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ABSTRACT

Aim Variation partitioning based on canonical analysis is the most commonly
used analysis to investigate community patterns according to environmental and
spatial predictors. Ecologists use this method in order to understand the pure
contribution of the environment independent of space, and vice versa, as well as to
control for inflated type I error in assessing the environmental component under
spatial autocorrelation. Our goal is to use numerical simulations to compare how
different spatial predictors and model selection procedures perform in assessing the
importance of the spatial component and in controlling for type I error while
testing environmental predictors.

Innovation We determine for the first time how the ability of commonly used
(polynomial regressors) and novel methods based on eigenvector maps compare in
the realm of spatial variation partitioning. We introduce a novel forward selection
procedure to select spatial regressors for community analysis. Finally, we point out
a number of issues that have not been previously considered about the joint
explained variation between environment and space, which should be taken into
account when reporting and testing the unique contributions of environment and
space in patterning ecological communities.

Main conclusions In tests of species-environment relationships, spatial autocor-
relation is known to inflate the level of type I error and make the tests of signifi-
cance invalid. First, one must determine if the spatial component is significant
using all spatial predictors (Moran’s eigenvector maps). If it is, consider a model
selection for the set of spatial predictors (an individual-species forward selection
procedure is to be preferred) and use the environmental and selected spatial pre-
dictors in a partial regression or partial canonical analysis scheme. This is an
effective way of controlling for type I error in such tests. Polynomial regressors do
not provide tests with a correct level of type I error.
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INTRODUCTION

A major interest in ecology is to understand how factors such as

local environment and landscape heterogeneity contribute to

how regional pools of potential colonizer species are sorted into

local communities across space. At least two challenges are

encountered when studying community structure using distri-

butional data. The first one is to understand how the species

themselves are distributed in space. Due to spatially contagious

processes, such as dispersal, differential mortality, social organi-

zation and species interactions, individual species tend to be

spatially organized in space (Keitt et al., 2002; Cottenie, 2005).

Moreover, the environmental processes responsible for structur-

ing communities may also be spatially organized, which in turn

imposes a spatial structure, called induced spatial dependence

(see Table 1 for definition), to communities. Here the challenge

is to analyse the spatial component of communities in order to

obtain clues regarding their origin and at which scales they act

(e.g. Olden et al., 2001; Borcard et al., 2004; Diniz-Filho & Bini,

2005).
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The second challenge is analytical in the sense that statistical

tests may overestimate the importance of underlying ecological

drivers, such as environmental factors (Legendre, 1993; Dale &

Fortin, 2002), generating apparent species–environment con-

cordance (Bivand, 1980; Legendre et al., 2002; Dormann et al.,

2007). Here, the challenge is to filter out (control for) the varia-

tion due to spatial structures so that statistical tests may be

applied properly under the assumption of independence (Grif-

fith & Peres-Neto, 2006; Dormann et al., 2007; Hawkins et al.,

2007). Taken together, mathematical representations of spatial

relationships among the study sites may be seen as predictors

when the goal is to understand how communities are organized

in space (‘spatial legacy’), or as covariables when the goal is to

filter out spatial variation (‘spatial nuisance’; see Table 1 for

definitions). Note that throughout this paper we refer to spatial

autocorrelation only to the spatial structure in species distribu-

tions that are the result of intrinsic population or community

dynamics (following Fortin & Dale, 2005; see Table 1 for defini-

tion) and not by induced spatial dependence. The terms spatial

structure, spatial dependence and spatial correlation, however,

are used interchangeably (see Table 1).

Canonical analyses such as redundancy analysis (RDA; Rao,

1964) and canonical correspondence analysis (CCA; ter Braak,

1986) provide the means of conducting direct explanatory

analyses in which ecological communities can be studied with

respect to their relationships with ecological drivers. In the

realm of canonical analysis, variation partitioning (Borcard

et al., 1992; Diniz-Filho & Bini, 2005; Legendre et al., 2005;

Peres-Neto et al., 2006) is routinely used in ecological analysis

to: (1) estimate the contribution of spatial variation in structur-

ing communities (spatial legacy), and (2) filter out the effects of

spatial correlation when testing for the importance of ecological

factors such as environmental predictors (spatial nuisance).

There are different ways of controlling for spatial correlation in

single-species models (see Dormann et al., 2007, for a review).

However, for the case of multi-species data, variation partition-

ing is the most commonly used technique in community analy-

ses. Despite its broad use, to date there has been no attempt to

assess whether the variation partitioning technique does offer a

solution to the problem of spatial correlation, or how the dif-

ferent types of spatial predictors that can be used in the tech-

nique compare. With this shortcoming in mind, the goal of this

study is twofold: (1) compare the success of different spatial

techniques in estimating the spatial component of ecological

communities, and (2) assess whether these techniques are suc-

cessful in removing the statistical bias due to spatial correlation

when testing for the importance of environmental drivers under

variation partitioning. We also discuss several issues revolving

around spatial correlation and community analysis, offering a

viewpoint that should be useful when exploring and interpret-

ing patterns in ecological communities produced by environ-

mental and spatial variation.

INNOVATION

Methods

Variation partitioning and spatial predictors

Canonical analyses such as RDA and CCA are methods that

extend multiple linear regression, which has a single response y

and multiple predictors x (e.g. several environmental predic-

tors), to multivariate linear regression involving multiple

response variables Y (e.g. several species) and a common matrix

of predictors X. Variation partitioning for RDA or CCA using

one set of response variables (Y, species) and two sets of predic-

tors (X, environment and W, space) is straightforward (Fig. 1;

see Anderson & Gribble, 1998 for an extension to multiple

matrices).

When both species and environment are spatially structured

but independently distributed (i.e. uncorrelated), tests solely

based on the environmental component (i.e. component [ab] in

Fig. 1) are biased (they have type I error rates that exceed the

significance level: Dutilleul, 1993; Legendre et al., 2002). If only

the species data are spatially structured and the environment

not, or vice versa, then tests are not biased (Dutilleul, 1993). In

Table 1 Definitions regarding the spatial terminology used in the paper.

Terminology Definition

Spatial structure, spatial dependence, spatial correlation

or spatial signature (used interchangeably throughout the text)

Any non-random organization across space in either species distributions (or

their communities) or environmental processes

Spatial autocorrelation (or non-induced spatial dependence) Spatial structure due to the dynamics of the species (or their communities)

themselves (e.g. via dispersal)

Induced spatial dependence Spatial structure in species distributions (or their communities) indirectly

induced by the environment and not by autocorrelation

Spatial legacy Spatial structure in species distributions generated by spatial autocorrelation or

induced by exogenous processes (e.g. environmental factors). This structure

pertains to the variation found in fraction [c] (see Fig. 1)

Spatial nuisance The common spatial structure in species distributions and environmental

processes that increases type I errors and can potentially affect model

estimation. This structure pertains to the variation found in fraction [b] (see

Fig. 1 and the Discussion section for more details).

Spatial structure in ecological communities
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the presence of spatial correlation, observations are not inde-

pendent and therefore the effective number of degrees of

freedom in the sample is smaller than the one expected based on

the number of observations used in the analysis, thus generating

confidence limits that are spuriously narrower. This makes tests

less conservative by increasing type I errors and may lead to

incorrect conclusions about the effect of the environment on

species. In order words, the effective type I error is greater than

the significance level (or alpha-level) of the test, hence generat-

ing ‘apparent species–environment concordance’. Variation par-

titioning offers a natural way of not only dealing with this

problem but also assessing the importance of spatial correlation

in community structure. By considering the spatial and environ-

mental predictors together, one aims at discounting the spatial

variation in the environmental data so that the test based on the

corrected fraction (i.e. test of fraction [a]) has a type I error

equal to the pre-established significance level alpha. Moreover,

one can assess the amount of variation that is due to space alone

independently of the environmental factors considered (but see

discussion section) by testing fraction [c] (i.e. spatial variation

independent of space; see Fig. 1).

Two methods for generating spatial predictors to compose

matrix W were considered here due to their extensive use in

variation partitioning applied to ecological communities. The

most common approach is to generate trend surface polynomi-

als based on the geographic coordinates of the study sites (e.g.

Gittins, 1985; Wartenberg, 1985; Borcard et al., 1992; Legendre

& Legendre, 1998; Lichstein et al., 2002; and references therein).

This method has been criticized because the spatial structures

generated are rather simple and global, such as a gradient, a

single wave or a saddle (Legendre & Legendre, 1998). We gen-

erated spatial predictors based on a third-degree polynomial

that were orthogonalized using a principal component decom-

position. Note that the orthogonalization does not affect poly-

nomial performance but increases the computational speed of

model selection procedures (see Model Selection section). The

other approach was based on an eigenvector decomposition of

connectivity matrices, namely Moran’s eigenvector maps

(MEM) by Dray et al. (2006) (see Griffith & Peres-Neto, 2006,

for a review and description of other related methods). MEMs

are relatively new but their use is becoming quite common, even

in variation partitioning (e.g. Diniz-Filho & Bini, 2005; Leg-

endre et al., 2009; Yamanaka et al., 2009). Spatial eigenvector

mapping is based on the idea that the spatial relationships

among data points can be translated into explanatory variables,

which capture spatial effects at different spatial scales. Eigenvec-

tors from these connectivity matrices represent the decomposi-

tions of Moran’s I statistic into all mutually orthogonal maps

that can be generated from a given connectivity matrix (Griffith

& Peres-Neto, 2006). There are several possibilities for building

connectivity matrices and we followed the implementation sug-

gested in Borcard & Legendre (2002) based on the maximum

distance that keeps all sites linked, which is calculated on the

basis of a minimum spanning tree. Eigenvectors having associ-

ated eigenvalues that are positive represent positive spatial cor-

relation, whereas eigenvectors having negative eigenvalues

represent negative spatial correlation. MEMs are generated as

linearly independent by default and hence no further orthogo-

nalization is required, as in the case of polynomial regressors. A

more complete description of MEMs and other related methods

(e.g. PCNM; Borcard & Legendre, 2002) is offered in the addi-

tional Supporting Information (Appendix S1).

Data simulation and comparisons

The model for simulating species distributions based on spatial

and environmental predictors followed Legendre et al. (2002,

2005):

S SA Ej j j j= + +β e (1)

where Sj is a (10,000-site ¥ 1) vector representing the distribu-

tion of the jth species, SAj is a (10,000-site ¥ 1) vector containing

N(0,1) deviates that are conditioned to be spatially autocorre-

lated, Ej is a (10,000-site ¥ 1 environmental variable) matrix

containing N(0,1) deviates that in certain simulation scenarios

were also conditioned to be spatially autocorrelated, b is the

strength of the environmental component, and ej is a (10,000-

site ¥ 1) vector containing N(0,1) deviates for species j. For

instance, when both the species and environmental data were

generated independently (b = 0) and both were spatially condi-

tioned we used these data to estimate how well the different

spatial predictors performed in controlling inflated type I error

rates in tests of the importance of the environmental drivers.

Spatial structure in Ej and SAj was induced by a conditional

sequential Gaussian algorithm (implemented as in Deutsch &

Journel, 1992) to generate spatial realizations according to a

spherical variogram model with a specified range (arbitrary grid

units) on a 100 ¥ 100 lattice, hence 10,000 sites. In all simula-

tions, S contained 10 species (i.e. S is a 10,000 ¥ 10 matrix). The

first five species (columns in S) were simulated always without

spatial correlation and environmental control (b = 0; species

were just normally distributed N(0,1) variables), whereas the

remaining species were generated with or without an environ-

(environment)X

W (space)

[a] [b] [c] [d]

Unexplained

variation

variation in Y =

Figure 1 Variation partitioning scheme of a response variable Y
between two sets of predictors, X (e.g. environmental factors) and
W (e.g. spatial predictors). The total variation in Y is partitioned
into seven components as follows: (1) calculate fraction [a + b +
c] based on both sets of predictor matrices [X,W] ([a + b + c] =
R2

Y|[X,W]); (2) calculate fraction [a + b] based on matrix X ([a + b]
= R2

Y|X); (3) calculate fraction [b + c] based on matrix W ([b + c]
= R2

Y|W); (4) the unique fraction of variation explained by X:
[a] = [a + b + c] - [b + c]; (5) the unique fraction of variation
explained by W: [c] = [a + b + c] - [a + b]; (6) the common
fraction of variation shared by X and W: [b] = [a + b + c] - [a] -
[c]; and (7) the residual fraction of variation not explained by X
and W: [d] = 1 - [a + b + c]. The fractions are actually estimated
by adjusted R2 statistics (Peres-Neto et al., 2006).

P. R. Peres-Neto and P. Legendre
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mental control or spatial correlation depending on the simula-

tion scenario (see Table 2). For a given variogram range, all

species were generated with the same range; however, each SA
vector contained an independent realization based on separate

runs of the conditional sequential Gaussian algorithm. Each

species generated with an environmental control was related to

a single environmental variable (i.e. five environmentally con-

trolled species in S and five environmental variables in E). Sce-

narios were established by manipulating b (0, 0.25 or 0.50) and

the strength of the spatial correlation component in the species’

SA vector and environmental data (i.e. variogram range as 15,

30, 50 or 80). Table 2 presents the different scenarios and what

they represent in terms of assessment (i.e. type I error versus

statistical power of the test). For each of these scenarios, we

produced 1000 sample data sets and comparisons between

methods were performed on the basis of their type I error and

power rates. Type I error rates were estimated as the fraction of

tests (over 1000 sample data sets) that erroneously rejected the

null hypothesis when was set as true (i.e. when b or SA was set

to zero; see Table 2); whereas power rates were estimated as the

fraction of tests (over 1000 sample data sets) that correctly

rejected the null hypothesis when was set as false (i.e. when b or

SA was set as different from zero; see Table 2). In all cases, an

alpha of 0.05 was applied. Also, we only present results for the

cases where both species and environment present similar

ranges. Results based on different ranges in species and environ-

ment provided similar results in terms of contrast of the two

spatial methods and will be not presented for brevity.

As generated above, S contains normally distributed data.

However, ecologists are most interested in the case where

response variables are counts of species abundances or presence/

absence data, which are generally overdispersed and zero-

inflated (Martin et al., 2005). In order to generate discrete and

zero-inflated data, we transformed a simulated population

matrix S as follows: S′ = [s′ij] = exp(1.5Sstd). Once generated,

matrix S was first standardized (zero mean and unit variance)

into Sstd so that a standard deviation of 1.5 could be then forced.

The values s′ij were then rounded to the lower integer to generate

S′, which contained roughly 50% zeros; standard deviations dif-

ferent from 1.5 would generate different numbers of zeros in S′.
In addition, we also considered the case of presence/absence

species data matrices where abundance values larger than zero in

S′ were transformed to 1s.

From each species matrix S′ (10,000 ¥ 10) and environmental

matrix E (10,000 ¥ 5), we sampled 100 observations using a

square grid design with 10 ¥ 10 sampling points, with a spacing

of 10 units between adjacent neighbour sites to compose the

sample species matrix Y and environmental matrix X. Y was

Hellinger-transformed prior to analysis (see Peres-Neto et al.,

2006, for the properties of this distance regarding variation par-

titioning). This transformation involves a square-root transfor-

mation and can normalize Poisson or Poisson-like data (e.g.

abundance data). Spatial predictors (i.e. polynomials and

MEMs) were constructed according to the spatial coordinates of

the 10 ¥ 10 sampling grid. For each scenario, based on combi-

nations of the strength of the environmental gradient (b) and

strength of the spatial correlation (variogram range) in the

species and environmental data, 1000 data sets (100 ¥ 100 map

and corresponding 10 ¥ 10 sample of points) were generated.

Model selection for spatial predictors

Statistical procedures for testing overall and unique contribu-

tions of environment and spatial predictors in variation parti-

tioning (Fig. 1) are commonly used and well established in the

literature (see Legendre & Legendre, 1998, pp. 608–612) and can

be performed by software such as the Canoco 4.5 program (ter

Braak & Šmilauer, 2002) and the R language (the ‘varpart’

Table 2 Simulation scenarios used in this study.

Scenarios b

Variogram range Type of assessment

ResultEnvironment Species [abc] [ab] [bc] [a] [c]

1 0 N(0,1) – Type I error Type I error Type I error Type I error Type I error Fig. 2

2 0 N(0,1) 30 Power Type I error Power Type I error Power Fig. 3(a)

3 0 30 30 Power Type I error Power Type I error Power Fig. 3(b)

4 0 50 50 Power Type I error Power Type I error Power Fig. 3(c)

5 0 80 80 Power Type I error Power Type I error Power Fig. 3(d)

6 0.25 15 15 Power Power Power Power Power Fig. 4(a)

7 0.50 15 15 Power Power Power Power Power Fig. 4(b)

8 0.25 30 30 Power Power Power Power Power Fig. 4(c)

9 0.50 30 30 Power Power Power Power Power Fig. 4(d)

Each scenario represents a combination of the strength (slope) of the environmental component b (equation 1), the variogram range parameter values
used to generate spatial structures in the environment (E in equation 1) and the species (SA in equation 1). Non-spatialized environment was generated
using N(0,1) as E in equation 1 and non-autocorrelated species were produced by eliminating SA in equation 1. The type of assessment (power versus
type I error) depends on the component ([abc] = environment + space, [ab] = environment confounded with space or [bc] = space confounded with
environment) and fraction ([a] = pure environment or [c] = pure space). See Fig. 1 for a definition and calculation of components and fractions. The
‘Result’ column indicates the figure in which the rejection rates for each scenario and respective components and fractions are reported.

Spatial structure in ecological communities
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function of the ‘vegan’ library by Oksanen et al., 2008). Spatial

predictors were generated and selection procedures were per-

formed in Matlab (release 2007a, The MathWorks); functions

are available from the senior author.

Based on our previous experiences with variation partition-

ing (Legendre et al., 2005; Peres-Neto et al., 2006), we antici-

pated that the number of spatial predictors in the model would

influence the power of the test to detect unique and significant

environmental contributions (i.e. fraction [a], Fig. 1) due to a

decrease in degrees of freedom in the overall model. Since the

number of spatial predictors can be quite large (for instance, in

our 10 ¥ 10 lattice containing 100 points, 32 MEMs and 9

polynomials were considered as spatial predictors), it is essential

to apply a model selection procedure in order to reduce the

number of spatial predictors so that significant unique environ-

mental fractions have a greater chance of being identified.

However, given that model selection procedures may inflate type

I error rates (Wilkinson & Dallal, 1981; Blanchet et al., 2008;

Mundry & Nunn, 2009; that fact was also observed in early

versions of our simulations), we first tested the significance of

the spatial model (i.e. component [bc] in Fig. 1) with all spatial

predictors for a given type of spatial regressor (i.e. polynomial or

MEMs). If significant, we then proceeded with forward selection

to determine an adequate number of predictors describing

spatial variation. That subset was then used in all tests for a

particular set of simulated data.

In this study, only the positively autocorrelated spatial regres-

sors were considered as spatial candidates since the simulated

spatial patterns were all positively autocorrelated. The most

common model selection procedure used in canonical analyses

is forward selection. Note that since the spatial predictors used

here are orthogonal to one another, no difference is to be

expected between forward selection and a number of other pro-

cedures (e.g. backward selection and stepwise procedures;

McQuarrie & Tsai, 1999). Due to their orthogonality, the

forward selection procedure is much faster as the order of

entrance in the model can be determined a priori by the amount

of explained variation of a given spatial predictor. The complete

description of the procedure is presented as Supporting Infor-

mation (Appendix S2). Note, however, that in the case of poly-

nomials we also performed all the simulations using the original

polynomials (i.e. not their principal components) but they were

similar in performance, and hence only results based on the

principal components are presented.

In initial simulations, we noticed that the standard forward

selection procedure did not correctly control type I error rates

due to spatial correlation (see Results section). This result is due

to the fact that the forward selection for multiple species is based

on the principle of parsimony where only spatial predictors that

contribute to at least a few species are likely to be detected. This

problem is somewhat akin to analysis of variance where a large

number of sample means are considered; if all sample means are

equal, except one (or a small number of samples), the power of

the test to detect this difference is low when compared with a

smaller number of sample means. Therefore, we decided to

apply the forward selection procedure to each species separately.

The spatial matrix W was the union of the predictors resulting

from each separate model. For instance, consider two species A

and B. Assume that for species A, predictors [4,5] were retained

whereas for species B predictors [5,9] were retained; then matrix

W would be composed of predictors [4,5,9].

RESULTS

Results are presented in the form of rejection rates over 1000

sample tests. Table 2 presents the simulation scenarios, which

were based on a combination of the strength of the environmen-

tal (b) and spatial gradients (variogram range) on the species.

For instance, when b was set to zero but the environmental and

species spatial gradients were generated with a range of 15 (or

greater), we could then assess: (1) how spatial dependence

induced a bias in the test of the environmental component [ab],

and (2) the performance of the different spatial predictors in

controlling this bias while testing fraction [a]. Table 2 also indi-

cates the figures in which the results for each scenario are pre-

sented. Note, again, that we first tested the overall significance of

the spatial predictors (i.e. component [bc]) with all spatial pre-

dictors for a given type of spatial regressor; if significant, we then

conducted a forward selection to retain the spatial predictors to

be used in testing the components and fractions involving the

environmental and spatial predictors (i.e. [abc], [a] and [c]). For

each type of predictor we also present the results for analyses

based on all spatial predictors (i.e. all 32 MEMs and 9

polynomials).

The first scenario was based purely on random data, where

species, environment and the species spatial component were

randomly N(0,1) generated. In this case, testing for components

and fractions presented correct type I error in all cases (Fig. 2),

showing that the two-step procedure, in which we first test all

predictors and then run the model selection, is an effective way

of controlling the inflated type I errors in model selection as

previously shown in the literature (see Methods).

Scenario 2 (Table 2, Fig. 3a) serves to show that when spatial

dependence is present only in the species [i.e. E = N(0,1) and

range of SA = 15 for the species], tests for the environmental

component [ab] are not biased. Results for other SA ranges [i.e.

E = N(0,1) and range of SA = 30 and 50] provided comparable

results (i.e. correct levels of type I error) but are not reported

here for brevity. However, when both the species and environ-

ment are spatially structured but without any contribution of

the environment to the species variation (scenarios 3–5, i.e.

Fig. 3b–d), the type I error of the environmental component

[ab] steadily increases with the strength of the spatial depen-

dence (i.e. range). Regarding the control over elevated type I

error rates (i.e. tests of fraction [a]), polynomial regressors,

which are the most commonly used in variation partitioning

and other techniques, fail to provide a valid test (i.e. rejection

rates for fraction [a] are greater than the pre-established alpha of

0.05). Note, however, that their effectiveness (reduced type I

error rates) increases with the range of the variograms control-

ling the spatial structure (Fig. 3b–d). The standard forward

selection for both MEM regressors, although more robust, also

P. R. Peres-Neto and P. Legendre
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fails in controlling high type I error rates in the tests of fraction

[a]. Nevertheless, correct control over correlation (i.e. inflated

type I errors) is effective either using all MEM regressors or the

individual species selection model.

The results from scenario 2 (Fig. 3a) also indicates that MEM

presents the greatest power to detect spatial structure in species

distributions (fraction [c] and components [abc] and [bc]) at

small spatial scales (range = 15) whereas all methods presented

similar power for medium to larger spatial structures (ranges 30,

50 and 80; Fig. 3b–d). Given that all methods have similar power

to detect large spatial structures, we further compared their

power to detect unique environmental (i.e. fraction [a]) and

spatial (i.e. fraction [c]) contributions only based on small-scale

and medium spatial structures (i.e. range = 15 and 30; Fig. 4a–

d). The results clearly indicate that MEM presents the greatest

power to detect spatial structures ([c], [bc] and [abc]), especially

based on the individual species selection model. Power for

testing fraction [a] was slightly greater for the polynomial

regressors for the smaller scale (range = 15) but much greater for

medium scales (range = 30), which is of course offset by the fact

that this method presents increased type I error rates (Fig. 3).

Using all predictors severely decreases the power of MEM.

DISCUSSION

Our goal was twofold. Firstly, to test whether variation parti-

tioning applied to canonical analysis is an appropriate method

for detecting spatial structures in ecological data (presence–

absence and abundance) and controlling for inflated type I

errors when testing for the importance of the environmental

component in driving species distribution. Secondly, we wanted

to provide guidance regarding the type of spatial predictor to

use in variation partitioning. Since variation partitioning is the

most widely used technique in determining the importance of

environmental and spatial variation in structuring ecological

communities, this assessment is timely.

An important consideration is whether a variation partition-

ing scheme is necessary for the data at hand in the first place. If

the species data only are autocorrelated while the environmental

data are spatially independent, or vice versa, a variation parti-

tioning scheme per se perhaps should not be considered. In that

case, separate models relating community to environment

(component [ab]) and community to space (component [bc])

should be used; the reason is that the tests of the unique frac-

tions ([a] and [c]) is penalized by the loss of unnecessary degrees

of freedom by considering space and environment jointly.

Our results clearly indicate that among the methods consid-

ered here, polynomial spatial regression, which is the most

widely used method for incorporating spatial variation in varia-

tion partitioning, does not control for the bias and presents the

highest type I error rates when testing the environmental con-

tribution. Because of its common use, we considered a third-

degree polynomial, though other orders could have been used

(e.g. Rowe & Lidgard, 2009). Note that in practice, polynomials
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data were present. Rejection rates measured as the proportion of rejections (a = 0.05) per 1000 sample tests for scenario 1 (see Table 2) for
the polynomial and Moran’s eigenvector maps (MEM) spatial predictors according to model selection procedures and fractions and
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sample tests for the polynomial and Moran’s eigenvector maps (MEM) spatial predictors according to model selection procedures and
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estimates (i.e. species are spatially autocorrelated). ‘All’ indicates that all spatial variables generated for each method were used, FS denotes
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data. Polynomial regressors have low performance in controlling type I error rates (i.e. tests of fraction [a]), especially when the variogram
range is small. The standard forward selection fails in controlling high type I error rates in the tests of fraction [a].
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with greater degrees require very regular spacing among sam-

pling units (Unwin, 1978). Their performance was not surpris-

ing, since we know that polynomials are more effective in

modelling large-scale spatial structures. The greatest problem is

that polynomials are not capable of characterizing regular cyclic

changes in direction. The strength of MEM is that it generates

these cyclic changes at multiple scales that when combined and

weighted by regression coefficients are capable of representing

very complex spatial patterns (see fig. 2 in Griffith & Peres-Neto,

2006).

We also demonstrated the importance of model selection in

the case of spatial predictors. If all spatial predictors are used, the

power to detect the environmental contribution (fraction [a]) is

much reduced due to the reduced number of degrees of freedom

in the denominator of the F-statistic. Our results also indicate

that the standard forward selection model implemented in sta-

tistical packages that conduct canonical analyses does not nec-

essarily provide an appropriate procedure for controlling

inflated type I error rates. The individual species selection model

provides a better solution for the problem and also opens up the

possibility of using other techniques to control for spatial cor-

relation only available for individual species, such as autoregres-

sive models. Note that each species was generated independently

with regard to their environmental control and intrinsic spatial

dependence; although these are extreme cases, hence our deci-

sion to generate data under such a structure, species in nature

will have various types of similarities regarding their environ-

mental and spatial associations. The independent species spatial

model selection introduced here, however, would also apply in

these cases, and as the spatial communality increases among

species, the individual selection approach would approach

similar results to those of the overall standard forward selection

approach.

Most ecologists are familiar with the idea that spatial corre-

lation is a source of ‘nuisance’ in determining the importance of

ecological drivers such as environment (Legendre, 1993). The

spatial component that is shared between space and environ-

ment and that jointly explains variation in species distributions

(i.e. fraction [b] in Fig. 1) is the source of inflated type I error

rates when assessing environment without controlling for

spatial dependence (i.e. if only the component [ab] is tested). By

testing fraction [a], we are removing this joint spatial compo-

nent (i.e. [a] = [ab] - [b]) from the numerator of the F-statistic

and hence exerting a control over the inflated test. A less

acknowledged view is that the spatial ‘legacy’ in species distri-

butions (i.e. fraction [c]) is also important (see Borcard et al.,

2004) and should be taken into consideration while challenging

our ecological models. The most relevant question in this

context is related to the origin of that fraction of the spatial

structure in community organization: is it due to species inter-

actions, dispersal and/or the effect of environmental variables

that are missing from the model (i.e. were not considered), or

perhaps a mix of all these components? Describing (e.g. plotting

on maps) and attempting to understand the scales at which

species and communities are organized can provide important

clues about the origin of their spatial organization. Indeed, it is

often the case that environmental variation is not sufficient to

determine how patterns of species distributions are structured

in space (e.g. Gravel et al., 2008) and hence we need to further

explore the data at hand. Due to advances in GIS techniques, we

should routinely attempt to match unique spatial patterns

(variation in fraction [c]) as a way to question the unmeasured

processes (McIntire & Fajardo, 2009). One avenue, for instance,

would be to consider connectivity measures (e.g. see Bender

et al., 2003, for a review of these measures) to assess the likeli-

hood that dispersal is an important driver. Another possibility is

the use of expert opinion (Low-Choy et al., 2009) to help deter-

mine the likelihood of different unmeasured processes by anal-

ysing the spatial patterns of species distributions.

It is well accepted and demonstrated (and also shown here)

that the presence of spatial structure in community and envi-

ronment generates bias in statistical procedures (Bini et al.,

2009). However, there is some debate in the literature as to

whether spatial correlation also affects parameter estimates (i.e.

the strength of the association between community and envi-

ronment). Hawkins et al. (2007,, and references therein), for

instance, found that ordinary least squares (OLS) regression,

which is used in RDA and CCA, is not seriously affected by

spatial correlation in the sense that sample parameter estimates

from spatially correlated populations are not biased. However,

test procedures for predictor relevance (e.g. t-test for slopes,

permutation procedures for the environmental component

[ab]) are affected because standard errors of parameter esti-

mates are smaller under spatial correlation than under spatial

independence for the same number of degrees of freedom,

hence generating smaller confidence intervals and therefore

increasing type I error rates. Therefore, under spatial correla-

tion, only standard errors are affected in OLS procedures but not

slope estimates (Hawkins et al., 2007). Since, it is generally rec-

ognized (e.g. Bini et al., 2009) that OLS regression slopes change

(shift) under non-spatial and spatial models, one conclusion

would be to test slope significance under a spatial model but

report slopes under a non-spatial model. In the case of variation

partitioning, one could therefore test the importance of the link

between communities and environment by testing fraction [a]

(i.e. correcting for spatial autocorrelation), but the strength of

the relationship should be reported on the basis of component

[ab] (original estimate) and not fraction [a]. Whether param-

eter estimates may be affected by correlation depends on the

model and type of statistic. Simulation work is still needed to

determine the situations (types of model, ordination, degree

and sign – positive or negative – of the spatial correlation) in

which incorrect estimates are also generated. However, our point

of view is that if indeed parameter estimates are not affected, the

interest in reporting the spatially corrected estimate (i.e. fraction

[a]) or not (component [ab]) may depend on what fraction [b]

means. If spatial correlation in community data is partially or

completely due to the measured environmental variables, which

in turn are spatially structured, then perhaps reporting [ab]

would be more appropriate, since fraction [b] would represent

the spatialized component of the environment that induced

correlation in the community in the first place. On the other
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hand, if there are important missing predictors that are them-

selves spatially structured, then fraction [b] represents the cova-

riation between the measured environment and unmeasured

drivers and hence, as in any regression model in which coeffi-

cients are partial, fraction [a] should be then reported. However,

determining which of these two possibilities is more likely is

often not an easy task.

We hope that our simulation study and discussion of the

issues revolving around spatial correlation and community

analysis will provide an important instrument to guide ecolo-

gists in their decisions regarding the use of variation partition-

ing as a tool to explore patterns in community distribution. Our

simulation protocols should also be useful while benchmarking

other spatial methods in the context of variation partitioning or

any other technique to estimate and control for spatial correla-

tion in the study of ecological communities. The conclusions of

the present research apply to time-series and phylogenetic data

as well as spatial data.
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(MEM) and related methods.
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orthogonal predictors in linear regression.
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