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1  | INTRODUC TION

Community phylogenetics (ecophylogenetics) represents an attempt 
to link the evolutionary history of species to their present‐day eco‐
logical interactions (Cavender‐Bares, Kozak, Fine, & Kembel, 2009; 
Webb, Ackerly, McPeek, & Donoghue, 2002). The field is young but 

controversial, and some of its fundamental assumptions have been 
criticised (notably, by Mayfield & Levine, 2010). Many community phy‐
logenetic studies invoke niche conservatism (reviewed by Wiens et al., 
2010) to assert that phylogenetic distance is a measure of distance 
in niche space, making phylogenetic structure a metric of ecological 
structure. Under such niche conservatism, phylogeny is often assumed 
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Abstract
Aim: Community phylogenetic studies use information about the evolutionary rela‐
tionships of species to understand the ecological processes of community assembly. 
A central premise of the field is that the evolution of species maps onto ecologi‐
cal patterns, and phylogeny reveals something more than species traits alone about 
the ecological mechanisms structuring communities, such as environmental filtering, 
competition, and facilitation. We argue, therefore, that there is a need for better 
understanding and modelling of the interaction of phylogeny with species traits and 
community composition.
Innovation: We outline a new approach that identifies clades that are ecophyloge‐
netically clustered or overdispersed and assesses whether those clades have differ‐
ent rates of trait evolution. Ecophylogenetic theory would predict that the traits of 
clustered or overdispersed clades might have evolved differently, in terms of either 
tempo (fast or slow) or mode (e.g., under constraint or neutrally). We suggest that 
modelling the evolution of independent trait data in these clades represents a strong 
test of whether there is an association between the ecological co‐occurrence pat‐
terns of a species and its evolutionary history.
Main conclusions: Using an empirical dataset of mammals from around the world, we 
identify two clades of rodents whose species tend not to co‐occur in the same local 
assemblages (are phylogenetically overdispersed) and find independent evidence of 
slower rates of body mass evolution in these clades. Our approach, which assumes 
nothing about the mode of species trait evolution but instead seeks to explain it using 
ecological information, presents a new way to examine ecophylogenetic structure.
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to serve as a reasonable proxy for unmeasured functional traits [as 
the	“phylogenetic	middleman”,	Swenson	(2013);	see	also	Peres‐Neto,	
Leibold, and Dray (2012)]. Although useful, such use undervalues phy‐
logeny, which could be used to place (rather than approximate) spe‐
cies trait and distribution data within the context of past evolutionary 
and biogeographical processes that have shaped current patterns of 
species distributions and co‐occurrences. In current approaches, we 
cannot disentangle species' functional trait evolution from their func‐
tional trait ecology because we use phylogeny as a measure of both. 
There is, therefore, a need for better integration of evolutionary his‐
tory into community phylogenetics that parallels advances in the field 
of comparative analysis, where phylogeny is increasingly viewed as the 
inferential backbone for models of species trait evolution, not simply 
as a statistical correction (e.g., Freckleton, Cooper, & Jetz, 2011).

One of the earliest, and most commonly used, applications of com‐
munity phylogenetic methods is to identify the impacts of niche‐based 
processes, such as environmental filtering and competition, on commu‐
nity assembly (Cavender‐Bares, Keen, & Miles, 2006; Webb, 2000). Here, 
it is assumed that a community of closely related species (phylogenetic 
clustering) reflects environmental filtering on the basis of phylogenet‐
ically conserved traits, whereas the converse (phylogenetic overdis‐
persion) implies competitive exclusion (Webb et al., 2002). A growing 
awareness that phylogenetic structure does not always match trait 
variation, even when assumptions of niche conservatism hold (Cadotte, 
Davies, & Peres‐Neto, 2017; Godoy, Kraft, & Levine, 2014; Mayfield & 
Levine, 2010), has led many to estimate separately the phylogenetic and 
functional trait structures of communities and then contrast them (e.g., 
Kraft & Ackerly, 2010; Graham, 2012). Crucially, however, such com‐
parisons do not capture the interaction between functional traits and 
phylogeny [i.e., how different ecological patterns in different clades may 
have arisen (evolved) and thus shaped present‐day species distribu‐
tions and co‐occurrences]. Given that many ecological and evolutionary 
processes interact to affect ecophylogenetic structure within the same 
phylogeny, some clades may be functionally or phylogenetically overdis‐
persed, whereas others are clustered; only a clade‐based approach can 
detect and unpick these conflicting signals (see also Leibold, Economo, 
& Peres‐Neto, 2010). Figure 1 gives a conceptual example of how com‐
mon ecological processes can produce variation among the ecophylo‐
genetic structure of clades. Using differences in the ecological pattern 
among clades to guide questions about ecological assembly is a form of 
phylogenetic natural history (Uyeda, Zenil‐Ferguson, & Pennell, 2018).

It is already well appreciated in the ecophylogenetic litera‐
ture that different clades might demonstrate conflicting patterns, 
hinting at the interaction of ecological and phylogenetic struc‐
ture	(Elliott,	Waterway,	&	Davies,	2016;	Ndiribe	et	al.,	2013).	For	
example, the phylogenetic scale (e.g., clade crown age) of a study 
and its relationship with spatial scale (e.g., spatial extent) has 
itself become an object of study (see Graham, Storch, & Machac, 
2018; Swenson, Enquist, Pither, Thompson, & Zimmerman, 2006; 
Vamosi, Heard, Vamosi, & Webb, 2009). Parra, McGuire, and 
Graham (2010) were among the first to examine the contribution 
of different clades to an overall metric of phylogenetic structure. 
Later work expanded node‐based analysis to consider the separate 

structures	of	individual	clades	(Pearse,	Jones,	&	Purvis,	2013),	and	
others have examined clade‐wise variation in environmental and 
biogeographical structure (Borregaard et al., 2014; Leibold et al., 
2010). Surprisingly, these advances in the measurement of clade‐
based ecophylogenetic structure have been disconnected from 
clade‐based advances in trait evolution (e.g., Beaulieu, Jhwueng, 
Boettiger, & O'Meara, 2012; Mazel et al., 2016) and phylogenetic 
diversification (e.g., Davies et al., 2004; Rabosky, 2014). This is 
despite early work linking the order of trait evolution to commu‐
nity composition (Ackerly, Schwilk, & Webb, 2006; Silvertown, 
Dodd, Gowing, Lawson, & McConway, 2006).

F I G U R E  1   Linking the evolution of clades and community 
assembly. Here, we give an example of how clade‐level variation in 
community structure (the tendency for close/distant relatives to 
co‐occur) might arise. We consider a set of species that are initially 
filtered within some biogeographical (or meta‐community) context; 
perhaps the clade is widespread but not all its members are present 
in every continent/region, for example. A trait, represented by 
the size of the circles at the tips of the phylogeny, evolves across 
the phylogeny, but evolves faster in one clade (the red branches) 
and slower in another (the blue branches). Ecological community 
assembly on the basis of this trait, regardless of the mechanism, 
will result in different ecophylogenetic structures across these 
clades. Reframing our ecophylogenetic analysis in terms of clades 
allows for the generation of falsifiable hypotheses about how 
the ecology and evolution of species interact. In this study, we 
use evidence of variation in the co‐occurrences within clades to 
test for variation in the evolution of those traits. It would also be 
possible to find clades with different evolutionary patterns, then 
use these to test for different methods of ecological assembly 
and co‐existence within those same clades. We emphasize that 
this diagram is but one example of how ecological assembly and 
the macroevolution of species' traits could interact. Although we 
do not show the interaction of fitness and niche differences on 
species co‐occurrence (sensu Chesson, 2000; Mayfield & Levine, 
2010), we see no reason why our approach could not be applied 
to more complex models of ecological assembly. Equally, although 
there may be null models that allow investigators to partial out the 
influences of some of these patterns and processes, the aim of our 
approach is to model them statistically, and thereby understand 
them better. The ecophylogenetic terms in this diagram match 
those in Figure 2, where we outline our method, and the colours 
match	those	in	Figure	3,	where	we	test	the	statistical	power	of	
our method through simulation, and Figure 4, where we apply our 
method to an empirical dataset [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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We suggest that one of the key assertions of community phylo‐
genetics is that the evolution of species traits is tied to their present‐
day ecological co‐occurrences (Cavender‐Bares et al., 2009; Webb et 
al., 2002). A strong test of this assertion would be to link variation in 
the tempo or mode of trait evolution among clades with independent 
evidence of variation of community composition within those same 
clades. This goes beyond independently testing for phylogenetic struc‐
ture	of	assemblages	and	 traits	 (Swenson,	2013):	 it	 tests	hypotheses	
that specific clades' traits should evolve differently to cause, or as 
a consequence of, changes in the community composition of those 
clades (see Figure 1). Our approach looks to validate the assertion that 
variation among the co‐occurrences of clades is a product of the inter‐
action of phylogeny with ecology using independent trait data. Here, 
we extend the β‐diversity framework of Legendre and De Cáceres 
(2013)	 to	 quantify	 how	 the	 co‐occurrence	 patterns	 of	 phylogenetic	

clades vary across sites. Using this method, it is possible to detect 
clades whose species do, and do not, tend to co‐occur (clustered and 
overdispersed clades; Webb et al., 2002), and thus detect and disen‐
tangle variation in ecological structure across the tree of life.

In this paper, our fundamental goal is to test whether variation in 
present‐day ecophylogenetic structure can be used to predict past pat‐
terns of trait evolution. Our approach has two components: (a) the use 
of a new β‐diversity approach to detect clustered and overdispersed 
clades; and (b) the use of existing macroevolutionary approaches to 
test whether those same clades have different rates or modes of trait 
evolution in comparison with the rest of the phylogeny. Although we 
cannot test a causal link between present‐day ecological structure 
and past evolution experimentally, we argue that our approach pro‐
vides a strong inferential test in the form of specific hypotheses about 
structures that are common across datasets. We apply our method 

F I G U R E  2   Overview of variance‐based method for the 
detection of variation in the ecophylogenetic structure of clades. A 
horizontal dashed line splits the phylogeny into two clades: one has 
an overdispersed community phylogenetic structure (close relatives 
are unlikely to co‐occur) and the other a clustered structure 
(close relatives are likely to co‐occur). It is these two types of 
ecophylogenetic structures that our method aims to detect and 
that we suggest, in the main text, could be termed β‐overdispersion 
and β‐clustering to emphasize their focus on ecophylogenetic 
structure across multiple sites simultaneously. A vertical grey 
dashed line separates species and grouped clade calculations. To 
the left of the vertical line, the occurrences of each species in two 
assemblages (A and B) are shown alongside the variance (σ2) of 
each species' occurrences across the assemblages; all species have 
the same variance (½). To the right of the vertical line, community 
occurrences for the species have been summed; the variance of 
these occurrences is now much lower for the overdispersed clade 
and much higher for the clustered clade. For simplicity, we use 
binary presence–absence data in only two sites as an illustration, 
but this method can be applied to species abundances within any 
number of assemblages. Although there is an analytical expectation 
for clade‐level variances (see main text), we recommend using 
ecological null models to assess the significance of clade‐level 
patterns. Note that when more than two sites are considered, 
a single variance value for each species is calculated across the 
presences and absences (or abundances) of all sites [Colour figure 
can be viewed at wileyonlinelibrary.com]

F I G U R E  3   Simulations showing how method performance 
increases with effect size. In grey, the quantiles of observed 
variances are shown for when there was no difference between 
the model of trait evolution in the focal clade and the rest of the 
phylogeny. The mean of these values, along with the percentage 
of values lying beyond the 2.5 and 97.5% quantiles, are shown 
in black. In light blue, the probabilities for the β‐overdispersed 
(low variance; �2

clade
 > �2

tree
) are shown, along with a quasi‐binomial 

generalized linear model (GLM) prediction in darker blue. In orange, 
the probabilities for the β‐clustered (high variance; �2

clade
 < �2

tree
) are 

shown, along with a quasi‐binomial GLM prediction in red. At an 
α5%, a predicted quantile of 0.025 or 0.975 would provide statistical 
support for the focal clade being β‐clustered or overdispersed, 
respectively. None of these curves accounts for the additional 
explanatory variables used in the models in Table 1, and thus these 
curves are conservative but can be interpreted in the context of 
the parameters within Table 1 to generate predictions for any 
combination of parameters. These figures show the raw data (i.e., 
each point is the result of a single simulation) used to parameterize 
the models shown in Table 1. In the main text, we define the terms 
β‐overdispersion and β‐clustering as referring to ecophylogenetic 
structures in clades across sites [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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to global mammal data (Fritz, Bininda‐Emonds, & Purvis, 2009; Jones 
et al., 2009; Thibault, Supp, Giffin, White, & Ernest, 2011), where we 
find evidence for slower rates of body mass evolution in present‐day 
overdispersed clades. By linking variation in the ecological co‐occur‐
rences of clades to variation in the trait evolution of clades, we show 
the power of phylogeny as data to help us understand the evolution of 
ecological community assembly.

2  | METHODS

All software referred to below in italics are packages for the R envi‐
ronment (R Core Team, 2017), and new code written for this project 
is released in pez (in the function family clade.var; Pearse et al., 2015; 
also in Supporting Information S2). The Supporting Information 
contains code (that, using suppdata, also fetches all data; Pearse & 

F I G U R E  4   Empirical mammal results showing associations between the co‐occurrences of clades and their rates of body mass evolution. 
To	the	left	and	right	is	shown	the	phylogeny	of	all	483	mammals	in	the	study.	Two	large	red	circles	on	the	nodes	of	each	phylogeny	indicate	
the two “squirrel” and “cavi” clades tested in the evolutionary analysis (see main text and Table 2). The left‐hand phylogeny is coloured 
according to the ranking of variances of the clades; a quantile of zero (red) would indicate a clade whose variance was lower than all 9,999 
null permutations and a quantile of one (blue) a clade whose variance was higher than all 9,999 null permutations. In the centre is a site‐by‐
species	matrix	of	relative	abundance	in	all	939	assemblages,	with	a	colour	scale	at	the	bottom	indicating	relative	abundance	(more	abundant	
species	in	red,	absent	species	in	white).	Each	of	the	939	assemblages	(sites)	is	a	column	in	this	matrix	and	each	of	the	species	a	row	that	
maps onto the phylogenies to the left and right. This represents the raw data used to calculate the variances of the clades. The right‐hand 
phylogeny is shaded according to a reconstruction of body mass (in grams) across the phylogeny (using phytools; Revell, 2012). Although this 
reconstruction does not model variation in rate among clades explicitly, variation in size across its branches can be seen. In the main text, 
we define β‐overdispersion and β‐clustering as ecophylogenetic structures of overdispersion and clustering that are detectable only across 
many sites simultaneously [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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Chamberlain, 2018) that reproduces our simulations (Supporting 
Information	S3)	and	empirical	example	(Supporting	Information	S4)	
in their entirety.

2.1 | Overview and motivation

It is often relevant to determine whether species within an assem‐
blage are more related (phylogenetically clustered) or less related 
(phylogenetically overdispersed) compared with some expectation 
of assembly from a larger set of species, from which patterns we 
hope to infer some ecological mechanism. However, as outlined in 
the Introduction, there is a growing understanding that such pat‐
terns are not necessarily uniform among the clades within a phylog‐
eny (Borregaard et al., 2014; Graham et al., 2018; Leibold et al., 2010; 
Parra	et	al.,	2010;	Pearse	et	al.,	2013).	Indeed,	phylogenetic	cluster‐
ing is an inherent property of clades; a phylogenetically clustered 
assemblage must have, by definition, one or more overrepresented 
clades. Below, we describe how these clade‐wise patterns of clus‐
tering and overdispersion can be mapped onto a phylogeny, using 
an extension of existing approaches to partition β‐diversity (where 
β‐diversity is the variation in community composition among sites in 
a	region	of	 interest;	Legendre	&	De	Cáceres,	2013).	By	testing	for	
differences in the evolution of such clades, we are able to evaluate 
the linkages between ecological and evolutionary processes, mov‐
ing phylogeny from a proxy for traits to data to be explored in the 
context of traits.

Figure 2 shows two assemblages (“A” and “B”) in an eight‐spe‐
cies phylogeny; one of the clades is clustered, the other overdis‐
persed. The general principle is clearer with species' presence (“1”) 
and absence (“0”) data, but the calculations are the same for species 
abundances. Although the variance (σ2) of each species' occupancy 
of the two sites is the same (½), by summing the species' occupancies 
within each clade, the variance increases in the clustered clade but 
decreases in the overdispersed clade. When compared with simula‐
tions that provide null expectations of the expected variance in dif‐
ferent clades, it is therefore possible to locate significant clustered 
and overdispersed clades across different ecological assemblages. 
We note that the standard advice when calculating β‐diversity of 
abundance data is to work with a transformed data matrix (typically 
a Hellinger transformation; Legendre & Gallagher, 2001). We do not 
do so here for clarity, and note that our simulations indicate that our 
method is robust to such untransformed data.

Once clades with different patterns of ecophylogenetic disper‐
sion have been identified, we can test whether the evolution of inde‐
pendent trait data differs within those clades (following Beaulieu et 
al., 2012). It is, of course, equally possible to test for variation in the 
evolution of clades first, and then to test the community composi‐
tion of those clades using our β‐diversity approach, because the two 
procedures are performed independently. In such cases, clades with 
outliers in a phylogenetic generalized least squares regression (see 
Freckleton et al., 2011) or the output from methods such as SURFACE 
(Ingram	&	Mahler,	2013),	bayou (Uyeda & Harmon, 2014), or BAMM 
(if shifts in speciation/extinction were of interest; Rabosky, 2014) 

could be used to select candidate clades. These clade‐level tests 
directly map variation in ecological and evolutionary structure onto 
each other. Within this framework, phylogeny is not a mere proxy 
for	 missing	 species	 trait	 data	 (Mace,	 Gittleman,	 &	 Purvis,	 2003;	
Srivastava, Cadotte, MacDonald, Marushia, & Mirotchnick, 2012; 
Swenson,	2013);	the	interaction	between	phylogenetic,	community	
composition and trait data provides new insight into how evolution‐
ary history is linked with ongoing ecological processes.

We suggest that the main source of novelty in our approach is the 
comparison of trait evolution among clades with different co‐occur‐
rence patterns. Additionally, our method of detecting ecological 
variation among clades is new, although alternative methods could 
be developed (e.g., extensions of phylogenetic fields approaches; 
Villalobos,	Rangel,	&	Diniz‐Filho,	2013).	Although	there	exist	various	
approaches capeable of measuring the patterns of ecophylogenetic 
dispersion of clades, our method is distinct from them. Firstly, and 
most importantly, it is a method for detecting variation in clade‐level 
compositions (cf. Ives & Helmus, 2011). Secondly, it compares mul‐
tiple	 sites	 (cf.	 Pearse	 et	 al.,	 2013)	 simultaneously	 because	 it	mea‐
sures β‐diversity (Figure 2 shows its application to two sites, but the 
summations are the same for more than two sites, and this is not a 
pairwise method). Thirdly, it does not seek to find clades that con‐
tribute to an overall pattern (c.g. Parra et al., 2010) but instead to 
identify contrasting patterns among clades. Finally, it models all spe‐
cies simultaneously and thus does not compare the individual drivers 
of presence/abundance of species, making it capable of detecting 
clade‐wide overdispersion (cf. Borregaard et al., 2014; Leibold et al., 
2010).

Given that our clade‐wise test of phylogenetic dispersion is 
new, so too are our definitions of overdispersion and clustering (cf. 
Cavender‐Bares et al., 2009; Webb, 2000; Webb et al., 2002). Here, 
we define a clustered clade not on the sole basis of presences within 
a single site, but instead on the pattern of presences and absences 
across multiple sites. For example, the clustered clade in Figure 2 
would not traditionally have been considered clustered in site B. To 
emphasize this distinction, we refer to our patterns of phylogenetic 
structure as β‐clustering and β‐overdispersion.

2.2 | Extensions of β‐diversity and significance tests

The	method	of	Legendre	and	De	Cáceres	(2013)	estimates	β‐diver‐
sity as the variance in the site‐by‐species data matrix after some 
appropriate transformation of the data. In this context, our β‐diver‐
sity partitioning extends the measurement of the individual contri‐
butions of species to total variance (sensu Legendre & De Cáceres, 
2013)	to	consider	the	contributions	of	clades.	This	allows	ecologists	
interested in comparing the contributions of species (SCBD indices 
of	Legendre	&	De	Cáceres,	2013)	and	sites	(LCBD	indices	of	Legendre	
&	 De	 Cáceres,	 2013)	 to	 β‐diversity patterns also to compare the 
contributions of clades. Although we focus solely on phylogenetic 
clades in this manuscript, we see no reason why this approach 
could not be applied to other (hierarchical) groups of species, such 
as those produced using functional traits (Petchey & Gaston, 2006) 
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and interactions between species (Poisot, Guéveneux‐Julien, Fortin, 
Gravel, & Legendre, 2017).

We suggest two ways to assess the significance of the departure 
of a clade from the expected variance (the clade‐level variances, σ2, 
in Figure 2). The first is an “exact” method based on the expectation 
of variances and is described in Supporting Information S1. The sec‐
ond method is based on the comparison of observed clade variances 
with null distributions of variances estimated via permutation (e.g., 
reshuffling identities of species across the phylogeny, reviewed by 
Gotelli, 2000; Miller, Farine, & Trisos, 2017). Ranking the observed 
variance of a clade among its null variances would reveal whether a 
clade has unusually high or low variance. The null model approach 
protects against cases where a clade whose members are entirely 
absent or omnipresent within a set of communities is highlighted 
as a clade with low variance (i.e., displaying no pattern or a trivial 
pattern).

2.3 | Simulations testing clade‐level variation in β‐
diversity

We used simulations to verify the ability of our method to detect 
variation in assemblage composition among clades. Below, we 
describe each parameter of the simulation, listing each parameter 
in italics and its values across the simulations (in parentheses). We 
simulated phylogenies of nspp species (either 50 or 100) following 
a pure‐birth Yule process (using geiger; Pennell et al., 2014). We 
then selected a focal clade containing either 5–10% or 10–20% of 
the species in the phylogeny and simulated a trait under Brownian 
motion (root set to zero, also using geiger; Pennell et al., 2014) across 
the entire phylogeny with a σ2 (0.5, 1, 1.5, 2, 2.5; �2

tree
), excluding the 

focal clade, for which traits were simulated with σ2 a multiple of 10 
greater or lesser than across the entire tree (×10−3, 10−2.75, 10−2.5, …, 
103; �2

clade
). We then simulated community assembly across nsite sites 

(either 50 or 100) based on the simulated trait values; in each site, 
we randomly selected a species and then drew community members 
based on their trait distance from the first randomly selected spe‐
cies. Species with absolute differences in simulated traits of at least 
one from the focal species were assigned a probability of member‐
ship of zero, and a species with a difference of |0.5| would have a 
probability of 0.5. We acknowledge that this mapping between trait 
difference and probability of co‐occurrence is arbitrary, but its sim‐
plicity makes it straightforward to consider the impact of a variety 
of parameter combinations and thus makes our results easier to gen‐
eralize. In related simulations, however, we saw little evidence that 
varying this relationship qualitatively affected the performance of 
our method.

These simulations represent a form of ecological assembly that is 
deliberately agnostic with regard to any particular ecological mech‐
anism (e.g., facilitation, competition, or environmental filtering), but, 
as illustration, they can be matched to the scenario of environmental 
filtering shown in Figure 1. With regard to patterns of co‐occurrence, 
a clade can evolve faster than the rest of the phylogeny (such that 
�
2

clade
 > �2

tree
 in our simulations), in which case we would expect close 

relatives to co‐occur rarely within a clade (a β‐overdispersed clade; 
see Figure 2). A clade can also evolve more slowly than the rest of 
the phylogeny (�2

clade
 < �2

tree
), in which case we would expect close 

relatives to co‐occur frequently (a β‐clustered clade; see Figure 2). 
Even in simulations where �2

clade
 = �2

tree
, we still evolved a separate 

trait for the focal clade, making this an extremely conservative test 
of our method because assembly was always based on a different 
trait in the focal clade.

We repeated simulations across all combinations of our param‐
eter values, and an additional 20 times for each combination with 
identical �2

tree
 and �2

clade
, resulting in a total of 2,160 simulations. For 

each simulation, we ranked the observed variance of the focal clade 
within 9,999 permutations (the observed value was included as part 
of the null distribution, totalling 10,000 values for each null distri‐
bution), swapping the identities of species on the phylogeny and 
keeping everything else constant. These rankings provide probabili‐
ties under the null hypothesis; values >0.975 suggest β‐clustering (at 
α5%) and values <0.025 suggest β‐overdispersion. The comparisons 
with the null distributions provide a test of whether our method can 
reliably detect β‐overdispersion (ranked in the bottom 2.5% when 
�
2

clade
 > �2

tree
), β‐clustering (ranked in the top 2.5% when �2

clade
 < �2

tree
),  

and whether it is vulnerable to false positives (ranked in the top or 
bottom 5% when �2

clade
 = �2

tree
; a type I error). Note that clades are 

nested hierarchically, hence they are not necessarily independent. 
Although we make reference to this in the Discussion, we do not 
conduct simulations to investigate this further, because it is a feature 
that has been discussed at length in the literature (e.g., Alfaro et al., 
2009). We draw the reader's attention to the fact that we conducted 
these simulations over a range of parameter values, with the explicit 
aim of finding the conditions in which our method performs well and 
where it underperforms (i.e., across the range of parameters in our 
simulations).

2.4 | Empirical example: Rodent communities

There are two steps to our empirical analysis. In our first step, we 
examine the β‐diversity of all lineages and use these calculations to 
detect the clades that most strongly depart from the overall β‐diver‐
sity patterns. In our second step, we fit a model of trait evolution 
across the complete phylogeny to assess whether the evolution of 
those same clades differs from that of the rest of the phylogeny. 
Our aim is to evaluate whether clades with different β‐diversity in 
the present show evidence of different trait evolution in the past. 
Above, we argued that this forms a strong test of the imprint of past 
evolution on present‐day ecology, because it sets up explicit hypoth‐
eses across different datasets.

To provide an empirical example of our approach, we present an 
analysis of a rodent dataset. We took data from a mammal commu‐
nity dataset (Thibault et al., 2011), phylogeny [Bininda‐Emonds et al. 
(2007); updated by Fritz et al. (2009)] and body mass from a large 
database for mammal traits (Jones et al., 2009). This community 
dataset covers a number of continents and community types, and 
body mass is known to be a good proxy for ecological interactions 
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in rodents (see Thibault et al., 2011). Excluding species not covered 
in all three datasets (community, phylogeny, and traits) left us with 
abundance	 information	 for	 483	 species	 across	 939	 sites	 (assem‐
blages) worldwide. Following the method described above, we iden‐
tified the β‐diversity of clades and assessed statistical significance 
by comparison with 9,999 species‐identity randomizations (Kembel 
et al., 2010).

We fitted Brownian motion and Ornstein–Uhlenbeck (OU) 
models using OUwie (Beaulieu et al., 2012) to the (log10‐trans‐
formed) body mass data. We contrasted models with shared and 
varying parameters for our clades identified as having signifi‐
cantly different ecological β‐diversity (see above); support for 
Brownian and OU models with different parameters for these 
clades would suggest a link between ecological trait‐based 
assembly and trait evolution. OUwie requires the user to spec‐
ify which clades are to be tested for differing rates of trait evo‐
lution, and our β‐diversity analyses (see above) provided this 
information. Where hierarchically nested clades were identified, 
we selected the oldest clade because this is more conservative 
(the “cascade” problem; see Discussion), and parameter esti‐
mation is more accurate in larger clades (Beaulieu et al., 2012). 
In Supporting Information S1, we present results of a series of 
permutation tests that we performed to ensure that our evolu‐
tionary model fitting was not biased towards finding support for 
particular evolutionary hypotheses.

3  | RESULTS

Results	from	our	simulations	are	presented	in	Table	1	and	Figure	3	
and show that our method detects variation in phylogenetic struc‐
ture among clades powerfully and reliably. Our method has strong 
statistical power to detect β‐clustering (higher variance within a 
clade;	the	red	line	in	Figure	3)	and	somewhat	lower	power	to	detect	
β‐overdispersion (lower variance within a clade; the blue line in 
Figure	3).	As	shown	in	Table	1,	however,	greater	sampling	modifies	
this; sampling 100 species across 100 sites additively increases the 
ranking of the observed variance by 10% (i.e., from the 0.85 quan‐
tile to the 0.95) in comparison with 50 species across 50 sites. Our 
method shows a tendency to suggest spurious support for β‐clus‐
tering (i.e., overall inflated type I error rates in simulations of 24% 
at two‐tailed α5%;	see	Figure	3),	but	again	this	varies	depending	on	
the context. As shown in Table 1, focal clades that make up large 
proportions of the total data are more likely to be identified errone‐
ously as β‐clustered: if the focal clade contains 10 of the 100 spe‐
cies in a system (nsites = 50, σ2 = 1) the predicted quantile is 0.77, 
but if the clade contains 20 species (i.e., 20% of the species) that 
prediction increases to 0.95. Neither of these expected quantiles is 
statistically significant at α5% (i.e., they are both <0.975); therefore, 
this is not indicative of the method having problems with type I error 
rates. As we highlighted above, we explored a wide parameter space 
in our simulations to highlight where our method performs well and 
where	it	performs	poorly.	Thus,	the	raw	results	plotted	in	Figure	3	

do not necessarily reflect our average expectations for performance 
of our method.

TA B L E  1   Simulations showing how method performance varies 
as a function of phylogeny and clade size, rate of trait evolution, 
and effect size

 Estimate SE z p‐value

(a) β‐Clustering (higher variance)

Intercept (nspp = nsites = 50) −0.5964 0.4288 −1.39 0.1649

log10

(

�
2
tree

�
2
clade

)

0.8362 0.1543 5.42 <0.0001

nclade 0.4772 0.0829 5.76 <0.0001

�
2
tree

0.1238 0.2099 0.59 0.5555

Contrast: nspp = 100 −0.3004 0.3862 −0.78 0.4370

Contrast: nsites = 100 0.3508 0.2383 1.47 0.1416

(b) β‐Overdispersion (lower variance)

Intercept (nspp = nsites = 50) 1.0324 0.2851 3.62 0.0003

log10

(

�
2
clade

�
2
tree

)

−2.2238 0.1565 −14.21 <0.0001

nclade −0.0149 0.0257 −0.58 0.5627

�
2
tree

−0.1043 0.1488 −0.70 0.4836

Contrast: nspp = 100 −0.0686 0.2123 −0.32 0.7467

Contrast: nsites = 100 0.0082 0.1665 0.05 0.9609

(c) Null (no difference in variance)

Intercept (nspp = nsites = 50) 0.7030 0.0292 24.10 <0.0001

nclade 0.0153 0.0029 5.19 <0.0001

�
2
tree

−0.0439 0.0168 −2.61 0.0092

Contrast: nspp = 100 −0.0021 0.0237 −0.09 0.9298

Contrast: nsites = 100 −0.0173 0.0189 −0.92 0.3599

Note: Each sub‐table shows the results of modelling the observed quantiles 
of focal clades' variances in simulations of β‐clustering (higher variance; a), 
overdispersion (lower variance; b) and random assembly (null, no difference; 
c) across the simulations. At an α5%, a predicted quantile of 0.025 or 0.975 
would provide statistical support for the focal clade being β‐clustered or 
overdispersed, respectively. Generalized linear models with a quasi‐bino‐
mial error structure were used to account for non‐normality of errors in 
the β‐clustering (a) and overdispersion (b) models; therefore, coefficients 
are reported on the logit scale. In (a), a greater statistical power to detect β‐
clustering is most strongly associated with the number of species in the focal 
clade and the difference in evolutionary rate between the focal clade and 
the rest of the phylogeny (deviance: null529 = 105.98 and residual524 = 67.07; 
estimated	dispersion	=	0.30).	In	(b),	a	greater	statistical	power	to	detect	over‐
dispersion is most strongly associated with the difference in evolutionary 
rate between the focal clade and the rest of the phylogeny and the number 
of sites sampled (deviance: null531	=	262.32	and	residual526	=	138.95;	
estimated	dispersion	=	0.34).	In	(c),	there	is	a	slight	tendency	for	larger	focal	
clades to appear more β‐clustered and for faster‐evolving traits to drive 
β‐overdispersion, even when focal clades evolve under the same model 
as the rest of the phylogeny (F4,919 = 11.99; r2 = 4.96%; p < 0.0001). We 
recommend that more attention should be paid to coefficient sizes than to 
statistical significance in these models, because statistical significance can be 
driven by sample size, and these are the results of simulations. All simulation 
parameters are described in the main text in detail, but briefly they are: nspp, 
number of species in phylogeny; nclade, number of species in focal clade; 
nsites, number of sites; σ2tree, overall rate of trait evolution; σ2clade, rate of trait 
evolution in focal clade; β‐overdispersion and β‐clustering, phylogenetic 
overdispersion and clustering in clades across sites.
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In our analyses of the rodent dataset, we focused on two clades 
(marked on Figure 4): (a) the Sciuridae (squirrels) and their sister fam‐
ily the Gliridae (dormice); and (b) the Echimyidae (a Neotropical rodent 
family) and some close relatives within what is sometimes called the 
Caviomorpha (e.g., South American rodents, such as the guinea pig). We 
refer to these two groups as the “squirrels” and “cavies”, respectively. 
Both these clades were identified as having low variance (phylogenetic 
β‐overdispersion). Note that our method also detected clades indicative 
of β‐clustering (high variance). Given that the low‐variance clades are 
nested within these high‐variance clades, we suggest that they might 
reflect important eco‐evolutionary shifts. The detection of both phylo‐
genetic β‐clustering and β‐overdispersion demonstrates the ability of 
our method to reveal both types of structure in empirical datasets.

We found that the squirrel and cavi clades were also character‐
ized by different rates of trait evolution (Table 2). The top four models, 
with δAIC < 5 (i.e., with fewer than 5 AIC units difference between 
themselves and the model with the lowest AIC), all supported different 
rates of body mass evolution for these two clades in comparison to the 
rest of the phylogeny. The alternative hypothesis, that trait evolution 
is constant across the squirrels, cavies, and the rest of the mammal 
phylogeny, was the fifth‐ranked model, with a δAIC of 14.9, and thus 
has little support (Burnham & Anderson, 2002). The lowest‐AIC model 
favoured a simple three‐rate Brownian motion model, in which the 
rate of body mass evolution in squirrel and cavi clades is significantly 
slower, most notably in the squirrel clade. In Supporting Information 
S1, we present additional simulations that test whether our findings 
are a result of a bias in our phylogenetic or trait data. These simula‐
tions reveal that, if anything, our data are biased against the pattern 
that we observe, and thus give greater strength to our findings.

4  | DISCUSSION

We have presented a new method for identifying clades (groups) of 
species whose co‐occurrences differ from other species across a set 

of communities. Simulating phylogenies and trait‐based community 
assembly processes of species, we demonstrated that the method 
reliably detects shifts in the variance of species' occupancies, identi‐
fying different phylogenetic structures. Most importantly, however, 
we have also shown, using empirical data, that the tempo of trait 
evolution shifts within clades associated with differing present‐day 
assemblage compositions. To the best of our knowledge, this is the 
first test of the hypothesis that the evolution of traits within a clade 
is associated with clade co‐occurrence patterns. By linking variation 
among co‐occurrence patterns of clades with independent evidence 
for variation in the rates of trait evolution of those clades, we have 
found evidence for an interaction between evolutionary and ecolog‐
ical information. We argue that our approach, combining evidence 
of both ecological and evolutionary patterns, has more power to 
answer questions about the underlying eco‐evolutionary drivers of 
community assembly than methods focusing solely on phylogenetic 
or trait data.

4.1 | Variation in β‐diversity in community 
phylogenetics

The use of phylogeny as a proxy for ecological process has been 
criticised. It has been argued that there is little need for phylogeny 
if	we	already	have	functional	traits	(Swenson,	2013),	and	phyloge‐
netic pattern rarely maps directly onto ecological process (a cri‐
tique that applies equally to functional traits; Mayfield & Levine, 
2010). However, we have suggested one central premise of com‐
munity phylogenetics is that there is an association between the 
evolution of species' traits and the phylogenetic structure of the 
communities in which they are found; for example, that competi‐
tion among species might drive character displacement, such that 
co‐occurring species differ in their functional traits. Many commu‐
nity phylogenetic studies, like ours, examine the tempo and mode 
of trait evolution within their system (e.g., Kraft, Cornwell, Webb, 
& Ackerly, 2007; Swenson et al., 2006), but few have asked how 

TA B L E  2   Results of log(body mass) evolutionary modelling

θ0 θc θs σ0 σc σs α0 αc αs δAIC

– – – 53 32 1.12 – – – 0.00

2.14 ± 0.42 5.38	±	1.53 2.00	±	1.39 52 30 1.12 0.00 1.13

2.14 ± 0.42 5.38	±	720.76 2.05 ± 0.52 51 0.00 0.00 49 1.54

2.15 ± 0.42 352.83	±	159.69 −15.44	±	130.72 52 30 1.1 0.00 0.00 0.00 5.00

– – – 58 – – – 14.90

2.17 ± 0.44 58 58 16.90

2.14 ± 0.44 5.32	±	1.70 1.96 ± 1.25 57 57 17.00

Note: Above are the θ (optimum), σ (rate) and α (rate of return to optimum) estimates, along with Akaike information criterion (AIC) and δAIC (differ‐
ence in AIC between a given model and the model with the lowest AIC) values, for all trait evolution models. Each row represents a different model; 
a dash is used to indicate when a parameter is not fitted in a model, and where only a single estimate for a parameter is given (e.g., θ0), only a single 
parameter was fitted across the whole phylogeny. Thus, rows one and four represent Brownian motion (models with no optima), and all other rows 
are variants of Ornstein–Uhlenbeck models. In subscripts of parameters, “c” refers to the “cavi” clade, “s” to the “squirrel” clade and “0” to the remain‐
der of the phylogeny. See main text and Figure 4 for a description of the species making up each clade. The α and σ estimates have been multiplied 
by 10−4 for brevity of presentation. The four most likely models according to δAIC all contain clade‐level variation, strongly supporting different pat‐
terns of evolution in the clades highlighted by the variation in β‐diversity among clades (see main text).
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trait evolution and community phylogenetic structure are linked 
and feed back into each other. Simple measures of phylogenetic 
signal assume complete, or at least unbiased, taxon sampling 
(Blomberg,	 Garland,	 &	 Ives,	 2003;	 Pagel,	 1999);	 therefore,	 eco‐
phylogenetic structure, which, by definition, implies non‐random 
taxonomic representation, might mask underlying (true) patterns 
of trait evolution. Our approach offers a coherent framework in 
which to test for links between the macroevolutionary dynam‐
ics of clades and their present‐day community compositions. We 
acknowledge that our study does not sample or examine all rodent 
species and that other processes undoubtedly influenced body 
size evolution. Nonetheless, we were able to detect a significant 
association between trait evolution and the co‐occurrences of 
species, and this strong test in independent data suggests that 
incomplete taxon sampling is unlikely to have biased our findings.

Despite conceptual issues, the utility of phylogeny in predicting 
species	 traits	 (Guénard,	 Legendre,	 &	 Peres‐Neto,	 2013),	 Janzen–
Connell effects (Gilbert & Webb, 2007), invasion success (Strauss, 
Webb, & Salamin, 2006), and ecosystem function (Cadotte, Albert, & 
Walker,	2013)	suggests	that	phylogeny	will	remain	a	useful	(Tucker,	
Davies, Cadotte, & Pearse, 2018), if imperfect (Cadotte et al., 2017; 
Mazel et al., 2018), proxy in ecology for some time. Nevertheless, we 
suggest that phylogeny is more than merely a surrogate for unmea‐
sured traits and that it provides us with the ability to link patterns 
and processes in ecology and evolution. Here, we map patterns in 
separate ecological assemblage and species trait datasets onto each 
other, linking them by treating phylogeny in and of itself as data in 
two separate analyses. Our approach does not invoke niche conser‐
vatism, but instead seeks to understand how traits have evolved and 
can explain patterns of species co‐occurrences across local commu‐
nities (although other spatial units, such as biogeographical zones, 
could equally be considered). As such, there is no requirement that 
closely related species are more ecologically similar or compete 
more strongly, ecophylogenetic assumptions that have been heav‐
ily criticised (Cahill, Kembel, Lamb, & Keddy, 2008; Mayfield & 
Levine, 2010). Our results simply support a link between the eco‐
logical interactions (as measured by β‐diversity) of clades and the 
evolutionary history of those clades. The evolutionary patterns we 
observe come from interactions, or the absence of interactions, that 
occurred over millions of years, potentially in assemblages very dif‐
ferent from those we see today. Our analyses indicate that these 
past interactions have left an imprint on present‐day community 
assembly and imply that future evolutionary trajectories might be 
influenced by present‐day species interactions.

In our analysis of small mammal assemblages, we showed that 
the cavi and squirrel clades, whose members tended not to co‐occur 
(their clade variances were low), have lower rates of trait evolution 
(Table 2). Rodent body size is a driver of ecological competition 
(Bowers & Brown, 1982; Ernest, 2005), and our results are consis‐
tent with slower evolution of body size being a driver of variation 
in the present‐day composition of our small‐mammal assemblages. 
The clades we have focused on are relatively small and young (see 
Figure 4), and previous work (Ackerly et al., 2006; Silvertown et al., 

2006) has suggested that traits that evolve early and late in the evo‐
lutionary history of a clade may affect ecological assembly in differ‐
ent ways. Our results imply that it is not only the timing of body size 
evolution that may be important, but also its rate of evolution. We 
do not yet know what caused this slow‐down in the cavi and squir‐
rel clades and whether these associations are driven by changes in 
diversification rate (which can be confounded with trait evolution; 
FitzJohn, 2010). There is, however, some evidence that younger 
clades tend to co‐occur more than older ones (Parmentier et al., 
2014;	Pearse	et	al.,	2013).	We	caution,	however,	that	our	results	are	
correlational. Although the greater α parameters of our OU mod‐
els might be consistent with strong stabilizing selection (Uyeda & 
Harmon, 2014; but see Pearse et al., 2018), as with any historical 
study of biogeography we cannot definitively rule out some other 
process driving the patterns we have detected. In particular, we do 
not consider the impact of (historical) dispersal limitation on species 
distributions.

4.2 | Method performance

We show that our method has good statistical power and compares 
favourably with the widely used NRI (often called SESMPD) and NTI 
(SESMNTD) metrics of phylogenetic community structure, for which 
statistical	 power	 can	 be	 (in	 some	 circumstances)	 ≤20%	 (Kraft	 et	
al.,	 2007)	 and	 ≤60%	 (Kembel,	 2009).	 In	 some	 cases,	 however,	we	
observed inflated type I error rates relative to these other methods 
(see below for discussion). In many ways, these are unfair compari‐
sons, given that our approach makes use of information from many 
sites (although the number of species with phylogenetic structure 
is comparable), which we would argue is a strength of our method. 
Phylogenetic generalized linear mixed models (Ives & Helmus, 2011) 
also use many sites at once, and our results compare favourably with 
this	approach	(87%	detection	rate	for	phylogenetic	clustering,	53%	
for overdispersion, but with fewer sites than in our study). It is impor‐
tant to note, however, that these alternative methods are intended 
to answer different questions, and none of them was designed to 
measure what we term β‐dispersion. We make these comparisons 
simply to demonstrate that our approach performs reasonably in 
comparison to others, even in simulations where the number of spe‐
cies in a focal clade could be as low as five and the datasets them‐
selves small (50 species or sites).

Our simulations show that, in cases where the focal clade makes 
up a large proportion of the species under study (in our simulations, 
>20%), type I error rates could be inflated. We do not feel that this is 
of concern, for several reasons. Firstly, within our framework, clades 
must be detected as significant in terms of both their present‐day co‐
occurrence patterns and their historical trait evolution. As such, spu‐
rious identification of structured clades would tend to weaken any 
association between their ecology and evolution. Secondly, it is rare 
that ecological assemblages genuinely have a random structure; the 
norm is for them to display some degree of phylogenetic structure 
(Vamosi et al., 2009). We suggest that most biologists might be more 
interested in detecting the difference between β‐overdispersion 
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and β‐clustering, not β‐overdispersion or β‐clustering versus ran‐
dom assembly. This is the case in our empirical example, where we 
examined clades that were β‐overdispersed whose sisters were β‐
clustered. We also note that type I error rates can be even higher 
for other, more commonly used, metrics of phylogenetic structure. 
For example, SESMPD, when estimated by taxa‐shuffling (“richness”) 
null distributions, such as we use here, can have type I error rates of 
c. 50% (Kembel, 2009; Miller et al., 2017).

4.3 | Potential methodological extensions

Like similar approaches (Borregaard et al., 2014; Parra et al., 2010; 
Pearse	et	al.,	2013),	our	method	does	not	directly	consider	nest‐
edness (see also Ulrich, Almeida‐Neto, & Gotelli, 2009), where 
the significance of a clade “cascades” up into higher super‐sets of 
hierarchical groupings (cf. the “trickle‐down” problem in diversifi‐
cation analysis; Moore, Chan, & Donoghue, 2004; Purvis, Nee, & 
Harvey, 1995). One possible extension would be to compare each 
clade with the summed clades subtending it (not, as in the method 
we are presenting, the species within it). As such, each clade in a 
fully resolved phylogeny would have its variance compared with 
the variances of the two clades subtending it (our Supporting 
Information S2 and pez code permits this). Significance could be 
tested through null permutation, as done in the present study, or 
potentially through nested ANOVAs. However, we suggest that 
this cascading is not so much a limitation but rather a matter of 
interpretation; that a group is β‐clustered because it contains other 
β‐clustered groups does not strike us as problematic. A balanced 
approach could limit the study to particular clades on the basis of 
age or other variables of interest, or to hold problematic clades 
constant in null randomizations.

We also note that our approach for identifying ecological pat‐
terns among clades does not incorporate phylogenetic branch 
lengths. Branch lengths inform models of trait evolution, and so for 
our purposes of mapping independent evolutionary pattern onto 
ecological pattern we consider it undesirable to have branch lengths 
play a role in both aspects. For those interested in incorporating 
branch lengths in other situations, a simple approach would be to 
multiply each species' abundance by its evolutionary distinctiveness 
(Isaac, Turvey, Collen, Waterman, & Baillie, 2007) or another mea‐
sure of its phylogenetic uniqueness (e.g., Cadotte et al., 2010; Hipp 
et al., 2018; Redding & Mooers, 2006). However, depending on the 
question at hand this might “average out” the signal of interest. For 
example, if community composition varies with phylogenetic scale 
(Cavender‐Bares et al., 2009; Vamosi et al., 2009; Webb et al., 2002), 
it might be better to model the standard effect size (SES; sensu 
Kembel, 2009) of node variance as a function of node age (but see 
Pearse	et	al.,	2013).

4.4 | Conclusion

We suggest that the identification of clades with different co‐
occurrence patterns is of at least as much interest as the summary 

statistics that have been used frequently to describe overall phy‐
logenetic assemblage structure but which only map poorly to eco‐
logical process. Furthermore, we see the establishment of links 
between assemblage structure and the evolution of species traits 
as a central goal of community phylogenetics that has rarely been 
achieved. As a field, community phylogenetics is well placed to take 
advantage of recent advances in trait evolution (Nuismer & Harmon, 
2015;	Pennell	&	Harmon,	2013)	and	ecophylogenetic	theory	(Pigot	
& Etienne, 2015). We have outlined here an approach to test directly 
the links between the processes of community assembly and the 
evolution of species traits. As we gain a firmer grasp of the phyloge‐
netic structure of assemblages, we can begin to model it as data, not 
merely measure its pattern.
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