947163 

- 50.000696 

0.000000 
0.000000 

0.000000 

0.000000 
0.000000 
0.000000 
0.000000 

0.000000 
0.000000 

0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

0.000000 

0.000000 

0.000000 

0.000000 

0.000000 
0.000000 
0.000000 

0.000000 
0.000000 
0.000000 

0.000000 
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TABLE 3 

F test and parameters of the models computed from the data in Table 2 (the bifurcation set is 
obtained from the cusp model parameters) 

SS Residual plane = 14999.31 

SS Residual cusp = 5974.67 
F statistic = 30.21 
Probability of H, < 1O-7 so H, is rejected. 
Conclusion: The cusp model fits the data better than the plane model. 

Parameters of the plane model (equation 4) 

41 = 3.095 

42 = 0.055 

q3 = 0.316 

Parameters of the cusp model (equation 3) with 95% confidence limits 

Parameter Lower limit Value Upper limit Real value 

PI 0.582 0.791 1.000 1 
P2 0.058 0.305 0.553 0 
P3 0.585 0.828 1.071 1 
P4 - 2.634 0.863 4.360 0; 
PS - 13.070 - 5.732 1.607 0 

Equation of the bifurcation set (derived from equation 6): 

u, = 5.732iSQRT[ -O.l06(u, +0.863)3] 

- 0.863 5.732 
-1 5.715 5.748 
-2 5.336 6.127 
-5 2.988 8.475 
-10 - 3.274 14.738 
-15 - 11.601 23.064 
-20 - 21.567 33.030 

into this experimental data set. This comparison indicates that in designing 
the final sampling program, the ecologist should not give too much credibil- 
ity to the precise location of the bifurcation set, estimated from a pre- 
liminary sampling program. 

7. HOW TO SAMPLE DATA FOR CUSP MODELLING 

Various data sets, including made-up data, were examined in order to 
determine what qualities a data set should possess to allow building a cusp 
catastrophe model. The following data sets were examined and run into the 
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Fig. 8. Bifurcation set of the example’s actual data (full lines), as computed in Table 3, 
compare to the true bifurcation set of Fig. 7 (dashed lines). 

graphical and the nonlinear regression procedures described above: algal 
bloom in freshwater (unpublished data); Mediterranean fisheries (Bebars 
and Lasserre, 1983); ecological succession in a forest (Williams et al., 1969); 
ecological succession among nesting birds (Johnston and Odum, 1956); 
bacterial blooms in marine lagoons (Caumette and Baleux, 1980). None of 
them could be properly used to build a model, but they provided clues about 
what was needed for building such a model. All possessed a common 
drawback: the sampling pace was too large for determining if the discon- 
tinuities encountered were mathematical catastrophes or not. One should 
notice, of course, that none of these data had been gathered for the purpose 
of catastrophe modelling. Finally, catastrophe models published in the 
ecological literature were also examined; these include the model of Duck- 
stein et al. (1979) and its criticism by Ouimet and Brasselet (1985). 

We tried the procedures described in Sections 2 to 5 on a made-up data 
file created from the cusp equation, and representing sections through the 
cusp surface, much as in Section 6 above. The attempts indicated that the 
greater the number of data points, the less likely we were that the plane 
model fits the data better than the cusp model, when there is a catastrophe 
in the system. Furthermore, these attempts have shown that when the 
number of data points is small, cusp sections without discontinuities, or with 
small discontinuities (that is, sample points near the bifurcation point only), 
cannot be significantly told apart from the plane model. This indicates that 
it is preferable to sample mainly in the region which is more obviously 
characteristic of the cusp, which is the ‘S-shape region away from the 
bifurcation point (Fig. 9). 

As mentioned above, the chief problem with the available data sets was 
the sampling pace. To sample properly for catastrophe modelling, one needs 
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Fig. 9. The most important part to sample in order to obtain a clear answer from the F test is 
the folded area of the cusp. x: state variable; u and u: control variables. 

to obtain some basic information regarding the discontinuities, such as: is 
there a catastrophe, or not? When (in time) or where (in space) does it 
occur? The first indicator of the presence of a catastrophe is that a small 
variation of the control variable causes a discontinuous reaction in the state 
variable’s behavior. Consequently, the sampling pace has to be narrow 
enough to allow detecting the catastrophes. For example, for a phytoplank- 
ton bloom following a gradual increase in nutrients, sampling once a week is 
not enough to reveal a catastrophe, because phytoplankton reproduces at a 
much faster pace. So, weekly sampling does not allow to determine if the 
bloom is or is not a catastrophe, as the nutrients could have increased 
suddenly without being noticed. Figure 10 illustrates this theoretical point of 
view. It would be preferable to sample once a day in this case, or more. This 
has an obvious drawback: sampling with a short pace in time or in space, all 
along the evolution of a phenomenon, is very costly in time and in resources. 
When it is not possible to do such a sampling, such as for bacteria where 
growing colonies on agar is time and money-consuming, it is then possible to 
proceed in two steps. 

A preliminary sampling campaign can be conducted to determine what 
the final sampling design should be. In this campaign, the sampling pace is 
regular (through time or space) and many variables are studied. The pace is 
coarse, but still tight enough (considering the biology of the species or of the 
phenomenon to be modelled) to enable us to formulate an hypothesis about 
the presence or absence of catastrophes; for example, every 2 or 3 days for 
environmental bacteria. Several stations, or depths, etc. should be covered 
by the sampling campaign, so that samples do not form a single transect 
across the cusp, but are scattered throughout the (u, u) plane. Results of this 
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Fig. 10. Graph of a state variable, x, and of its control variable E, as a function of time. 
When the sampling interval is not small enough, there is no way of knowing whether the 
control variable had a continuous (dashed line) or a discontinuous evolution (dotted line). 

preliminary sampling allow not only to document the presence of a 
catastrophic phenomenon (Section 2), but also to determine what the control 
variables are likely to be, as explained in Section 3. Next, the cusp catastrophe 
model is fitted to the data (Section 4) and the bifurcation set is localized 
(Section 5). From the knowledge of the approximate position of the bifurca- 
tion set, a second sampling program is designed, that will emphasize the 
collection of information in and around the bifurcation set. 

In this second sampling program, the pace now depends on the measured 
values of the control variables, rather than on the evolution of the phenome- 
non along a regular time (or space) schedule. The sampling pace will 
therefore be determined as a function of the position (u, u) of the points on 
the control surface, with denser sampling near the catastrophe jump. Obvi- 
ously with such a design, a judicious choice of the control variables is an 
asset in detecting the catastrophes. This sampling program will therefore 
have an irregular pace in time (or through space). As long as the values 
( ui, vi) of the samples are outside the bifurcation set (Fig. lla, point A), a 
coarse pace is used; for example, every 2 days for bacteria. When (u,, uI) 
gets on or inside the bifurcation set (Fig. lla, point B), the pace should be 
shortened, more and more, as the phenomenon approaches point C. Actu- 
ally, one should start using a shorter pace some distance before reaching the 
computed position of the catastrophe jump, to account for the imprecision 



282 

SAMPLING DIRECTION 

:’ d 
L A . ..‘..... 0 0 0 

L . . . . . . . . 0 0 0 0 0 0 0 0 d 

Y, “> “3 Y, 
VARIABLE v 

SAMPLING DIRECTION 

Fig. 11. General example of a sampling done with a variable pace. The pace varies depending 
on the values of the control variables u and v that form the control space. (a) Trajectory 
from A to D. (b) Trajectory from D’ to A’. Triangles: coarse sampling pace; white circles: 
shorter sampling intervals; black circles: very short sampling intervals. 

of the bifurcation set location (Fig. 8). At C, one uses the minimum possible 
sampling interval, in order to be able to confirm the presence or the absence 
of a catastrophe in the phenomenon. When point C is crossed, the sampling 
pace can become coarse again (Fig. lla, point D), for example, every two 
days for bacteria. The same type of sampling can be used when following 
the reverse phenomenon (Fig. lib). Short sampling intervals are used again 
inside the bifurcation set (here, between C’ and B’). In this way, a lot of 
data are collected in the region of the bifurcation set, where the important 
information is, while fewer resources are spent in regions of the phenome- 
non evolution that contain less useful information for the elaboration of the 
model. Of course, one could sample with a short sampling interval over the 
whole region inside the bifurcation set, as well as the region just outside, if 
the resources allow it. 

This sampling design offers another advantage. It makes it possible to 
sample a phenomenon at the right time, even if the dates of appearance are 
different among years, for example. This advantage comes from the fact that 
it is not the calendar that guides the sampling anymore, but rather the 
system’s control variable values. The same principle applies to sampling 
through space. 

To sample in two steps is not totally without problems, however. Thus, 
for phenomena that evolve over long time periods, as for example ecological 
successions, to repeat a sampling program can be difficult, or even impossi- 
ble. On the other hand, for phenomena that evolve within ‘reasonable’ 
sampling time or space, a two-step sampling strategy will allow to better 
identify, understand, and model natural phenomena with catastrophic be- 
havior. 
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8. CONCLUSION 

Discontinuities are often encountered in biological systems’ behavior, but 
the usual mathematical analysis techniques often do not recognize them, 
which leads to poor understanding of these systems. Catastrophe theory 
deals with discontinuities in the response (or state) variable, induced by 
continuous changes in the control variables of a system. This type of 
mathematics is too often considered to be out of reach for biologists. This is 
why this paper has proposed an alternative in terms of graphical analysis, 
and nonlinear regressions associated with a special F test. The graphic steps 
help us find the control variables of the system. Nonlinear regression makes 
it possible to find the most likely values of the model’s parameters, given the 
data available, while the F test allows us to determine if the cusp model fits 
the data significantly better than a plane model. This test is suggested as a 
way of getting around the lack of statistical methods for measuring the fit of 
catastrophe models to data; this problem has slowed down the use of 
catastrophe modelling in the biological sciences. 

The sampling design is an important consideration when one wants to use 
catastrophe theory in modelling biological systems. Two patterns are sug- 
gested: (1) to sample with a short and regular sampling interval through 
time or space, or (2) to sample in two steps. In the first step, a coarse and 
regular sampling pace is used and then, after analysing the information from 
that first sampling program, a second sampling program is undertaken. 
Based on the values of the control variables on the bifurcation set, more 
samples are collected as one approaches the catastrophe jump, because this 
is where the most relevant information can be obtained. 

Besides catastrophe theory, discontinuities as are found in biological and 
ecological systems could also be modelled using bifurcation theory (Salvadori, 
1984), that can deal with discontinuities in a more general manner than 
catastrophe theory. 

APPENDIX 

A reminder on catastrophe theory, with special emphasis on the cusp catastrophe 
model 

Catastrophe theory is a mathematical theory about discontinuities, brought 
into being by RenC Thorn, a French mathematician, and described in a book 
entitled Structural stability and morphogenesis (Thorn, 1972, 1975). Zeeman 
(1977) made the theory well-known by providing several applications and 
examples. As defined by this theory, a catastrophe is a discontinuity in the 
behavior of a system, induced by a continuous change in the variation of the 
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variables that control the system. For example, if a force is applied to a 
branch of a tree and is gradually increased, the branch resists while bending 
slowly, up to a limit. If the force pushing down on the branch is increased 
further, even just a little, the branch breaks suddenly. This is a catastrophe 
from the mathematical point of view. On the other hand, if a strong force 
was applied suddenly, the branch would break suddenly as well; this would 
be a discontinuity but not necessarily a catastrophe as defined above. 
Because the force is applied suddenly, the system is expected to react 
suddenly, even under a continuous effect model. In this type of situation, it 
is not possible to know whether there is a catastrophe or not. Consequently, 
one has to be careful when determining if a phenomenon suits the definition 
of a mathematical catastrophe. 

With catastrophe theory, phenomena that other methods would ignore or 
explain only partially can be described. For example, the fact that an 
important part of the variability of a phenomenon can be explained by using 
linear regression (high R2) does not necessarily mean that the linear model 
explains the fine behavior of the system. Linear regressions can explain large 
or small changes in the behavior of a system induced by corresponding 
functional changes in the variables that control it, but they cannot explain 
big changes in the behavior of the system induced by small (continuous) 
changes in the variables influencing it. This fact is often a key factor in the 
understanding of some phenomena. This is when the use of catastrophe 
theory becomes interesting. 

In elementary catastrophe theory, the behavior of a system is described in 
terms of maxima and minima of a function of potential. The cusp catastrophe 
is one of eleven different geometrical shapes of catastrophes called the 
elementary catastrophes. It is a three-dimensional and relatively simple-to-use 
catastrophe, as illustrated in Fig. 12. This shape is associated with the 
following potential function: 

where l&(x) represents the potential of x, the state variable whose varia- 
tions depend on control variables u and U. To draw the shape found in Fig. 
12, one has to find the equilibrium (minima and maxima) of function (Al). 
They are found by deriving equation (Al) and equating the derivative to 
zero. One obtains the equation of the behavior surface: 

~=x3+z4x+u=0 
dx W) 
Solving equation (A2) for all pairs (u, u), one gets the equilibrium, or 
behavior surface, also called the cusp surface (Fig. 12), which is the set of 
extrema of the function of potential (Al). 
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Fig. 12. Equilibrium state changes on a cusp catastrophe. Modified from Saunders (1980). 
Trajectory (a): sudden change (catastrophe). Trajectory (b): continuous change. x: state 
variable; u and v: control variables; II: projection of R, x Ri, onto Rz,. Black circles: 
catastrophe point. 

The so-called ‘bifurcation set ’ corresponds to the two lines that delimit the 
zone of the (u, u) plane (control surface) where catastrophes occur. The 
points in this set are projections of those points of the behavior surface 
(equation A2) that are also inflexion points; that is, points such that: 

d2V 
:=3x2+u=o (A3) 
dxL 

\ I 

Consequently, the points of the bifurcation set are points of the (u, u) 
control surface that obey both equation (A2) and equation (A3). Simple 
algebraic steps show that they correspond to the solution of the equation: 

4u3 + 27u2 = 0 (A4) 
The bifurcation set has the shape of a cusp, whence the name of this 
catastrophe. The behavior of the system is illustrated by the trajectories (a) 
and (b) in Fig. 12. The behavior surface represents the system’s stable 
equilibrium states. Starting from the upper sheet of the behavior surface, let 
us trace a trajectory parallel to the u axis. When the trajectory reaches the 
edge, where the upper sheet meets the central sheet (unstable equilibrium 
states), the behavior changes dramatically after a very small push on u. This 
is a discontinuity in the system’s behavior, called a catastrophe. The behav- 
ior change is indicated in Fig. 12 by a jump from the upper to the lower 
sheet, which represents the other set of stable equilibrium states. The (b) 
trajectory in Fig. 12 shows that the cusp catastrophe can also account for 
continuous changes in the system’s behavior. 

The cusp catastrophe possesses five important properties: discontinuity, 
inaccessibility, hysteresis, bimodality, and divergence (Fig. 13). The first 
property has been described above. Inaccessibility refers to the fact that the 



286 

\ / factor \ 

Fig. 13. Properties of the cusp catastrophe. Modified from Zeeman (1977). The unstable 
equilibrium sheet is not shown. x: state variable; ZJ and u: control variables; II: projection of 
R, X Rt, onto Ri,. 

central sheet is formed of unstable equilibrium states, also called improbable 
behavior. To represent the property of inaccessibility, the central sheet has 
been removed in Fig. 13. Hysteresis results from the fact that the behavior 
stays on the surface sheet until it disappears, so that the jump from the 
upper to the lower sheet occurs at a different (u, u) point than the jump 
from the lower to the upper sheet (Fig. 13). Bimodality is shown by the fact 
that on the behavior surface in the cusp region, there are two possible 
behaviors for each point (u, u). The last property, divergence, refers to the 
fact that two trajectories on the behavior surface that start near each other 
in the neighborhood of the cusp point, and run parallel to the u axis, can 
end up one on the upper sheet and the other on the lower sheet. 

Fig. 14. Example of a cusp with conflicting factors. Modified from Zeeman (1977). x: state 
variable; u and v: control variables; HI: projection of R, X Rt, onto R:,. 
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Generally, variable u is called the separation factor because the surface 
usually splits into upper and lower sheets along this axis. Variable u is then 

called the normal factor. Variables u and u can also be called conflicting 
factors if they are oriented at an angle on each side of the bifurcation set, 
instead of cutting through it (Fig. 14). 
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