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This study compares empirical type I error and power of different permutation tech-
niques that can be used for partial correlation analysis involving three data vectors and
for partial Mantel tests. The partial Mantel test is a form of first-order partial correla-
tion analysis involving three distance matrices which is widely used in such fields as
population genetics, ecology, anthropology, psychometry and sociology. The methods
compared are the following: (1) permute the objects in one of the vectors (or matrices);
(2) permute the residuals of a null model; (3) correlate residualized vector 1 (or matrix

 

A

 

) to residualized vector 2 (or matrix 

 

B

 

); permute one of the residualized vectors (or
matrices); (4) permute the residuals of a full model. In the partial correlation study, the
results were compared to those of the parametric 

 

t

 

-test which provides a reference un-
der normality. Simulations were carried out to measure the type I error and power of
these permutation methods, using normal and non-normal data, without and with an
outlier. There were 10000 simulations for each situation (100000 when 

 

n

 

 = 5); 999
permutations were produced per test where permutations were used. The recommend-
ed testing procedures are the following: (a) In partial correlation analysis, most meth-
ods can be used most of the time. The parametric 

 

t-

 

test should not be used with highly
skewed data. Permutation of the raw data should be avoided only when highly skewed
data are combined with outliers in the covariable. Methods implying permutation of
residuals, which are known to only have asymptotically exact significance levels,
should not be used when highly skewed data are combined with small sample size.
(b) In partial Mantel tests, method 2 can always be used, except when highly skewed
data are combined with small sample size. (c) With small sample sizes, one should
carefully examine the data before partial correlation or partial Mantel analysis. For
highly skewed data, permutation of the raw data has correct type I error in the absence
of outliers. When highly skewed data are combined with outliers in the covariable vec-
tor or matrix, it is still recommended to use the permutation of raw data. (d) Method 3
should never be used.
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1.  INTRODUCTION

 

Multivariate tables of observations are often condensed into resemblance
(or association) matrices among the observations or sampling units (ob-
jects), computed using similarity or distance (also called dissimilarity)
coefficients. Without loss of generality, the following discussion will fo-
cus on distance matrices. 

Several forms of data analysis,

 

 e.g.,

 

 clustering and ordination, are
based upon distance matrices. Researchers may also wish to compare two
or several distance matrices about the same objects in order to test a hy-
pothesis concerning an assumed relationship between matrices. The most
widely used method for assessing the relationship between two distance
matrices is the Mantel (1967) test; the Mantel statistic is tested either by
randomization or through an asymptotic normal approximation. The
space-time clustering procedure of Mantel (1967) was originally de-
signed to relate a matrix of spatial distance measures and a matrix of tem-
poral distances in a generalized regression approach. Since Mantel and
Valand (1970), the procedure, known as the 

 

Mantel test

 

 in the biological
and environmental sciences, includes any analysis relating two distance
matrices or, more generally, two resemblance or proximity matrices. Indi-
ces of spatial autocorrelation such as Moran’s 

 

I

 

 and Geary’s 

 

c

 

 coefficients
may be considered as special cases of the Mantel test (Anselin, 1995).

For three matrices, Smouse 

 

et al.

 

 (1986) have proposed an extension
of the Mantel test to carry out partial correlation analysis in population
genetics. The method was first applied to ecological data by Legendre
and Troussellier (1988). In population genetics, the first matrix may re-
flect genetic distances among colonies, the other two matrices represent-
ing environmental and geographic distances. In ecology, one may be
interested, for instance, in relating a matrix of faunal resemblance among
sites, estimated from a species presence-absence or abundance data table,
to a matrix of environmental resemblance, while controlling for geo-
graphic distances recorded in a third matrix. In partial Mantel analysis,
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randomization tests are used in all cases (Manly, 1997). The Mantel and
partial Mantel tests are prime research tools in such fields as population
genetics, ecology, anthropology, psychometry and sociology. 

For more than three matrices, multiple regression on distance matrices
has been suggested by several authors (Hubert and Golledge, 1981;
Smouse 

 

et al.

 

, 1986; Manly, 1986; Krackhardt, 1988). Legendre 

 

et al.

 

(1994) have described appropriate randomization testing procedures for
different types of dependent matrices (ordinary similarity or distance ma-
trices, ultrametric matrices, and additive-tree matrices). 

This paper reports the results of a simulation study undertaken to em-
pirically compare type I error and power of different permutation meth-
ods that can be used for testing the significance of the Mantel correlation
statistic in simple and partial Mantel tests. Some of these methods have
been reported in the literature and represent accepted ways of testing the
Mantel and partial Mantel statistics. The present research was motivated
by the simulation study of Anderson and Legendre (1999) which high-
lighted problems encountered in various situations, in multiple regression
analysis, when using these same permutation methods. Two other meth-
ods of performing partial Mantel tests are described here for the first time;
they are derived from the literature on multiple regression; see Section 4.
Simulations were carried out to measure the type I error and power of the
various permutation methods, using normal and non-normal data, without
and with an outlier. Conclusions are drawn as to the procedures which
seem appropriate to each situation.

Some statistical questions had to be answered before launching the
partial Mantel study. So, a study was first carried out to compare empiri-
cal type I error and power of the same permutation techniques, applied to
first-order partial correlation coefficients. For normally-distributed data,
the parametric normal-theory 

 

t

 

-test can be used as reference to assess the
results of the various permutation methods. The study of partial correla-
tion coefficients will serve to (a) detect anomalies in the permutation
techniques under study, in the well-understood context of partial correla-
tions, and (b) explain some of the results that will also be found in the
partial Mantel study.

Users of the Mantel and partial Mantel tests usually have one-tailed
alternative hypotheses. For this reason, the simulations reported in this
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paper involve one-tailed tests, except where specified. The upper tail was
used for convenience.

 

2.  FIRST-ORDER PARTIAL CORRELATION

 

The well-known formula for a first-order partial correlation coefficient is:

(1)

where 

 

x

 

1

 

, 

 

x

 

2

 

 and 

 

x

 

3

 

 are random variables (

 

i.e.

 

, data vectors). The value

 

r

 

(

 

x

 

1

 

x

 

2

 

.x

 

3

 

) measures the partial correlation between 

 

x

 

1

 

 and 

 

x

 

2

 

 when 

 

x

 

3

 

 is
held constant. A parametric test of significance of partial correlation coef-
ficients can be carried out using a 

 

t

 

-statistic under the assumption of nor-
mality. If this condition is not met, a permutation method should be used
to perform the test. The permutation methods compared in this study are: 

1. Permute the raw data in vector 

 

x

 

1

 

.
2. Permute the residuals of a null model.
3. Correlate residualized 

 

x

 

1

 

to residualized 

 

x

 

2

 

; permute residualized 

 

x

 

1

 

.
4. Permute the residuals of a full model.

Details of these methods are given in the section on partial Mantel tests.
In addition, parametric 

 

t

 

-tests were computed in the partial correlation
study. Under normality, one expects a permutation test to produce ap-
proximately the same results as the parametric 

 

t

 

-test. So, the parametric

 

t

 

-test will be used as a reference to assess some important properties of
the various permutation methods. 

In correlation analysis, because the statistic  is
monotonic to 

 

r

 

 for any constant value of the number of observations 

 

n

 

, it
follows that 

 

r

 

 and 

 

t

 

 are equivalent statistics in permutation tests. The
number of degrees of freedom, 

 

ν

 

, is equal to (

 

n

 

 – 2) for a simple correla-
tion coefficient (also called zero-order correlation; Sokal and Rohlf,
1995) and to (

 

n

 

 – 3) for a first-order partial correlation coefficient. It
could be taken to be (

 

Ndist

 

 – 2) for a simple Mantel correlation or
(

 

Ndist

 

 – 3) for a first-order partial Mantel correlation, where

r x1x2.x3( )
r x1x2( ) r x1x3( ) r x2x3( )–

1 r x1x3( ) 2
– 1 r x2x3( ) 2

–
--------------------------------------------------------------------------=

t r ν( ) 1 r
2

–⁄=



 

COMPARISON OF PERMUTATION METHODS 41

 

Ndist

 

 = 

 

n

 

(

 

n

 

 – 1)/2 is the number of distances in a half-matrix of distances
involving 

 

n

 

 objects. The number of degrees of freedom does not affect the
probability obtained during a permutation test because this multiplicative
constant is invariant under permutation; so, it can be left out of the equa-
tion. Permutation results reported in this paper for partial correlations and
partial Mantel tests are identical using either the partial 

 

r

 

 or partial 

 

t

 

 sta-
tistics.

A further point of interest is that the 

 

t

 

-statistic computed for testing the
significance of a partial correlation coefficient 

 

r

 

(

 

x

 

1

 

x

 

2.x3) is identical to
the t-statistic computed for testing the significance of the partial regres-
sion coefficient b1.2 in the multiple linear regression equation

. In partial regression analysis, permutation re-
sults obtained using a pivotal t-statistic differ from results obtained using
a non-pivotal partial regression coefficient b. Only the partial t-statistic,
which is pivotal, is expected to produce correct type I error in permuta-
tion tests in multiple regression.

3.  SIMPLE MANTEL TEST

The simple Mantel test (Mantel, 1967; Mantel and Valand, 1970) is a pro-
cedure to test the hypothesis that the distances among objects in a matrix
A are linearly independent of the distances among the same objects in an-
other matrix B. The result of this test may be used as support for or
against the hypothesis that the process that generated the first set of dis-
tances is independent of the process that generated the second set.

The unique feature of the Mantel test is the use of a linear statistic to
assess the relationship between two distance matrices. Under the null hy-
pothesis, the objects are the permutable units, not the distances which are
not independent of one another; so, for the test of significance, randomi-
zation is obtained by permuting the n objects of one of the distance matri-
ces. Instead of recalculating the distances after permuting the objects, an
algorithm of ‘matrix permutation’ is used; in this algorithm, the rows and
corresponding columns of the matrix are rewritten as if the objects had
been permuted in the original rectangular data matrix and the distances
recomputed. In computer programs, even this rewriting step can be

x̂1 b0 b1.2x2 b1.3x3+ +=
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avoided by indirect addressing of the matrix elements, using a vector of
permuted object numbers. The testing procedure is the following:

1. Consider two symmetric resemblance matrices (similarities or distanc-
es) A and B, of size (n × n), whose rows and columns correspond to
the same set of objects. Compute the Pearson correlation (or, alterna-
tively, the Spearman correlation: Dietz, 1983) between the corre-
sponding elements of the upper-triangular (or lower-triangular)
portions of these matrices, obtaining the Mantel correlation (also
called the standardized Mantel statistic) rM(AB), which will be used
as the reference value in the test.

2. Permute at random the rows and corresponding columns of one of the
matrices, say A, obtaining a permuted matrix A*. This procedure is
called ‘matrix permutation’.

3. Compute the standardized Mantel statistic rM(A*B) between matrices
A* and B, obtaining a value  of the test statistic under permutation.

4. Repeat steps 2 and 3 a large number of times to obtain the distribution
of  under permutation. Add the reference value rM(AB) to the dis-
tribution (Hope, 1968).

5. For a one-tailed test involving the upper tail (i.e., H1+: distances in
matrices A and B are positively correlated), calculate the probability
(p-value) as the proportion of values  greater than or equal to
rM(AB). For a test in the lower tail, the probability is the proportion of
values  smaller than or equal to rM(AB).

Manly (1997) and Legendre and Legendre (1998) have shown that the
exact same p-value would be obtained by using the original statistic pro-
posed by Mantel (1967), which is the cross-product of the two series of
distances, instead of the now more generally used Mantel correlation co-
efficient rM. This is true only for the two-matrix Mantel test and not for
the partial Mantel test (below). For symmetric distance matrices, only the
upper (or lower) triangular portions are used in the calculations. For non-
symmetric matrices, the upper and lower triangular portions are included.
The main diagonal elements need not be included in the calculation, but
their inclusion does not change the p-value.

One expects the Mantel test to have correct type I error rate for any
sample size n. Empirical illustration of this point will be provided. On the
other hand, users of the Mantel test are often surprised to see that

r *M

r *M

r *M

r *M
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significant values of the simple Mantel statistics do not need to be as large
as values of the Pearson correlation coefficient to reach significance. To
illustrate this point, power curves will be produced for the simple Mantel
test across values of the population correlation ρ, using multinormal data,
and compared to power curves for the Pearson correlation coefficient, for
sample sizes n = 5 to 50.

4.  PARTIAL MANTEL TESTS

A partial Mantel test is a first-order partial correlation analysis conducted
on three distance matrices (Smouse et al., 1986). Consider distance matri-
ces A, B, and C computed for three univariate or multivariate data tables.
The partial Mantel statistic (sensu Smouse et al., 1986), rM(AB.C), esti-
mating the correlation between matrices A and B while controlling for the
effect of C, is computed in the same way as a partial correlation coeffi-
cient (eq. 1): 

(2)

where rM(AB) is the simple Mantel statistic between matrices A and B. 
There is no theory connecting permutation procedures to the partial

Mantel test, where a linear model is assumed among sets of distances. So,
the difficult aspect is to construct appropriate permutations to test the sig-
nificance of the partial Mantel statistic. Simulations were performed to il-
lustrate the properties of four testing procedures. The same procedures
were used in the partial correlation study; it is easy to modify the descrip-
tions that follow to conduct a partial correlation analysis of three data
vectors x1, x2 and x3.

4.1.  Method 1: Permute the Objects in Matrix A

The first method proposed by Smouse et al. (1986) is to perform ‘matrix
permutation’ on matrix A (or, alternatively, on B). As in the simple
Mantel test (above), the permutable units for the test are the n objects.
This procedure holds B and C constant (i.e., unpermuted) with respect to

rM AB.C( )
rM AB( ) rM AC( ) rM BC( )–

1 rM AC( ) 2
– 1 rM BC( ) 2

–
----------------------------------------------------------------------------=
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each other, preserving their ancillarity (which means relatedness).
Smouse et al. (1986) suggested that it implements a regression-type mod-
el where B and C are considered to be fixed predictors of A. Our results,
using data generated under a correlation model described below, will
show that a regression model does not have to be assumed. The testing
procedure is as follows:

1. Compute the Mantel correlations rM(AB), rM(AC) and rM(BC). Cal-
culate the reference value of the test statistic, rM(AB.C), using eq. 2.

2. Permute A at random using matrix permutation to obtain A*.
3. Compute rM(A*B) and rM(A*C). Using the value rM(BC) calculated

in step 1, compute rM(A*B.C), using eq. 2, to obtain a value  of the
partial correlation statistic under permutation.

4. Repeat steps 2 and 3 a large number of times to obtain the distribution
of  under permutation. Add the reference value rM(AB.C) to the
distribution.

5. For a one-tailed test involving the upper tail, calculate the probability
as the proportion of values  greater than or equal to rM . In the low-
er tail, the probability is the proportion of values  smaller than or
equal to rM .

Only two of the three correlation coefficients have to be computed af-
ter each permutation of A, i.e., rM(A*B) and rM(A*C). One does not
have to recompute rM(BC) since neither B nor C were permuted.

Results obtained by Anderson and Legendre (1999) in the multiple re-
gression context indicated that in most instances, permutation of the raw
data had correct type I error and good power. When the covariable con-
tained an extreme outlier, however, permutation of raw data resulted in
unstable (often inflated) type I error. The simulations reported in this pa-
per will examine the behavior of permutation method 1 in the context of
the partial Mantel test. 

4.2.  Method 2: Permute the Residuals of a Null Model

There are other permutation methods in which the permutable units are
the residuals of some model, linear or not. In multiple regression and ca-
nonical analysis, the null hypothesis is that of exchangeability of the re-
siduals of the response variable(s) after fitting the explanatory variables

r *M

r *M

r *M
r *M
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using a linear regression model. Tests of significance based on permuta-
tion of residuals are not exact in the randomization sense but have asymp-
totically exact significance levels. Method 2 leads to reasonable results in
multiple regression and canonical analysis when n > 10 (ter Braak and
Smilauer, 1998; Anderson and Legendre, 1999).

Permuting the residuals of a null (or reduced) model was originally
proposed by Freedman and Lane (1983) for testing the significance of
partial regression coefficients. Consider the multiple regression model

 where y is the dependent variable, x is a
covariable and z is the explanatory variable of interest; we are interested
in testing the significance of parameter β2.1. The null hypothesis is H0:
β2.1 = 0; this hypothesis is equivalent to H0: ρ(yz.x) = 0. Consider a ‘null
model’ where H0: β2.1 = 0 is true; the regression equation can be rewrit-
ten as . In this model, all the variation of y not ex-
plained by x is expressed by the vector of residuals ex , which represent
the best estimates of the random errors εx. Residuals are exchangeable
among observations if they are independent and identically distributed
(i.i.d.; note that this is not the case with residuals computed from distanc-
es in a distance matrix since distances are not independent of one anoth-
er). The rationale is the following: after obtaining an estimate of the
relationship between the dependent variable and the covariable(s), the
null hypothesis states that there is no further variation in the dependent
variable that can be explained by the explanatory variable being tested.

The procedure to test the significance of a partial regression coefficient
is the following: (1) regress y on x and z to obtain an estimate b2.1 of β2.1
and a reference value tref of the corresponding t-statistic for the real data.
(2) Regress y on x alone to obtain fitted values  and regression residu-
als  under the ‘null model’. (3) Permute at random the vector of residu-
als  to obtain . (4) Add the permuted residuals  onto the
(unpermuted) vector of fitted values , producing a new vector of per-
muted values y*. (5) Compute the multiple regression

, producing an estimate  of the re-
gression coefficient  and a value t* under permutation. (6) Repeat
steps 3 to 5 a large number of times to obtain a null distribution using the
t*-statistics, which is used to (7) test the significance of tref. The proce-
dure is described in more detail in Anderson and Legendre (1999), who

y β0 β1.2x β2.1z εx z,+ + +=

y b0 b1.2x ex+ +=

ŷx
ex
ex e*x e*x

ŷx

y* b*0 b*1.2x b*2.1z e*+ + += b*2.1
β*2.1
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noted that an equivalent model for the test would be, in step 3, to regress
the permuted regression residuals  alone on the original
(i.e., unpermuted) predictors x and z. This simplification is used in the
following permutation method, derived from that of Freedman and Lane,
which is now proposed for testing the significance of partial Mantel sta-
tistics:

1. Compute matrix  containing the residuals of the simple linear
regression of the distances in A over the distances in C.

2. Compute rM(AB), rM(AC) and rM(BC). Calculate the reference value
of the test statistic, rM(AB.C), using eq. 2. The exact same result
would be obtained by using  instead of A in the calculation of
rM(AB) and rM(AC).

3. Permute  at random, using matrix permutation, to obtain
.

4. Compute rM( B) and rM( C). Using eq. 2, combine
these values with rM(BC) computed in step 2, obtaining a value  of
the partial correlation statistic under permutation.

5. Repeat steps 3 and 4 a large number of times to obtain the distribution
of  under permutation. Add the reference value rM(AB.C) to the
distribution.

6. For a one-tailed test involving the upper tail, calculate the probability
as the proportion of values  greater than or equal to rM . For a test
in the lower tail, the probability is the proportion of values  smaller
than or equal to rM .

The exact same p-value would be obtained by using a permuted matrix
A* in step 4 instead of matrix , where A* =  + 
and  is the matrix of fitted values of the regression in step 1. The
procedure described above is computationally faster, however.

Results obtained by Anderson and Legendre (1999) in the multiple re-
gression context indicated that permutation of the residuals of a null mod-
el had the most consistent results in terms of type I error and power,
including the cases where an extreme outlier was present in the covaria-
ble. For small sample sizes in the presence of strongly non-normal (cubed
exponential) error, this method became too conservative. As mentioned
above, tests of significance involving permutation of residuals are only
asymptotically exact; their error rates may be slightly off with small

e*x

ResA C

ResA C

ResA C
Res*A C

Res*A C Res*A C
r *M

r *M

r *M
r *M

Res*A C Fit A C Res*A C
Fit A C
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sample sizes. The simulations reported in this paper will show whether or
not method 2 behaves as well for partial Mantel tests as the Freedman and
Lane method does for tests of partial regression coefficients. 

4.3.Method 3: Correlate Residualized A to Residualized B; Per-
mute Residualized A

A partial correlation r(x1x2.x3) may be obtained by computing a simple
correlation between the vectors of residual values  and

. This property is used in the alternative procedure designed by
Smouse et al. (1986) to test the significance of partial Mantel statistics us-
ing permutations. They suggested that their procedure implements a cor-
relation-type model where B and C are variable, instead of fixed, and are
simply considered to be predictors of A.

1. Compute matrix  containing the residuals of the simple linear
regression of the distances in A over the distances in C.

2. Likewise, compute matrix  containing the residuals of the
simple linear regression of the distances in B over the distances in C. 

3. Compute the standardized Mantel statistic between  and
 to obtain the reference value of the test statistic, rM(AB.C).

The same reference value may be obtained by computing eq. 2 using
the Mantel correlations rM(AB), rM(AC) and rM(BC).

4. Using matrix permutation, permute  at random to obtain a per-
muted residual matrix . An equivalent method is to permute

 at random instead of , obtaining the permuted matrix
. 

5. Compute the standardized Mantel statistic between  and
, to obtain a value (AB.C) of the test statistic under permu-

tation. An equivalent method is to compute the Mantel statistic be-
tween  and .

6. Repeat steps 4 and 5 a large number of times to obtain the distribution
of (AB.C) under permutation. Add the reference value rM(AB.C)
to the distribution.

7. For a one-tailed test involving the upper tail, calculate the probability
as the proportion of values  greater than or equal to rM . For a test
in the lower tail, the probability is the proportion of values  smaller
than or equal to rM .

Resx1 x3
Resx2 x3

ResA C

ResB C

ResA C
ResB C

ResA C
Res*A C

ResB C ResA C
Res*B C

Res*A C
ResB C r *M

ResA C Res*B C

r *M

r *M
r *M
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This method is shorter to compute than all other methods. Only one
correlation coefficient has to be computed during each permutation, com-
pared to two in the other methods.

Kennedy (1995) proposed this same method as a simple way of com-
puting the permutation of residuals of a null model (method 2) in multiple
linear regression. He demonstrated mathematically that, under permuta-
tion, method 3 produces the same estimate  of a partial regression co-
efficient as method 2. Anderson and Legendre (1999) showed, however,
that this equivalence does not hold when a t-statistic is used instead of the
partial regression coefficient for permutation testing. They also showed
that the Kennedy method of permutation, using a t-statistic, has inflated
type I error, especially with small sample sizes. Using simulations, we
will see whether or not method 3 for partial Mantel tests has the same
drawback as the Kennedy method has for tests of partial regression coef-
ficients.

4.4.  Method 4: Permute the Residuals of a Full Model

Permutation of residuals of the full model has been used by ter Braak
(1990, 1992) as a permutation analogue to the bootstrapping method pro-
posed by Hall and Titterington (1989). In the regression context, (1) a full
multiple regression model of y over all predictors (e.g., x and z) is com-
puted, yielding fitted values , residual values , as well as a refer-
ence value bref for the parameter of interest and an associated pivotal
statistic tref. The residuals  are used as the permutable units for the
test. (2) The vector of residuals  is permuted at random to obtain

. (3) A permuted dependent variable y* is computed by adding the
fitted values  to the permuted residuals . (4) A new multiple re-
gression is computed between the permuted dependent variable y* and all
predictors, yielding a permuted value b* for the parameter of interest and
a t*-statistics computed for the differences (b* – bref). (5) Steps 2 and 3
are repeated a large number of times. A null distribution is constructed
using the t*-statistics, which is used to (6) test the significance of tref .
The two main differences with method 2 are: (1) the use of a full regres-
sion model and (2) the calculation of t*-statistics for the differences
(b* – bref).

This procedure is described in more detail in Anderson and Legendre
(1999). Manly (1997) as well as Anderson and Legendre (1999) noted

b*2.1

ŷx z, ex z,

ex z,
ex z,

e*x z,
ŷx z, e*x z,
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that an equivalent model for the test consists in regressing the permuted
residuals, , on the unpermuted predictors x and z. This short-cut di-
rectly yields a value b* which is appropriate for computing the correct
t*-statistic for each permutation, instead of having to compute a
t*-statistic for the difference (b* – bref). This simplification is used in the
following permutation method, derived from that of ter Braak, which is
proposed for testing the significance of partial Mantel statistics:

1. Compute rM(AB), rM(AC) and rM(BC). Calculate the reference value
of the test statistic, rM(AB.C), using eq. 2.

2. Compute matrix  containing the residuals of the multiple lin-
ear regression of the distances in A over the distances in B and C.

3. Permute  at random, using matrix permutation, to obtain
.

4. Compute rM( B) and rM( C). Using eq. 2, combine
these values with rM(BC) computed in step 1, obtaining a value  of
the partial correlation test statistic under permutation.

5. Repeat steps 3 and 4 a large number of times to obtain the distribution
of  under permutation. Add the reference value rM(AB.C) to the
distribution.

6. For a one-tailed test involving the upper tail, calculate the probability
as the proportion of values  greater than or equal to rM . For a test
in the lower tail, the probability is the proportion of values  smaller
than or equal to rM .

In the multiple regression context, this method allows one to test the
significance of several (or all possible) partial regression coefficients us-
ing a single series of permutations. With method 2, on the contrary, a dif-
ferent set of permutations has to be produced for each partial regression
coefficient to be tested.

Results obtained by Anderson and Legendre (1999) in the multiple re-
gression context indicated that permutation of the residuals of a full mod-
el produced results as good as those of Freedman and Lane in most cases,
including when an extreme outlier was present in the covariable. We will
see in Section  6.3 whether or not method 4 behaves as well for partial
Mantel tests as the ter Braak method does for tests of partial regression
coefficients.

e*x z,

ResA BC

ResA BC
Res*A BC

Res*A BC Res*A BC
r *M

r *M

r *M
r *M
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5.  SIMULATION METHODS

5.1.  Correlation Model

In the partial correlation study, three vectors x1, x2 and x3 of length n
were created by random draw from a standard normal distribution (µ = 0,
σ2 = 1), so that each one is a random component of the correlation model
described in the next paragraph. Simulations were also run using highly
skewed data obtained from standard exponential (µ = 1, σ2 = 1) or cubed
exponential deviates, as in Manly (1997: 163-166) and Anderson and
Legendre (1999). The three vectors were written to a matrix X of size
(n, 3) with elements [xi,j]. 

The deterministic component was introduced through the correlation
model:

To implement this model, correlations were introduced between the
random vectors x1, x2 and x3 through a correlation matrix R (3 × 3) re-
flecting the desired amounts of correlation ρ(x1x2), ρ(x1x3) and ρ(x2x3)
in the statistical population from which the points were drawn. Matrix R
was decomposed using Cholesky factorization, R = L 'L , where L is a
(3 × 3) upper triangular matrix with elements [Lj,k]. Matrix W containing
the correlated vectors was obtained by computing the linear equation
W = XL . The model is thus:

wi,1 = L1,1xi,1
wi,2 = L1,2xi,1 + L2,2xi,2
wi,3 = L1,3xi,1 + L2,3xi,2 + L3,3xi,3

The elements of the original data vectors, xi,1, xi,2 and xi,3, are the random
components of the model. The transformation W = XL  is such that, if the
standard vectors in X are linearly independent, i.e., if [1/(n – 1)]X'X = I ,

x1 x2

x3

ρ(x1x2)

ρ(x1x3) ρ(x2x3)
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the covariances between the column vectors of W reflect the original cor-
relations assigned to matrix R: 

[1/(n – 1)]W'W = [1/(n – 1)]L 'X'XL  = L 'IL  = L 'L = R

Standard normal and standard exponential random deviates have vari-
ances of 1 and covariances of 0; so the vectors of random deviates did not
require standardization prior to being correlated before using this proce-
dure. With cubed exponential deviates, however, the variance of the
parent distribution was not 1 (actually, it was close to 823); so, the col-
umns of X were standardized before being correlated, in order for
[1/(n – 1)]X'X = I  to hold.

This is not the only way of introducing correlations among randomly
generated data vectors. It may also be done using the square root of
matrix R. The Cholesky matrix L is sometimes misleadingly called the
square root of R. The square root of a square matrix R is a matrix
R1/2 = M  such that MM  = R; M  is a square symmetric matrix, contrary
to L which is a square (asymmetric) upper triangular matrix such that
L 'L  = R; R1/2 is obtained as:

R1/2 = U  U–1

where  is a matrix containing the square roots of the eigenvalues
of R and U is the corresponding matrix of eigenvectors;  is also
the matrix of singular values if R is subjected to singular value decompo-
sition. The operations V = XM  and W = XL  represent two legitimate
ways of introducing correlations among the vectors of X, but the matrices
V and W they produce differ. The sample correlations among the vectors
of V and W also differ sightly for a given data matrix X. Cholesky factor-
ization was used for the simulations reported in this study because it is
faster to compute. Some of the simulations were recomputed using the
square root matrix; the results were consistent with those obtained using
the Cholesky method.

Mantel tests are concerned with linear relationships between distances
instead of between variables. So, in the Mantel and partial Mantel study,
for each of the n objects, p = 10 vectors of data (i.e., variables) were
drawn randomly from either a standard normal distribution or a cubed ex-
ponential distribution. Euclidean distances were computed among the n

λ i
1 2⁄[ ]

λ i
1 2⁄[ ]

λ i
1 2⁄[ ]
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objects. This was repeated for each of the two or three matrices involved
in any given simulation, producing symmetric distance matrices A, B and
C with zeros along the diagonal. These matrices were created indepen-
dently; they were thus random with respect to one another (i.e., they do
not correspond to fixed factors). The upper triangular portions of matrices
A, B and C were written as column vectors in a matrix X of size
[n(n – 1)/2, 3] with elements [xi,j]. The elements xi,1, xi,2 and xi,3, which
represent distances from the original matrices A, B and C, are the random
components of the model, even though the elements in each single vector
xj are related to one another by the triangle inequality. 

Correlations were introduced between the columns of matrix X in the
same way as described above for the partial correlation study. Matrix W
contained the correlated distance matrices. The vectors of correlated val-
ues were put back into square distance matrices. This way of generating
correlations among distance matrices is appropriate to the study of simple
and partial Mantel tests because the hypothesis one is interested in is that
of a linear relationship between distances. 

An alternative data generation method will be used in section 6.1. It
consists of generating two random vectors and correlating them by a pre-
determined value. On the one hand, a simple correlation coefficient is
computed between them; on the other hand, one computes a distance ma-
trix for each vector and then a Mantel statistic between the two distance
matrices. This method of data generation will be used to compare the
power of the simple correlation to that of the simple Mantel tests for data
for which the correlation coefficient is appropriate.

In permutation methods 2, 3 and 4, residuals are computed using a lin-
ear regression model; it is applied to distances in Mantel and partial
Mantel tests. Residuals computed in this way do not have a simple rela-
tionship to the random components generated using the correlation model
described above. Generation of the random components corresponds,
however, to the hypothesis one is interested to test when using a correla-
tion or partial correlation analysis (or a Mantel or partial Mantel test).
This hypothesis may be stated as follows: given raw data vectors (or data
tables) that are unrelated to each other, there is no linear relationship be-
tween the vectors (or derived distance matrices), above and beyond what
may be expected by chance permutation of the original observations. The
simulations reported in this paper will show empirically to what extent
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the various permutation methods behave correctly for data generated un-
der the correlation model, (1) despite the lack of correspondence between
the error generation procedure which follows from the correlation model
and the model I regression method used for estimating residuals, and
(2) despite the fact that in matrix permutation the residuals cannot be as-
sumed to be i.i.d. This will be assessed under different conditions: differ-
ent types of errors, and in the presence of outliers.

5.2.  Regression Model I Data

In the simple and partial correlation study, and for purpose of compari-
son, data were generated, in some cases, with fixed values for variables x2
and x3, as in regression model I. This was done in either of two ways, de-
pending on the situation. (a) In the comparison of properties of the simple
correlation coefficient, variable x2 was generated with fixed values
= {1, 2, …, 10} repeated 1 to 5 times, for a total of 10 to 50 data points;
x2 was standardized. Variable x1 was then constructed as x1 = β2x2 + ε
where ε is a random deviate drawn from an error distribution; see below.
(b) The second method of generating model I data, used in the study of
partial correlation coefficients, is similar to that used by Manly (1997, pp.
162-166) and Anderson and Legendre (1999) to study the effect of outli-
ers in multiple regression. Values of x2 and x3 were drawn at random
from a uniform distribution in the interval [0, 3]. Variable x1 was then
constructed as x1 = β2x2 + β3x3 + ε where ε is a random deviate drawn
from an appropriate error distribution and added to the fixed effects of x2
and x3.

5.3.  Normal and Highly Skewed Distributions

Simulations carried out using exponential (λ = 1, µ = 1, σ2 = 1) deviates
or cubed exponential deviates corresponded to conditions known to be in-
appropriate for the parametric t-test. The permutation methods should
produce better results than parametric tests under such conditions. We
will see how well the various permutation methods do with this type of
data.

In the partial Mantel study, data were first generated using standard
normal deviates, producing multinormal distributions of objects in p-di-
mensional space. Simulation results obtained under these conditions
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should apply not only to distance matrices of such multinormal data,
computed using the Euclidean distance, but also to any other triplets of
distance matrices whose Euclidean representations are approximately
multinormal. Highly non-multinormal data were also generated using
cubed exponential deviates; they may be taken to also represent data dis-
tributions that may occur when using functions other than the Euclidean
distance. The results in Section 6.3 will show which permutation method
produces the most accurate results in that case.

5.4.  Outliers

Outliers were introduced in vector x3 (or in matrix C), generated as de-
scribed above, by including a value of 50 in variable x3 (in the partial cor-
relation study) or in the first vector of the data matrix from which
distance matrix C was computed (in the partial Mantel study). Large val-
ues for outliers have also been used by Manly (1997) and Anderson and
Legendre (1999). When the null hypothesis of absence of partial relation-
ship between x1 and x2 (or A and B) is true, an outlier in vector x3 (or
matrix C) does not impinge on the null hypothesis; consequently, it
should not affect type I error when using an appropriate testing proce-
dure. Note that outliers may be high leverage points, affecting the values
of parameter estimates.

5.5.  Metric and Euclidean Properties

If the original distance matrices are Euclidean, the Cholesky-correlated
matrices are also metric and Euclidean. This was empirically verified for
a large number of distance matrices, using combinations of low, medium
and high correlation values ρ(AB), ρ(AC) and ρ(BC). For metricity, the
property of positiveness of the resulting distances was checked, as well as
the triangle’s inequality property. For Euclideanarity, principal coordinate
analysis was computed (Gower, 1966); non-Euclidean matrices would
have been detected by their having negative eigenvalues (Gower and
Legendre, 1986; Legendre and Legendre, 1998).

The matrices of residuals, however, are neither Euclidean nor metric.
Since residuals are centered, these matrices are not even distance matri-
ces, about half the values they contain being negative.
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5.6.  Computations

Two computer programs were written in Fortran 77 to carry out the simu-
lations: one for the partial correlation study and one for the Mantel study.
The same series of random simulated data were produced for all permuta-
tion methods in simulations involving the same set of parameters. Permu-
tations of the simulated data were done using a uniform random
generation algorithm sensu Furnas (1984). For very small samples
(n ≤ 7), where the number of possible permutations is small, complete
enumeration of all possible n! permutations was carried out using a pro-
cedure proposed by Edgington (1995, p. 207; for example, there are
5! = 120 distinguishable permutations of n = 5 objects); in that case,
100000 simulations were produced instead of 10000 in order to keep the
confidence intervals of the rejection rates narrow.

5.7.  Type I Error

In the study of type I error, data were generated in such a way that the
null hypothesis was true (H0: ρ(x1x2.x3) = 0 or ρ(AB.C) = 0). Empirical
rates of type I error were studied for the four permutation methods and
the parametric t-test with regard to the following factors:

1. The size of the samples: n = {5, 10, 20, 30, 40, 50}.
2. For simple correlations, the population correlation ρ(x1x2) was set to 0

when generating the data. For partial correlations, there are various
ways of varying the simple correlations between the three vectors to
obtain ρ(x1x2.x3) = 0. The expected value of the partial correlation is
zero if the numerator of eq. 1 is zero:

ρ(x1x2) – ρ(x1x3) ρ(x2x3) = 0 (3)

Hence the following combinations of simulation parameters produced
realizations of the null hypothesis:

• ρ(x1x3) = {0.0, 0.5, 0.9} while ρ(x1x2) and ρ(x2x3) = 0; also
ρ(x2x3) = {0.0, 0.5, 0.9} while ρ(x1x2) and ρ(x1x3) = 0;

• ρ(x1x3) = ρ(x2x3) = {0.0, 0.1, 0.2, …, 0.9} with corresponding
values of ρ(x1x2) set at {0.00, 0.01, 0.04, …, 0.81}.

The same strategy was used in the partial Mantel study. Empirical
type I error rates were calculated for each combination of factors. The
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significance level for the tests was set at α = 0.05. For type I error to
match the significance level, the number of significant p-values out of the
10000 (or 100000) simulations was expected to be 500 (or 5000) for
each of the permutation methods. A 95% confidence interval was com-
puted for each estimated error rate. In the partial correlation simulation
study, parametric t-tests were also calculated in parallel with the various
types of permutation tests.

5.8.  Power

In the power study, data were simulated in such a way that the null hy-
pothesis was false: ρ(x1x2.x3) ≠ 0 or ρ(AB.C) ≠ 0. Preliminary runs
helped determine an appropriate value of ρ(x1x2.x3) or ρ(AB.C), for the
chosen sample sizes, that would produce rejection rates always larger
than 0 and smaller than 1. The selected value is 0.1. Power was studied
with regard to the following factors:

1. The size of the samples: n = {5, 10, 30, 50}.
2. For the simple correlation study, ρ(x1x2) was varied by steps of 0.1

from 0.0 to 0.9.
3. For the partial correlation study, eq. 1 indicates that there are various

ways of varying the correlations between the three vectors while keep-
ing the expected value of partial correlation constant at 0.1:

• ρ(x1x3) = 0 while ρ(x2x3) = {0.0, 0.3, 0.5, 0.7, 0.9}. Equation (1)
can be transformed to give the values of ρ(x1x2) corresponding to
different values of ρ(x2x3) for constant ρ(x1x2.x3):

(4)

These values are: ρ(x2x3) = 0.0, ρ(x1x2) = 0.1; ρ(x2x3) = 0.3,
ρ(x1x2) = 0.0954; ρ(x2x3) = 0.5, ρ(x1x2) = 0.0866; and ρ(x2x3) =
0.9, ρ(x1x2) = 0.0436. The same equation was used for the case
where ρ(x2x3) = 0 while ρ(x1x3) = {0.0, 0.3, 0.5, 0.7, 0.9}. 

• ρ(x1x3) = ρ(x2x3) = {0.0, 0.1, … 0.9}. The value ρ(x1x2) was ad-
justed in such a way that ρ(x1x2.x3) was kept constant at 0.1 in each
plot. Equation (1) can be transformed to give the values of ρ(x1x2)

ρ x1x2( ) ρ x1x2.x3( ) 1 ρ x2x3( ) 2
–=
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corresponding to different values of ρ(x1x3) = ρ(x2x3) for constant
ρ(x1x2.x3):

(5)

These values are: ρ(x1x3) = ρ(x2x3) = 0.0, ρ(x1x2) = 0.1; ρ(x1x3) =
ρ(x2x3) = 0.1, ρ(x1x2) = 0.109; … ρ(x1x3) = ρ(x2x3) = 0.9,
ρ(x1x2) = 0.829. 

The same strategy was used in the partial Mantel study. Power is re-
ported as the rate (fraction) of rejection of the null hypothesis after 10000
or 100000 simulations.

6.  RESULTS

6.1.  Simple Correlation and Simple Mantel Test

Figures 1a–c present empirical type I error rates at α = 0.05 for the sim-
ple correlation coefficient r(x1x2) (parametric t-test and permutation test)
and the simple Mantel test r(AB) (permutation test only), obtained using
simulations where ρ(x1x2) and ρ(AB) were 0 in the statistical popula-
tions. The permutation tests always have correct type I error, whatever
the shape of the distribution of errors. It is noticeable, however, that for
non-normal data, the parametric t-test used in correlation analysis has in-
flated type I error for data generated under the correlation model
(panel a), whereas it is too conservative for data generated under the re-
gression model I (panel c), especially for cubed exponential error. Simi-
larly, Anderson and Legendre (1999, Fig. 3) found that the normal-theory
t-test is too conservative for regression model I data generated with cubed
exponential error. Differences between the correlation and regression
model I methods of data generation will also be found in partial correla-
tion analysis (section 6.2). These results are summarized in Table I.

Figures 1d,e present power curves for the simple correlation coeffi-
cient and the simple Mantel test, for different sample sizes, across values
of the population correlation ρ. Unsurprisingly, the powers of the simple
correlation and simple Mantel tests increase with n. The power values

ρ x1x2( ) ρ x1x2.x3( ) 1 ρ x2x3( ) 2
–( ) ρ x2x3( ) 2

+=
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reported by Cohen (1988, Table 3.3.2) for one-tailed tests of the simple
correlation coefficient are always inside the 95% confidence intervals
obtained in our simulations (C.I. not plotted in Fig. 1d); this provides an

FIGURE 1   (a) Type I error and 95% confidence intervals (error bars) at α = 0.05 with
increasing sample size, for simple correlation coefficients (one-tailed tests; circles,
parametric t-tests; squares, permutation tests), using data generated under the correla-
tion model. (b) Same for the simple Mantel test (p = 10). (c) Same for simple correla-
tions, using regression model I data (independent variable with fixed values {1, 2, …,
10} repeated 1 to 5 times, for a total of 10 to 50 data points). (d) Power curves for the
simple correlation coefficient (parametric t-test) for different sample sizes n. (e) Same
for the simple Mantel test, for different numbers of variables p = {1, 10, 50}. There
were 10000 simulations in each case (100000 for n = 5) and 999 permutations per test
where permutations were used. For n = 5, the confidence intervals are often so narrow
that they are hidden by the symbols.
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Table I   Type I error: summary of the simulation findings. 
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external validation of the simulation algorithm and computer code used to
produce the simulations reported in the present paper. The power values
were obtained in the same way as in the previous paragraph, using normal
error and significance level 

 

α

 

 = 0.05. The power of the simple Mantel test
is the same for any number of variables, 

 

p

 

, used in computing matrices 

 

A

 

and 

 

B

 

, except when 

 

n

 

 is small and

 

 p

 

 is very small.
The numerical value of the Mantel statistic required to reach signifi-

cance, for any given 

 

n

 

, is smaller than that of the Pearson correlation
coefficient, a fact that users of the Mantel test often remark on. The re-
sults in Figures 1d and 1e are not entirely comparable, however, because
the data have been generated in different ways; the correlation was added
to the raw data vectors in the simple correlation study whereas it was add-
ed to the distances in the simple Mantel study.

Additional simulations carried out using data generated according to
the method described in the penultimate paragraph of section 5.1, and
reported in Table II, showed that the Mantel test is actually less powerful
than the test of the Pearson correlation for analyzing the correlation be-
tween data vectors. Concerning the numerical values of the coefficients in
the two cases, Dutilleul 

 

et al.

 

 (2000) have shown that in situations such as
used in Table II, for any selected value of 

 

ρ
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) in the statistical popula-
tion, the expected value of the simple correlation 
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) between matrices of ordinary (not
squared) Euclidean distances is always a bit smaller than 
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Table II   Comparison of power of the simple correlation and simple Mantel tests,
using data vectors generated for power analysis of the simple correlation coefficient.
The correlation imposed between the two vectors is ρ(x1x2) = 0.5, hence H0 is false;
error is normal. Power is the rejection rate of H0 after 10000 simulations (or 100000
for n = 5); α = 0.05, one-tailed tests.

Power of t-test Power 
n of Pearson correlation of simple Mantel test

5 0.2246 0.1244
10 0.4605 0.2872
30 0.8944 0.6268
50 0.9826 0.8067
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6.2.  Partial Correlation Analysis

 

6.2.1.  Type I Error

 

Figures 2a, 2c and 2e present the type I error rates obtained for the vari-
ous permutation methods, as well as for the parametric 

 

t

 

-test, for increas-
ing sample sizes, using data with normal error. When 

 

ρ

 

(

 

x

 

1

 

x

 

2

 

) = 

 

ρ

 

(

 

x

 

1

 

x

 

3

 

) =

 

ρ

 

(

 

x

 

2

 

x

 

3

 

) = 0, all methods had correct type I error, except method 3

FIGURE 2   Mean and 95% confidence interval of the empirical probability of type I
error (α = 0.05) with increasing sample size. Left: comparison of the four permutation
methods in partial correlation analysis, plus the parametric t-test. The population
parameters were chosen in such a way that H0 was true; the error was standard normal.
Right: same for partial Mantel tests; parametric t-test could not be carried out here.
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). This is also the case for in-
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) were set to zero (example in Fig. 2e). Similar results were ob-
tained for two-tailed tests (not shown).

Permutation method 3 (correlate residualized 

 

x

 

1

 

 to residualized 

 

x

 

2

 

)
had inflated type I error with small sample sizes. This confirmed similar
results obtained by Anderson and Legendre (1999) in a simulation study
of permutation methods for testing the significance of partial regression
coefficients in multiple linear regression. 

Simulations of the null hypothesis were also conducted with 

 

ρ(x1x3) =
ρ(x2x3) = {0.0, 0.1, 0.2, … 0.9}. The results are the same as reported
above: methods 1, 2 and 4 had error rates indistinguishable from that of
the parametric t-test whereas method 3 had inflated type I error, signifi-
cantly higher than that of the other methods for n = 5 and 10. 

In simulations carried out using highly skewed data (i.e., cubed expo-
nential random deviates) in all three vectors, all permutation tests did
much better than the normal-theory t-test in one-tailed or two-tailed tests
(Figs. 3a, c); the normal-theory t-test had inflated type I error in such a
case. This is opposite to the findings of Anderson and Legendre (1999)
for data generated under regression model I (i.e., explanatory variables
controlled, error added), where the normal-theory t-test had reduced
type I error when using cubed exponential deviates; this is also the case
for simple correlation coefficients (Fig. 1c). No noticeable effect was
found when cubed exponential deviates were used in x1 only while x2 and
x3 contained random normal deviates (results not shown). In all cases,
method 3 (correlate residualized x1 to residualized x2) had the same prob-
lem as it did with normal error (Fig. 2).

When cubed exponential deviates were used in all three vectors, the
methods of permutation of residuals also had inflated type I error for very
small sample sizes (n = 5 and 10) in one-tailed and two-tailed tests
(Figs. 3a, c). This is not surprising since methods of permutation of resid-
uals are known to only have asymptotically exact significance levels; they
require n to be relatively large. The permutation of residuals of a null
model did better than the permutation of residuals of a full model. The
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method of permutation of raw data was not affected by highly skewed
data.

Anderson and Legendre (1999) noted that when the covariable of a
multiple regression model (x3 in the present study) contained an extreme
outlier, permutation of raw data resulted in unstable (often inflated) type I
error. This effect is actually stronger in two-tailed than in one-tailed tests
for regression model I data (Figs. 4a, c). To check the influence of outliers
on permutation tests in the partial correlation context, data were generat-
ed under the correlation model, as described above, using standard nor-
mal deviates. An extreme outlier’s value of 50 was included in vector x3
and the partial correlation r(x1x2.x3) was tested for significance. No ef-
fect of the outlier was detected on type I error for any value of ρ(x1x3)
(Figs. 4e, g; simulations were run for n = 10, 30, 50, 100) for any sample
size, in one-tailed or two-tailed tests.

FIGURE 3   Type I error of one-tailed (a, b) and two-tailed tests (c, d) with increasing
sample size for data generated under the correlation model with cubed exponential
error in all variables. (a, c) Partial correlations; the population correlations ρ(x1x2),
ρ(x1x3) and ρ(x2x3) were 0. (b, d) Partial Mantel tests; the population correlations
ρ(AB), ρ(AC) and ρ(BC) were 0.
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FIGURE 4   (a, c, e, g) Effect of an outlier in x3 on type I error of one-tailed (a, e) and
two-tailed tests (c, g), for data generated under the regression model I (a, c: regression
model with fixed predictors) or the correlation model (e, g) using normal error; n = 50.
For the model I data, β0 = 0, β1 varied from 2 to 20 (abscissa of the graphs) and
ρ(x2x3) = 0. For the correlation model  data, ρ(x1x2) and ρ(x2x3) were 0; ρ(x1x3) var-
ied from 0.0 to 0.9 (abscissa of the graphs). (b, d) Same for partial Mantel tests (data
generated under the correlation model) in one-tailed (b) and two-tailed tests (d);
n = 10. (f, h) Same, n = 50.
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However, combining highly skewed data with an outlier, permutation
of the raw data produced a reduction in type I error in one-tailed tests as
ρ(x1x3) increased, and an inflation of type I error in two-tailed tests
(Fig. 5). The normal-theory t-test had inflated type I error in most instanc-
es and mimicked the behavior of the permutation of raw data. In these
extreme conditions, permutation of the residuals of a null or full model
had mostly correct type I error for n = 50 or more (Figs. 5e, g; simula-
tions were run for n = 10, 50 and 100). 

These results are summarized in Table I. In the Table, method 3 (corre-
late residualized x1 to residualized x2) is marked as having incorrect
type I error, not only because the simulations have shown it to be so for
small samples, but also because it is intrinsically flawed, as explained in
the Discussion. This is the reason why simulations have not been run for
this method in the presence of outliers, nor in the power study.

6.2.2.  Power

The power curves obtained with all testing methods, except method 3, are
presented in Figures 6(a, c, e, g) for increasing values of ρ(x2x3) and dif-
ferent sample sizes when ρ(x1x2.x3) = 0.1 (i.e., the null hypothesis is
false); ρ(x1x3) was 0 in these simulations. Identical results were obtained
when ρ(x2x3) was 0 and ρ(x1x3) was made to vary. Results of methods 1,
2 and 4 are indistinguishable from those of the parametric t-test. As ex-
pected, power increases with sample size. Similar results again were ob-
tained by varying both ρ(x1x3) and ρ(x2x3) at the same time, as described
in the Methods (results not shown).

6.3.  Partial Mantel tests

6.3.1.  Type I Error

Among the methods for partial Mantel analysis (Figs.  2b, d, f), only
methods 1 (random permutation of the objects in matrix A) and 2 (per-
mute residuals of null model) had correct type I error for all sample sizes,
in simulations using standard normal deviates without outlier. Methods 3
and 4 systematically produced inflated type I error with small sample
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sizes. The error decreased with sample size, but it always remained.
Section 6.2 has shown the problem inherent with method 3 (correlate re-
sidualized A to residualized B). Method 4 (permutation of residuals of a
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FIGURE 5   (a, c, e, g) Effect of an outlier in x3 (value = 50) on type I error of one-
tailed (a, e) and two-tailed tests (c, g), for data generated under the correlation model
with cubed exponential error; n = 10 and 50. The population correlations ρ(x1x2) and
ρ(x2x3) were 0; ρ(x1x3) varied from 0.0 to 0.9 (abscissa of the graphs). There were
10000 simulations per data point. (b, d, f, g) Same for partial Mantel tests in one-tailed
(b) and two-tailed tests (d); n = 10. (f, h) Same, n = 50.
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full model) had inflated type I error up to n = 40; this problem was not
present in partial correlation analysis. T his is due, most likely, to the lack
of correspondence between the error-generation process and the calcula-
tion of residuals, described in section 5.1, and to the fact that in matrix
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FIGURE 6   Mean and 95% confidence interval of power (at α = 0.05), using different
testing methods and sample sizes. Left: partial correlation analysis; ρ(x2x3) varies
from 0.0 to 0.9 while ρ(x1x3) = 0; ρ(x1x2.x3) = 0.1. Right: partial Mantel tests; ρ(BC)
varies from 0.0 to 0.9 while ρ(AC) = 0; ρ(AB.C) = 0.1.
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permutation, the residuals are not i.i.d. Method 2, which is also a method
of permutation of residuals, does not present this problem.

Simulations carried out using highly skewed data in all three matrices
led to the same results as in the partial correlation study (Figs. 3b, d). Per-
mutation of the raw data was not affected by highly skewed data. The
three methods of permutation of residuals had correct type I error for
n ≥ 20.

The effect of an outlier in matrix C differed from the findings of the
partial correlation study. With normal error (Figs. 4b, d, f, g), the method
of permutation of raw data was affected by having increasingly inflated
type I error as ρ(AC) increased. There was no difference between one-
tailed and two-tailed tests. Inflation of type I error, already noted for
method 4 (permutation of residuals of a full model) with small n, was also
found here. The two methods of permutation of residuals behaved well
for n ≥ 30 (simulations were run for n = 10, 30 and 50). With highly
skewed data and an outlier (Figs. 5b, d, f, g), permutation of the raw data
had either inflated or reduced type I error as ρ(AC) increased, depending
on the test being one-tailed or two-tailed, as in the partial correlation
study. The two methods of permutation of residuals maintained correct
type I error for n > 30 (simulations were run for n = 10, 30 and 50). 

These results are summarized in Table I. For the reason given in the
results of the partial correlation study (Section 6.2), simulations have not
been run for method 3 (correlate residualized A to residualized B) in the
presence of outliers, nor in the power study.

6.3.2.  Power

The power curves obtained with all permutation methods, except
method 3, are presented in Figures 6(b, d, f, h) for increasing values of
ρ(BC) and different sample sizes when ρ(AB.C) = 0.1 (i.e., the null hy-
pothesis is false); ρ(AC) was 0 in these simulations. Identical results
were obtained when ρ(BC) was 0 and ρ(AC) was made to vary. The pow-
er curves of the three methods converge as n increases, although
method 2 (permute residuals of null model) seems to maintain a slight
(though not significant) advantage over the permutation of raw data. The
apparent advantage of method 4 (permute residuals of full model) at
small n simply results from it having inflated type I error; it should not be
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construed as a reason to use this method in partial Mantel tests. As ex-
pected, power increases with sample size. 

7.  DISCUSSION

The theory of permutation methods for testing partial regression coeffi-
cients for a univariate response is now well understood (Anderson and
Legendre, 1999; Anderson and Robinson, in press), but using the same
approach in the partial correlation case and for Mantel tests involving dis-
tance matrices presents problems. For partial correlations, the main prob-
lem is the lack of correspondence, in the methods of permutation of
residuals, between the error generation procedure which follows from the
correlation model and the estimation of residuals using model I regres-
sion. For distance matrices, the main problem is that the residuals of a lin-
ear regression model computed for distance matrices cannot be assumed
to be i.i.d.; this remains a problem even though the residuals are permuted
using ‘matrix permutation’, which corresponds to permuting the original
observations. This paper used simulations to show empirically to what
extent the various permutation methods described in section 4 behaved
correctly for data generated under the correlation model, using different
types of errors, and in the absence or presence of outliers.

The simulation results summarized in Table I show that, when the null
hypothesis is true, permutation testing always leads to correct type I error
in simple correlation analysis and simple Mantel tests for normal, skewed
(exponential), or highly skewed data (cubed exponential). The parametric
t-test used in correlation studies, however, has correct type I error only
for normally distributed data.

In the partial correlation study, the parametric t-test had incorrect
type I error in the same situations where it experienced problems in the
simple correlation study, i.e., in the presence of non-normal data. It did
well, however, in the presence of outliers, a situation that caused prob-
lems to the method of permutation of raw data. The two methods of per-
mutation of residuals (methods 2 and 4) produced equivalent results—
correct type I error except for n < 20 in the presence of highly skewed
data, and for n < 50 when cubed exponential deviates were combined
with an outlier. 



70 P. LEGENDRE

Although method 3 (correlate residualized x1 to residualized x2) had
originally been proposed, in the context of multiple regression, as equiva-
lent to method 2 but computationally simpler (Kennedy 1995), it actually
has inflated type I error, especially for small sample sizes. According to
Anderson and Legendre (1999), the reason for this anomaly, which will
also be found in the partial Mantel study (below), is that method 3 explic-
itly removes the effect of x3 by initial regressions of x1 and x2 on x3. The
relationship between x3 and each of the residualized variables is (errone-
ously) assumed to remain zero during the permutations; this would only
be correct if n were infinite. Method 2, on the contrary, recognizes that a
small non-zero correlation may appear between permuted residualized x1
and x3, due to the finite sample size, and it takes it into account during es-
timation. Anderson and Robinson (in press) showed that although the dif-
ference between methods 2 and 3 disappears asymptotically, r2 for
method 3 is consistently smaller than or equal to r2 for method 2 under
permutation, so that the observed values r2 appear more extreme more of-
ten for method 3 than for method 2 when compared to the permuted val-
ues, resulting in probabilities which are too small and thus inflating type I
error. A numerical example is presented by Legendre (in preparation). It
follows that method 3 should never be used. 

The conclusions of the partial Mantel study are essentially the same,
except for the fact that permutation of the residuals of a full model
(method 4) had slightly inflated type I error for n < 40, even with normal
error, a case where the permutation of residuals of a null model
(method 2) had correct type I error.

The study leads to the following recommendations to users concerning
testing procedures that seem appropriate for partial correlation analysis
and partial Mantel tests:

• In partial correlation analysis (original variables), all testing proce-
dures except method 3 can be used most of the time. The parametric
t-test should not be used with highly skewed data. Permutation of the
raw data should be avoided only when highly skewed data are com-
bined with outliers in x3. The methods of permutation of residuals,
which are known to only have asymptotically exact significance
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levels, should not be used when highly skewed data are combined with
small sample size (n < 20); very highly skewed data (cubed exponen-
tial deviates) were used in the simulations. Highly skewed data can be
detected by looking at frequency histograms, examining the skewness
parameter of the distribution, and/or performing tests of normality on
the three data vectors.

• In partial Mantel tests (distance matrices), method 2 (permute residu-
als of null model) can always be used, except when highly skewed
data are combined with small sample size (n < 20, or n < 50 in the
presence of outliers). For distance matrices computed using functions
other than the Euclidean distance, highly skewed data can be detected
by examining ordination diagrams obtained for each distance matrix,
using the method of principal coordinate analysis (Gower, 1966); ex-
amining the distribution and skewness parameter of each individual
ordination axis; and/or performing tests of multivariate normality on
principal coordinates computed for the three distance matrices. Per-
mutation of the raw data can be used with normal or highly skewed
data in the absence of extreme outliers. Method 4 (permute residuals
of full model) can only be used safely with medium to large sample
sizes (n > 40).

• With small sample sizes, one should carefully examine the data before
partial correlation or partial Mantel analysis. For highly skewed data,
permutation of the raw data has correct type I error in the absence of
outliers (Fig. 3). When highly skewed data are combined with outliers
in x3 or C (Fig. 5), it is recommended to use the permutation of raw
data in partial correlation analysis or partial Mantel tests, for the fol-
lowing reasons: (1) with one-tailed tests, the results are conservative;
so, one is less likely to incorrectly reject H0; (2) with two-tailed tests,
permutation of the raw data has the least amount of inflation of type I
error of all the testing procedures investigated in this study; this effect
can be compensated by using a conservative significance level, e.g.,
α = 0.01 instead of 0.05. Outliers can be detected by examining fre-
quency distributions or multivariate ordination diagrams, or by cluster
analysis.

• Method 3 (correlate residualized x1 or A to residualized x2 or B)
should never be used.
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The above recommendations depend to a large extent on the arbitrary
decisions that were made about the simulation programme (e.g., normal
and highly skewed data, with or without an outlier). Simulations carried
out using other types of data (e.g., with many tied values) could lead to
complementary recommendations.
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