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Abstract. Spatial structures may not only result from ecological interactions, they may
also play an essential functional role in organizing the interactions. Modeling spatial patterns
at multiple spatial and temporal scales is thus a crucial step to understand the functioning
of ecological communities. PCNM (principal coordinates of neighbor matrices) analysis
achieves a spectral decomposition of the spatial relationships among the sampling sites,
creating variables that correspond to all the spatial scales that can be perceived in a given
data set. The analysis then finds the scales to which a data table of interest responds. The
significant PCNM variables can be directly interpreted in terms of spatial scales, or included
in a procedure of variation decomposition with respect to spatial and environmental com-
ponents. This paper presents four applications of PCNM analysis to ecological data rep-
resenting combinations of: transect or surface data, regular or irregular sampling schemes,
univariate or multivariate data. The data sets include Amazonian ferns, tropical marine
zooplankton, chlorophyll in a marine lagoon, and oribatid mites in a peat bog. In each case,
new ecological knowledge was obtained through PCNM analysis.

Key words: chlorophyll a; oribatid mites; principal coordinates of neighbor matrices (PCNM);
sampling design; scale; spatial analysis; tropical ferns; tropical zooplankton; variation partitioning.

INTRODUCTION

The importance of spatial ecological structures is
now widely recognized in ecological theory (Legendre
and Fortin 1989, Legendre 1993, Peterson and Parker
1998). The interactions between living communities
and their physical environment, and among the organ-
isms themselves, occur at definite spatial and temporal
scales, and give rise to spatial patterns that need to be
assessed to untangle the processes structuring these
communities. This assessment is not trivial when one’s
objective is to include in the model all the scales per-
ceived in a given data set. Among the methods that
have been proposed to include space as an explicit
predictor in ecological modeling, Legendre and Trous-
sellier (1988) built a matrix of Euclidean distances to
be used in a series of Mantel and partial Mantel tests,
and Legendre (1990) proposed to use the geographic
coordinates directly as explanatory variables in con-
strained ordination techniques, augmented by all terms
of a cubic trend-surface equation. The latter approach
was integrated into a method of variation partitioning,
where ecological variation was decomposed into four
fractions using partial constrained regression or ordi-
nation methods (Borcard et al. 1992, Borcard and Le-
gendre 1994, Legendre and Borcard 2004). This tech-
nique has proved very successful and is now widely
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applied in ecology; see references in Legendre and Le-
gendre (1998:775).

Trend-surface analysis only allows the broad-scale
spatial variation (at the scale of the extent of the sam-
pling campaign) to be modeled. Therefore, Borcard and
Legendre (2002) proposed a new approach devised to
identify spatial patterns across the whole range of
scales perceptible with a given data set. This method
(Fig. A1 in Appendix A) is based on the computation
of the principal coordinates of a matrix of geographic
neighbors among the sampling sites (PCNM, acronym
for principal coordinates of neighbor matrices). The
present paper illustrates the application of PCNM anal-
ysis to real ecological data observed using various spa-
tial designs: linear (transect) and two-dimensional (sur-
face), regular or irregular sampling schemes, and pre-
sents various ways to obtain new ecological knowledge
from the results.

THE METHOD OF PCNM ANALYSIS

A detailed account of PCNM analysis is found in
Borcard and Legendre (2002). The method creates a
set of spatial explanatory variables that have structure
at all the scales encompassed by the data matrix (akin
to the series of sines and cosines used in Fourier anal-
ysis), and determines to which of these variables the
response data (univariate or multivariate) are statisti-
cally responding. The steps to create the PCNM vari-
ables are summarized in Table A1 of Appendix A. Note
that using this method does not imply that one expects
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to find periodic spatial structures: the spectral variables
are used mainly to model nonlinear structures through
a flexible combination of sine waves.

When the sampling design is a linear transect with
equidistant points, the spatial variables are a series of
sine waves with periods decreasing from n 1 1 (where
n is the number of points in the transect) to ;3. The
number of variables obtained in this case is 2n/3 round-
ed to the upper integer value. Under other sampling
designs, the number and shape of the PCNM variables
may differ, but they always correspond to the number
of positive eigenvalues of the principal coordinate anal-
ysis.

The response data should be checked for linear trends
prior to the application of PCNM analysis. A trend
indicates the presence of a spatial structure at broader
scale than the sampling extent. Although PCNM anal-
ysis is capable of recovering linear trends, it is pointless
to use a combination of sine waves to model gradients.
This may also obscure other structures that could have
been recovered from the data; half the available PCNM
variables would be needed to model the trend, so that
their role in modeling finer structures could go unno-
ticed.

ILLUSTRATION USING REAL ECOLOGICAL DATA

The various data sets presented here deal with dif-
ferent kinds of data and sampling strategies, and we
propose several ways of interpreting the results, which
may suit different research purposes.

Regular one-dimensional sampling (transect):
a fern species in upper Amazonia

The data were gathered during a research program on
vegetation ecology of Amazonian tropical rain forests.
PCNM (principal coordinates of neighbor matrices)
analysis was applied to two linear transects located in
Northeastern Peru, in the regions of Nauta (48279 S,
738359 W) and Huanta (38179 S, 718519 W). Previous
analyses on these transects can be found in, e.g., Tuom-
isto et al. (1995) and Tuomisto and Poulsen (2000). Each
transect consists of 260 adjacent, square (5 3 5 m) sub-
plots where the abundances (number of individuals) of
all species of ferns were recorded, as well as the fol-
lowing environmental variables: elevation above the
lowest point in the transect (in meters), thickness of
organic soil horizon (in centimeters; a single measure-
ment at the center of the subplot), degree of drainage
(six ordered classes), canopy height (in meters), number
of tree stems in five ordered classes of diameter at breast
height (dbh), number of lianas in three diameter classes,
tree canopy coverage (percentage), shrub coverage (per-
centage) and (at Nauta only) herb coverage (percentage).
We analyzed the spatial distribution of the most abun-
dant species, Adiantum tomentosum Klotzsch, to assess
the spatial scales at which the abundance of this species
is structured, and relate these scales to the environmental
variables. We could have analyzed the whole fern com-

munity if the study had been aimed at answering com-
munity-level questions, but the results would have been
less precise for any one species. The Nauta results are
presented in detail here; the Huanta results are found in
Appendix B.

Step 1: PCNM analysis of A. tomentosum at Nau-
ta.—The A. tomentosum abundances were first square-
root transformed to make them more symmetrical (if
not strictly normal). They presented a significant linear
spatial trend (R2 5 0.102, P 5 0.001, 999 permuta-
tions). Therefore, we detrended the variable before
PCNM analysis. PCNM generation over 260 quadrats
produced 176 PCNM variables. Among them, 50 were
significant, yielding a parsimonious model with R2 5
0.815. The spatial model was arbitrarily partitioned
into four additive submodels corresponding to the fol-
lowing scales: very broad (the 10 first PCNM variables,
which were all significant; R2 5 0.333), broad (8 sig-
nificant PCNM from the group 11 to 20; R2 5 0.239),
medium (12 significant PCNM from 21 to 50; R2 5
0.126) and fine (20 significant PCNM from 51 to 176;
R2 5 0.117). To identify the significant periods in the
submodels, we computed a contingency periodogram
(a method for periodic analysis of short data sets; Le-
gendre et al. 1981) on each of them. Significant periods
of 50 and between 71 and 88 subunits, i.e., of 250 m
and between 355 and 440 m, were found in the very-
broad-scale submodel; 36 subunits (180 m) in the
broad-scale submodel; 18 subunits (90 m) at medium
scale; and 10 and 13 subunits (50 and 65 m) at fine
scale. The data, model, and submodels are displayed
in Fig. 1.

Step 2: regression of fern data and PCNM submodels
on environmental variables.—To identify the environ-
mental variables related to A. tomentosum abundance
at all scales, the (square-root-transformed and detrend-
ed) fern data as well as the four spatial submodels
obtained above were submitted to multiple regressions
with backward elimination of explanatory variables.
Linearity of the relationship between the dependent and
each (untransformed) explanatory variable was
checked visually. The significant variables (with prob-
abilities) are given in Table B1 of Appendix B. Most
environmental variables explaining one or more spatial
submodels are significant in a classical, non-spatial re-
gression involving the fern counts. Most prominent is
elevation, significant at very broad and broad scales.
This variable acts as a proxy for unmeasured edaphic
factors that vary at these scales, for instance soil dif-
ferences related to catena formation. Of the other soil
properties, thickness of organic soil horizon is signif-
icant in the models at very broad scale, and drainage
at medium scale. The influence of vegetation structure
is represented by several variables. Canopy height is
the most important at very broad scale. The number of
trees with dbh 3–7.5 cm has some influence at broad
scale. The canopy, shrub, and herbaceous coverage var-
iables each explain one submodel significantly, without
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FIG. 1. Square-root-transformed Adiantum tomentosum
abundances and spatial PCNM (principal coordinates of neigh-
bor matrices) model and submodels (ordinate) along the Nauta
transect (abscissa; 260 quadrats): (a) A. tomentosum (thick line)
and parsimonious PCNM model; (b) very-broad-scale (thick
line) and broad-scale models; (c) medium-scale model; (d) fine-
scale model. The R2 values are calculated with respect to the
total variation in the transformed fern count data; they are thus
additive. Fern-abundance data before transformation were mea-
sured as number of ferns per 25-m2 quadrat.

appearing significant in the regression of fern counts
on the original environmental variables. Their effect is
thus better detected by a filtered variable focusing on
the relevant spatial scale. No environmental influence
could be related to the fine-scale pattern; see Discus-
sion, below.

At Huanta (Table B2 and Fig. B1 in Appendix B), the
soil-related variables are the same and act at the same
scales as at Nauta, although the spatial component in
fern abundance was much weaker than at Nauta. None
of the vegetation coverage variables is significant, and
canopy height acts at a finer scale. Several variables
of tree and liana counts are significant at very broad
scale, which is probably related to the peculiar shape
of this submodel, showing essentially one major bump
and trough in the right-hand portion of the transect.

Irregular one-dimensional sampling (transect):
zooplankton in Guadeloupe

PCNM analysis was used to describe the multiscale
spatial variation of zooplankton biomass inhabiting a
coastal reef lagoon (Guadeloupe, 168189 N, 618349 W)
and test hypotheses about the biological and physical
processes causing zooplankton patchiness (Avois-Jac-
quet 2002). The zooplankton (two size classes: 190–
600 mm and .600 mm) and environmental variables
were sampled at 51 irregularly spaced sites (sampling
interval: 15–637 m), arranged along a straight-line
cross-shelf transect 8.4 km in length. A significant spa-
tial trend was found in the two zooplankton size classes
and extracted by regression. PCNM analysis was car-
ried out on the detrended data.

Production of the PCNM variables required a special
treatment. The site spacing along the transect was ir-
regular. In order to allow the PCNM analysis to detect
features smaller than the widest gap (637 m) between
neighboring sites, six supplementary objects were add-
ed into the data matrix containing the site coordinates.
This filled the voids, leaving a widest gap of 227 m,
which provided the truncation distance of the matrix.
After principal-coordinate analysis, the supplementary
objects were removed from the matrix of PCNM var-
iables. This operation did not affect the dependent var-
iables: it simply allowed us to obtain finer-scale PCNM
variables. This trick comes with a price. Since the sup-
plementary objects were removed following the com-
putation of the principal coordinates, there is a loss of
orthogonality among the coordinates. Actually, in this
case, the largest correlation (between PCNM variables
10 and 26) was 0.295, but most other values were below
0.10. For irregular sampling designs, one has to find a
trade-off between fine resolution and orthogonality of
the spatial variables, two key properties of PCNM anal-
ysis (Borcard and Legendre 2002).

Due to the irregularity of the sampling, the 28 PCNM
variables do not portray regular sine waves along the
transect, but they can nevertheless be sorted into scales
of increasing fineness by examining their shapes or by

computing variograms or correlograms. Examples are
shown in Fig. C1 of Appendix C). In regular one-di-
mensional designs, the order of the PCNM axes always
corresponds to the size of the patterns they describe.
As usual, only a subset of the PCNM variables signif-
icantly explained the variance of the two size classes
of zooplankton biomass (Table C1 in Appendix C); they
were arbitrarily subdivided into broad-scale (1–5 km:
PCNM variables 1 to 9), and medium-scale influences
(400–1000 m: PCNM variables 10 and above).

PCNM analysis yielded an R2 5 0.579 with 10 sig-
nificant PCNM variables for the small zooplankton
(Fig. C2 in Appendix C) and 0.339 with 4 PCNM for
the large zooplankton (Fig. C3 in Appendix C). The
significant PCNM variables for the two fractions are
given in Table C1 of Appendix C. PCNM variables 6
and 9 were significant for both fractions of zooplank-
ton, but the small organisms showed significant spatial
variation at more scales than the large ones. The large



July 2004 1829SPATIAL STRUCTURE AT MULTIPLE SCALES

S
tatistic

al
R
epo

r
ts

and small zooplankton differed strongly in the intensity
and spectral composition of their patchiness.

At the scale of the whole lagoon, the biomass pattern
consisted in a decreasing gradient from the coast to the
barrier reef. The broad- and medium-scale patterns re-
vealed by PCNM analysis (Figs. C2 and C3 in Appen-
dix C) formed waves with periods ranging from 800
m to 2 km. From 0 to 4 km from the shore, large and
small zooplankters exhibited low biomass near the
coast and high biomass in the middle of the lagoon
(Fig. C2c and C3c in Appendix C). At finer scales (Fig.
C2d and C3d in Appendix C), they showed patchiness
across the whole transect.

To identify the environmental processes that con-
tribute to the generation and maintenance of multiscale
spatial variation in the zooplankton, multiple regres-
sion with forward selection was used to select the en-
vironmental variables that significantly explained each
spatial pattern of biomass for each zooplankton size
class (i.e., 190–600 mm and .600 mm). The unde-
trended environmental data were used first to explain
the trend identified in the zooplankton data (i.e., the
decreasing biomass gradient from the coast to the bar-
rier reef). Second, the detrended environmental data
were used to explain the PCNM models of the detrend-
ed zooplankton data. Detailed results are presented in
Avois-Jacquet (2002); a short account is given here.

At the scale of the trend, which corresponds to pro-
cesses larger than the extent of the survey, the decreas-
ing gradient of zooplankton biomass was mainly ex-
plained by decreasing phytoplankton biomass. Salinity
increased from the coast to the barrier reef, whereas
wind speed and dissolved oxygen decreased.

The response of zooplankton at the scale represented
by PCNM 6 was mostly linked to the presence of cays
and seagrass beds, followed by swell height and dis-
solved oxygen. The cays had higher zooplankton bio-
mass, greater swell height, and lower values of dis-
solved oxygen than the seagrass beds. At the scale of
PCNM 9, deep muddy bottoms and seagrass beds were
negatively linked to zooplankton biomass. Turbidity
and swell height were positively linked to zooplankton
biomass and showed high values on the cays. The finer-
scale patterns of small (PCNM 12) and large (PCNM
15) zooplankton were mainly explained by the habitat
variables. Wind speed explained PCNM 12 signifi-
cantly, and large zooplankton showed a negative re-
lationship with phytoplankton biomass at the scale of
PCNM 15; this relationship was positive at the scale
of the whole lagoon. The results support the hypothesis
that the structure of zooplankton biomass and of its
generating processes (types and effects) vary across
spatial scales (Mackas et al. 1985), as well as the hy-
pothesis that zooplankton spatial structuring is size spe-
cific (Piontkovski and William 1995). But globally, at
the trend- to broad-scale, the spatial structure of zoo-
plankton biomass was mostly explained by hydrody-

namic and biological variables, while across broad to
medium scales, the types of habitat dominated.

Regular two-dimensional sampling grid:
chlorophyll in a brackish lagoon

First analyzed using Mantel tests by Legendre and
Troussellier (1988), this is one of the data sets used to
demonstrate the method of variation partitioning (Bor-
card et al. 1992). Fig. D1 in Appendix D shows the
results of a PCNM analysis of a single variable, chlo-
rophyll a, over a geographic surface, the Thau marine
lagoon (Hérault, southern France: from 438209 to
438289 N, and from 38329 to 38429 E; 19 km in length).
Chlorophyll a (Chl a) is an often-used indicator of the
abundance of phytoplankton in aquatic ecosystems. A
regular sampling grid, with 1-km mesh size, was used
to sample 63 sites in the Thau lagoon on 17 June 1986
(Amanieu et al. 1989). Principal-coordinate decom-
position of the truncated distance matrix (truncation
distance: 1 km) produced 45 PCNM variables; four of
them are shown in Fig. D1 (e–h). Chl a (Fig. D1a) was
regressed on the 45 PCNM variables. Backward elim-
ination was applied, resulting in 12 significant PCNM
variables explaining together 78% of the spatial vari-
ance of the Chl a data. The 12 PCNM variables were
divided in three groups corresponding to the broad
(PCNM 1, 3, 5, and 8), intermediate (PCNM 13, 14,
17, 19, and 20), and fine scales (PCNM 24, 28, and
36). The values of Chl a adjusted to these submodels
were computed and plotted in Fig. D1b–d. The broad-
scale model describes the main hydrological gradient
across the lagoon, controlled by inflow of marine water,
mainly through the harbor of Sète near the eastern end
of the lagoon, and inflow of freshwater from Canal du
Midi at the western end of the lagoon and other rivers
of the drainage basin. The intermediate-scale model
predicts high values near the largest towns around the
lagoon, except Mèze (number 5 in Fig. D1c), which
has a highly efficient sewage treatment plan (Trous-
sellier et al. 1986). The fine-scale model, which is also
statistically significant, predicts high values of Chl a
in specific areas in the lagoon, but we could find no
ecological interpretation of the spatial variation pre-
dicted by this model; see Discussion, below.

Irregular two-dimensional sampling:
oribatid mites in a Sphagnum carpet

One of the data sets used by Borcard et al. (1992)
to illustrate the variation partitioning method is here
reexamined using PCNM analysis. Seventy soil and
Sphagnum cores (5 cm in diameter, 7 cm deep) were
collected from a small, 10 3 2.6 m area in the partially
floating vegetation mat extending from the forest bor-
der into a Laurentian peat-bog lake (Lac Geai, 468 N,
748 W, Station de biologie des Laurentides, Québec,
Canada). Details about the site and the field methods
are found in Borcard and Legendre (1994). The sam-
pling design formed an irregular pattern.
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The species matrix contained 70 objects (cores) and
35 species; the environmental matrix contained the fol-
lowing variables: type of substratum (seven unordered
classes), microtopography (blanket or hummock), cov-
erage density of the shrub cover (three semi-quanti-
tative classes), water content in grams per liter of fresh
uncompressed matter (quantitative), and bulk density
in grams per liter of dry uncompressed matter.

In the context of variance partitioning, Borcard and
Legendre (2002) showed how the substitution of the
third-order polynomial by a set of PCNM variables
improved the modeling of fraction [c] (strictly spatial)
without much affecting fractions [a] and [b]. Here we
show how the modeling of medium and fine-scale pat-
terns can be refined, compared to the results obtained
by means of a third-order polynomial (Borcard and
Legendre 1994).

A preliminary redundancy analysis (RDA; Rao
1964) involving only the X and Y geographic coordi-
nates as explanatory variables, and thus looking for a
linear gradient, significantly explained 28.4% of the
variance of the data. Prior to that RDA, the species
data had been Hellinger-transformed following Legen-
dre and Gallagher (2001). An a posteriori multiple re-
gression of the first (and only significant) RDA axis on
the set of environmental variables showed that it can
be explained by a combination of water content and
substratum density (Fig. E1 in Appendix E).

For PCNM analysis, starting from the X and Y geo-
graphic coordinates, a matrix of PCNM variables was
created with a truncation distance of 1.012 m. This
critical distance was obtained by running a single link-
age clustering on a matrix of Euclidean distances
among the sites, and computing the chain of primary
connections. The largest of these connections is the
shortest distance to retain in the truncation process of
the PCNM method to maintain the graph of all the
objects connected. This procedure yielded 43 PCNM
variables; they did not display the regular, sine-shaped
patterns that are obtained for regular sampling lines or
grids. The progression from broad to fine scale is pre-
served, however: the first PCNM variables represent
coarse patterns and the last ones finer-scale patterns
(Fig. E2 in Appendix E).

Since the preliminary RDA above had demonstrated
the presence of a linear gradient in the data, the analysis
presented here was a partial RDA with forward selec-
tion among the 43 PCNM variables, with the X and Y
coordinates as covariables to control for the gradient,
while modeling the spatial structure using PCNM var-
iables.

Forward selection retained 12 PCNM variables. The
model explained 45.1% of the variance of the detrended
data (i.e., after controlling for the effect of the covari-
ables), or 32.3% of the undetrended data. To interpret
the three significant canonical axes, we regressed each
of them on our set of environmental variables, with
backward elimination of explanatory variables. Qual-

itative variables had been recoded using dummy var-
iables.

The first axis, explaining 22.6% of the detrended
data, is mainly a combination of PCNM 4, 11, 3, and
1 (in decreasing order of importance in the model). It
represents a broad-scale alternation of troughs and
bumps, the latter corresponding mainly to the zones
with few or no shrubs (shrubs are the most significant
environmental variables; multiple regression R2 5
0.481). Shrubs are distributed in coarse patches across
the sampling area, which translates into a spatial model
that features mainly broad-scale PCNM variables (Fig.
E3 in Appendix E).

The second canonical axis, which explains 8.4% of
the detrended data, is mainly a combination of PCNM
1, 3, and 5 and thus it features patterns at the same
broad scale as the first one; by definition of canonical
axes, they are linearly independent of the first axis.
Axis 2 is explained by the zones with few shrubs, but
excluding (negative correlation) those with hummocks
(Fig. E4 in Appendix E). No other available environ-
mental variable was significant to explain these pat-
terns, and the regression had an R2 of only 0.114, which
suggests that other, unidentified mechanisms are re-
sponsible for at least part of that spatial structure.

The third canonical axis, which explains 4.5% of the
detrended data (not shown), is mainly a combination
of PCNM 37, 6, and 16. The pattern represents patches
with low water content and no shrubs (R2 5 0.337).

When compared to the results obtained by means of
a third-order polynomial (Borcard and Legendre 1994),
these new analyses confirm that most of the spatial
patterns that are linked to known environmental vari-
ables occur at broad to medium scales. But there re-
mains some spatial variation left to model. A partial
RDA of the species data by the PCNM variables, con-
trolling for the effects of the environmental variables
and the X–Y trend, yielded two significant axes (Fig.
E5 in Appendix E). As explained by Borcard and Le-
gendre (1994), such patterns may have been produced
by several unmeasured abiotic or biotic mechanisms.
Here, for instance, the distribution of some sources of
food like fungal hyphae are good candidates. Alter-
natively, the patterns may also be the result of biotic
processes generating spatial autocorrelation in the re-
sponse variables. Testing these hypotheses could be the
subject of a follow-up study.

DISCUSSION

PCNM variables, which have the familiar shape of
sine waves in the case of regular sampling, are obtained
because an eigenvalue decomposition of the Laplacian
(centered similarity matrix) representing a neighbor-
hood graph produces a spectral decomposition of space
(Brillinger 1981, Chung 1997). PCNM analysis can
model spatial structures at all the spatial scales that can
be perceived by the data set. This means that it cannot
model structures larger than the extent of the sampling
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design, nor features smaller than the distance used to
truncate the distance matrix. In time-series analysis,
the ‘‘observation window’’ is bounded by similar con-
straints (Legendre and Legendre 1998: Chapter 12).

In each example presented in this paper, new insights
were obtained by PCNM analysis, compared to clas-
sical regression or canonical analysis against environ-
mental explanatory variables, because the species–en-
vironment relationships could be related to one or sev-
eral spatial scales. This often represents crucial infor-
mation to interpret the results of a study, because the
scale of observation strongly influences the perception
of relationships among variables. For instance, net pri-
mary production is mainly driven by temperature and
moisture at continental scale, but at regional scale,
where the climate is relatively homogeneous, aspect
and soil are the main factors (O’Neill and King 1998).
At finer scales yet, plant communities may be struc-
tured by biotic processes such as competition, and the
resulting patterns could be modeled by fine-scale
PCNM variables.

As in any other statistical model, there is no warranty
that the environmental variables that are related to the
species PCNM spatial patterns have a direct causal link
to the species themselves. Relationships may be found
because of common links to other factors. In all re-
gression-based analyses, causality resides in the hy-
potheses. Finding patterns that are consistent with the
hypotheses reinforces them but does not formally prove
them.

In the framework of variation partitioning, a signif-
icant fraction [c] (i.e., the fraction of variation ex-
plained by the spatial variables only) suggests that
some natural process (see below) has generated the
identified spatial structure, even though no explanatory
variable is presently available to explain it. Mapping
fraction [c] helps ecologists formulate new hypotheses
about these processes. Besides the environmental-con-
trol model, ecologists may call upon other classes of
processes to explain this fraction of variation: popu-
lation or community dynamics, other biotic processes
like predator–prey interactions, and historical dynam-
ics; explanations are given in Borcard and Legendre
(1994: Table 3) and in Legendre and Legendre (1998:
Table 13.3).

Fine-scale patterns identified by PCNM analysis are
often explained by none of the available environmental
variables. This was the case in all the examples in this
paper. Fine-scale spatial patterns may depict spatial
autocorrelation, which is generated by dynamic pro-
cesses within the dependent variables themselves (e.g.,
biotic interactions among individuals). If that is the
case and the analysis could be repeated at several iden-
tical sites, similar patterns would be identified at fine
scale, but the autocorrelated patches would be in dif-
ferent locations. An example is shown in Fig. 1 of
Legendre et al. (2002). Of course, one cannot exclude

the possible influence of unmeasured, fine-scale-struc-
tured abiotic variables.

PCNM analysis is a powerful way to model spatial
structures, revealing their appearances. Interpretation
of the results in terms of ecological processes requires,
however, a deep ecological understanding of the sys-
tems under study, since PCNM analysis does not model
processes directly. This is also the case for all other
methods of spatial analysis.

The data sets used in the four examples presented in
this paper are found in the Supplement.
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APPENDIX A

A table presenting the steps used to create a set of principal coordinates of neighbor matrices (PCNM) variables and a
figure showing a schematic description of PCNM analysis is available in ESA’s Electronic Data Archive: Ecological Archives
E085-050-A1.

APPENDIX B

A figure and two tables showing results of the analysis of the Amazonian fern data (Peru) are available in ESA’s Electronic
Data Archive: Ecological Archives E085-050-A2.

APPENDIX C

Three figures and a table showing results of the analysis of the zooplankton data from Guadeloupe are available in ESA’s
Electronic Data Archive: Ecological Archives E085-050-A3.

APPENDIX D

A figure showing results of the analysis of the chlorophyll a from the Thau (France) lagoon is available in ESA’s Electronic
Data Archive: Ecological Archives E085-050-A4.

APPENDIX E

Five figures showing results of the analysis of the oribatid mites from Saint-Hippolyte, Quebec, are available in ESA’s
Electronic Data Archive: Ecological Archives E085-050-A5.

SUPPLEMENT

Data used in the four applications of principal coordinates of neighbor matrices (PCNM) analysis—abundance of ferns,
transect coordinates, and environmental variables (Peru); biomass of zooplankton, transect coordinates, and environmental
variables (Guadeloupe); chlorophyll a and spatial coordinates (Thau, France); and oribatid mite species counts, spatial
coordinates, and environmental variables (Saint-Hippolyte, Quebec)—are available in ESA’s Electronic Data Archives: Eco-
logical Archives E085-050-S1.
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Appendices to:

Borcard, D., P. Legendre, C. Avois-Jacquet and H. Tuomisto. 2004. Dissecting the spatial
structure of ecological data at multiple scales. Ecology 85: 1826-1832.

APPENDIX A

Ecological Archives E085-050-A1

A TABLE PRESENTING THE STEPS USED TO CREATE A SET OF PRINCIPAL COORDINATES OF NEIGHBOR

MATRICES (PCNM) VARIABLES (TABLE A1) AND A FIGURE SHOWING A SCHEMATIC DESCRIPTION OF

PCNM ANALYSIS (FIG. A1).
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TABLE A1. Summary of the steps used to create a set of PCNM variables. See also Fig. A1.

1. From the geographic coordinates of the sites, compute a matrix of Euclidean distances.

2. Truncate the matrix obtained in step 1 at or just above the distance between nearest

neighbours. If the first neighbours are not all equally distant, truncate just above the smallest

distance that keeps all sites connected into a single network (connected graph). This can be

obtained by computing a single linkage clustering of the matrix of Euclidean distances, and

retaining the largest distance found in the chain of primary connexions.

3. Fill the truncated portion of the distance matrix with an arbitrarily large distance value. A

value equal to four times the largest distance retained in the truncated matrix is sufficient and

appropriate.

4. Compute the principal coordinates of the matrix obtained in step 3.

5. Retain only the principal coordinates corresponding to positive eigenvalues. These are the

spatial variables that can now be used as explanators in multiple regression or canonical

ordination analysis.

6. The number of PCNM spatial variables created by the principal coordinate analysis being high

(about two thirds the number of objects), reduce the number of explanatory variables using an

appropriate selection method, retaining only those that  significantly contribute to the explanation

of the response data. Possible ways of thinning the model to make it parsimonious include tests

of significance of individual multiple regression coeffficients (preferably by permutation),

retaining the significant PCNM variables only, as well as backward, forward, or stepwise

selection in regression, or forward selection of the explanatory variables in canonical analysis.
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FIG. A1. Schematic description of PCNM analysis. The descriptors of spatial relationships
(PCNM variables) are obtained by principal coordinate analysis of a truncated matrix of
Euclidean (geographic) distances among the sampling sites. For regular sampling designs,
truncation at the distance of first neighbors is recommended.
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APPENDIX B

Ecological Archives E085-050-A2

TWO TABLES (TABLES B1 AND B2) AND A FIGURE (FIG. B1) SHOWING RESULTS OF THE ANALYSIS

OF THE AMAZONIAN FERN DATA (PERU).
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TABLE B1. R2 and probabilities related to the spatial analysis of the fern Adiantum tomentosum
at Nauta (Peru). First line: R2 of each spatial submodel. Second line: R2 of the regression of the
submodel (fitted values) on a subset of backward-selected environmental variables. Third line:
product of the two previous lines, i.e. variation of the fern data explained by the environmental
variables at the scale considered. Other lines: p-values of the regression coefficients of the
environmental variables in the model considered.

A.
tomentosum

Very
broad

Broad Medium Fine

R2 of PCNM submodel on A. tomentosum 0.333 0.239 0.126 0.117
R2 of envir. on submodel 0.347 0.334 0.157
R2 of envir. on A. tomentosum 0.436 0.116 0.080 0.020
Elevation (m) < 0.0001 < 0.0001 < 0.0001
Thickness of soil organic horizon
(cm) 0.0004 < 0.0001
Drainage 0.0393 0.0007
Canopy height (m) 0.0011 < 0.0001
Canopy coverage (%) 0.0024
Shrub coverage (%) 0.0621 0.0341 0.0001
Herb coverage (%) 0.0002
Trees 3 - 7.5 cm DBH 0.0083 0.0009
Lianas 3 - 7.5 cm diameter 0.0413
Lianas 8 - 15 cm diameter 0.0183



Borcard et al. 2004 Appendices, p. 6

TABLE B2. R2 and probabilities related to the spatial analysis of the fern Adiantum tomentosum
at Huanta (Peru). First line: R2 of each spatial submodel. Second line: R2 of the regression of the
submodel (fitted values) on a subset of backward-selected environmental variables. Third line:
product of the two previous lines, i.e. variation of the fern data explained by the environmental
variables at the scale considered. Other lines: p-values of the regression coefficients of the
environmental variables in the model considered.

A. tomentosum Very broad Broad Medium Fine

R2 submodel on A. tomentosum 0.324 0.047 0.17 0.152
R2 envir. on submodel 0.408 0.099 0.072 0.039
R2 envir. on A. tomentosum 0.227 0.132 0.005 0.012 0.006

Elevation (trend) 0.0107
Elevation (detrended) < 0.0001 < 0.0001 < 0.0001
Thickness of soil organic horizon (cm) 0.0087 0.0420
Drainage 0.0047 0.0002 0.0188
Canopy height (m) 0.0034 0.0006
Trees 3 - 7.5 cm DBH 0.0007
Trees 31.5 - 62.5 cm DBH 0.0215
Trees > 63 cm DBH 0.0384
Lianas 8 - 15 cm diameter 0.0017 0.001
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FIG. B1. Square-root-transformed Adiantum tomentosum abundances and spatial PCNM model
and submodels (ordinate) along the Huanta transect (abscissa, 260 quadrats). (a) A. tomentosum
(thick line) and parsimonious PCNM model. (b) very broad (thick line) and broad scale models.
(c) medium scale model. (d) Fine scale model. The R2 are calculated with respect to the total
variation in the transformed fern count data; they are thus additive.
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APPENDIX C

Ecological Archives E085-050-A3

A TABLE (TABLE C1) AND THREE FIGURES (FIG. C1, C2 AND C3) SHOWING RESULTS OF THE

ANALYSIS OF THE ZOOPLANKTON DATA FROM GUADELOUPE.
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TABLE C1. Variance of the two size classes of zooplankton and its partitioning among various
fractions. Percentages are given with repect to the total variance of the data and to the variance of
the detrended data. The PCNM variables are not strictly orthogonal in this case, so that the
amounts of variance explained by each PCNM do not add exactly to the total obtained by a
multiple regression. PCNM up to 9 are arbitrarily considered as broad scale, the other ones as
medium scale. Detr. = detrended.

Variance

190–600 µm % (total) % (detr.) > 600 µm % (total) % (detr.)

Total 0.4178 0.4641
Trend model 0.2097 50.2 0.0492 10.6

Detrended 0.2081 0.4149
PCNM model 0.1206 28.9 57.9 0.1407 30.3 33.9

PCNM 4 0.0463 10.0 11.2
PCNM 6 0.0277 6.6 13.3 0.0552 11.9 13.3
PCNM 7 0.0046 1.1 2.2
PCNM 8 0.0091 2.2 4.4
PCNM 9 0.0038 0.9 1.8 0.0286 6.2 6.9

PCNM 12 0.0081 1.9 3.9
PCNM 14 0.0075 1.8 3.6
PCNM 15 0.0145 3.1 3.5
PCNM 16 0.0178 4.3 8.5
PCNM 18 0.0090 2.2 4.3
PCNM 23 0.0373 8.9 17.9
PCNM 24 0.0086 2.1 4.1
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FIG. C1. Four examples of PCNM variables characterizing the Guadeloupe transect. Abscissa:
distance from the coast.
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FIG. C2. Small zooplankton biomass data (detrended) and three spatial submodels. Abscissa:
distance from the coast.
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FIG. C3. Large zooplankton biomass data (detrended) and three spatial submodels.
Abscissa: distance from the coast.
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APPENDIX D

Ecological Archives E085-050-A4

A FIGURE (FIG. D1) SHOWING RESULTS OF THE ANALYSIS OF THE CHLOROPHYLL a DATA FROM THE

THAU (FRANCE) LAGOON.
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FIG. D1. PCNM analysis of Chl a at 63 sampling sites in the Thau marine lagoon. (a) Map of
the values of Chl a (centered on 0). (b) Broad-scale spatial model of Chl a. (c) Intermediate-scale
model. (d) Fine-scale model. (b-d) The values forecasted by each model were centered on 0
before mapping. (e-h) Maps of PCNM variables 1, 3, 5, and 8 which, together, form the broad-
scale model represented in panel b. Filled bubbles: positive values; empty bubbles: negative
values.
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APPENDIX E

Ecological Archives E085-050-A5

FIVE FIGURES (FIG. E1 TO E5) SHOWING RESULTS OF THE ANALYSIS OF THE ORIBATID MITE DATA

FROM ST-HIPPOLYTE (QUÉBEC, CANADA).
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FIG. E1. First canonical axis of an RDA of the Hellinger-transformed Oribatid mite
species data explained by the X and Y coordinates of the cores, and two environmental
variables explaining this axis significantly.
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FIG. E2. PCNM 1, 4, 11, 20 and 37 obtained from the irregular sampling design used in the St-
Hippolyte Sphagnum moss mat.
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FIG. E3. First canonical axis of a partial RDA of the Hellinger-transformed Oribatid mite
species data explained by 12 PCNM variables, with the X and Y coordinates of the cores as
covariables, and two environmental variables explaining this axis significantly.
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FIG. E4. Second canonical axis of a partial RDA of the Hellinger-transformed Oribatid mite
species data explained by 12 PCNM variables, with the X and Y coordinates of the cores as
covariables, and two environmental variables explaining this axis significantly.
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FIG. E5. First and second canonical axis of a partial RDA of the Hellinger-transformed
Oribatid mite species data explained by 12 PCNM variables, with the14 environmental variables
as well as the X and Y coordinates of the cores as covariables.


