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Abstract. Establishing relationships between species distributions and environmental
characteristics is a major goal in the search for forces driving species distributions. Canonical
ordinations such as redundancy analysis and canonical correspondence analysis are invaluable
tools for modeling communities through environmental predictors. They provide the means
for conducting direct explanatory analysis in which the association among species can be
studied according to their common and unique relationships with the environmental variables
and other sets of predictors of interest, such as spatial variables. Variation partitioning can
then be used to test and determine the likelihood of these sets of predictors in explaining
patterns in community structure. Although variation partitioning in canonical analysis is
routinely used in ecological analysis, no effort has been reported in the literature to consider
appropriate estimators so that comparisons between fractions or, eventually, between different
canonical models are meaningful. In this paper, we show that variation partitioning as
currently applied in canonical analysis is biased. We present appropriate unbiased estimators.
In addition, we outline a statistical test to compare fractions in canonical analysis. The
question addressed by the test is whether two fractions of variation are significantly different
from each other. Such assessment provides an important step toward attaining an
understanding of the factors patterning community structure. The test is shown to have
correct Type I error rates and good power for both redundancy analysis and canonical
correspondence analysis.

Key words: adjusted coefficient of determination; bootstrap; canonical analysis; canonical correspond-
ence analysis (CCA); ecological community; redundancy analysis (RDA); variation partitioning.

INTRODUCTION

The search for causes dictating patterns in species

distributions in natural and disturbed landscapes is of

primary importance in ecological science, and establish-

ing relationships between species distributions and

environmental characteristics is a widely used approach

(e.g., Legendre and Fortin 1989, Jackson and Harvey

1993, Diniz-Filho and Bini 1996, Rodrı́guez and Lewis

1997, Jenkins and Buikema 1998, Boyce and McDonald

1999, Peres-Neto and Jackson 2001). Habitat models

relating habitat characteristics and community structure

(species occurrence or abundance) are expected to

answer at least two questions. (1) How well is the

distribution of a set of species explained by the given set

of predictive variables? (2) Which variables are irrele-

vant or redundant in the sense of failing to strengthen

the explanation of patterns after certain other variables

have been taken into account? The first question relates

to the predictive power of the model that can be used in

conservation management, for questions such as esti-

mating habitat suitability, forecasting the effects of

habitat change due to human interference, establishing

potential locations for species reintroduction, or pre-

dicting how community structure may be affected by the

invasion of exotic species. The second question is

important for heuristic issues such as determining the

likelihood of competing hypotheses to explain particular

patterns in community structure (Peres-Neto et al.

2001).

Canonical analyses such as redundancy analysis

(RDA; Rao 1964), canonical correspondence analysis

(CCA; ter Braak 1986), and distance-based redundancy

analysis (db-RDA; Legendre and Anderson 1999) are

invaluable tools for modeling communities through

environmental predictors. They provide the means for

conducting direct explanatory analyses in which the

association among species can be studied with respect to

their common and unique relationships with environ-

mental variables or any other set of predictors of

interest. As a demonstration of its success, well over

1500 studies applying CCA or RDA in modeling

species–environment relationships have been published

(see also Birks et al. [1996] for reviews on ecological

studies using these methods). RDA and CCA can be

best understood as methods for extending multiple

regression that has a single response y and multiple

predictors X (e.g., several environmental predictors), to
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multiple regression involving multiple response variables

Y (e.g., several species) and a common matrix of

predictors X. It follows that the percentage of variation

of the response matrix explained by the predictor matrix

(hereafter referred to as the redundancy statistic, or

simply R2
YjX following Miller and Farr 1971) is the

canonical equivalent of the regression coefficient of

determination, R2.

In multiple regression analysis, we can apply variation

partitioning (also known as commonality analysis;

Kerlinger and Pedhazur 1973) to identify common and

unique contributions to model prediction and hence

better address the question of the relative influences of

the groups of independent variables considered in the

model (Mood 1969). When partitioning variation is used

in regression analysis, independent variables are

grouped into sets representing broad factors. In that

context, variation partitioning is more suitable than

analyzing the individual contributions of regressors via

their partial correlation coefficients. In this approach,

the total percentage of variation explained by the model

(R2) is partitioned into unique and common contribu-

tions of the sets of predictors (Fig. 1). For example,

variation partitioning for RDA or CCA using two sets

of predictors (X and W) is straightforward as it is based

on three canonical analysis (Fig. 1). The first one uses

both sets of predictors [X,W], the second only X, and the

last one only W. All remaining fractions of the

partitioning can be obtained by simple subtractions

(Fig. 1). Note that the shared variation ([b], Fig. 1) may

be negative due to suppressor variables (i.e., a regressor

having low, close to zero, correlation with the response

variable and a correlation with another regressor, which

in turn is correlated with the response variables; see

Azen and Budescu [2003] for more details) or due to two

strongly correlated predictors with strong effects on y of

opposite signs (one positive and the other negative;

Legendre and Legendre 1998: Section 10.3.5). Variation

partitioning based on two sets of predictor matrices was

introduced to canonical analysis by Borcard et al. (1992)

and Borcard and Legendre (1994), later was extended to

three or more sets of predictor matrices (Anderson and

Gribble 1998, Cushman and McGarigal 2002, Økland

2003), and is now routinely used in direct gradient

analysis.

Although canonical analysis and variation partition-

ing may provide a robust approach for understanding
the relative influence of different ecological factors

driving community assembly, judging the importance

of a factor solely on the basis of its proportional unique
contribution is not as straightforward as currently

performed. The statistical bias related to estimating a
population q2 based on a sample R2 is a well-recognized

problem (Zar 1999), as sample estimates tend, on
average, to be larger than q2. The bias is influenced by

both the number of independent variables in the model
and sample size (Kromrey and Hines 1995). Terms such

as adjustment and ‘‘shrinkage’’ refer to the fact that a
sample-estimated R2 needs to be reduced in order to

provide a more accurate estimate of q2. By taking into
account the appropriate degrees of freedom, the adjust-

ment provides a way of comparing models with different
numbers of predictors (e.g., model selection) and sample

sizes. Given that R2 and R2
YjX are intrinsically related, the

bias observed in multiple regression also exists in

canonical analysis. Although variation partitioning in
canonical analysis is routinely used in ecological

analysis, no effort has been reported in the literature
to consider appropriate estimators so that comparisons

between fractions or eventually between different canon-

ical models are meaningful. Specifically, our objective is
twofold: (1) to provide adjustments for the bias in

sample R2
YjX, and (2) to outline a statistical test to

contrast partial effects in canonical analysis (i.e.,

compare fractions of variation).

REDUNDANCY STATISTIC IN CANONICAL ANALYSIS

Here we present the formulation of the R2
YjX statistic

used in canonical analysis applied to species data
matrices. In the case of RDA, R2

YjX is calculated as

follows:

R2
YjX ¼

traceðŶ 0
ŶÞ

traceðY 0
centYcentÞ

¼ 1� trace½ðYcent � ŶÞ 0ðYcent � ŶÞ�
traceðY 0

centYcentÞ
ð1Þ

where Ŷ ¼ X(X0X)�1X0Ycent represents the matrix of
predicted values. Note that this is identical to calculating

predicted values for individual multiple regressions of

each column of Y on X; Ycent ¼ (I – P)Y is matrix Y

FIG. 1. Variation partitioning scheme of a response variable Y between two sets of predictors X (e.g., environmental factors)
and W (e.g., spatial predictors). The total variation in Y is partitioned into four fractions as follows: (1) fraction [aþ bþ c] based
on both sets of predictor matrices [X,W] ([aþ bþ c]¼ R2

Yj½X;W�); (2) fraction [aþ b] based on matrix X ([aþ b]¼ R2
YjX); (3) fraction

[bþ c] based on matrix W ([bþ c]¼ R2
YjW); (4) the unique fraction of variation explained by X, [a]¼ [aþ bþ c] – [bþ c]; (5) the

unique fraction of variation explained by W, [c]¼ [aþbþ c] – [aþb]; (6) the common fraction of variation shared by X and W, [b]
¼ [a þ b þ c] – [a] – [c]; and (7) the residual fraction of variation not explained by X and W, [d] ¼ 1 – [a þ b þ c].
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centered by column means (i.e., column means¼ 0). I is

an (n 3 n) identity matrix and P is a (n 3 n) matrix with

all elements ¼ 1/n; n refers to the number of sampling

units. Matrix X can be either centered or standardized

(column means ¼ 0 and column variances ¼ 1).

The definition of R2
YjX presented here is the one used in

ecological applications; it is called the RDA trace

statistic in the Canoco program, Version 4.5 (ter Braak

and Smilauer 2002) and the proportion of explained

variation in Legendre and Legendre (1998). This

definition is different from the one in redundancy

analysis as used in behavioral research (Dawson-Sa-

unders 1982, Lambert et al. 1988) where the response

variables are standardized rather than centered prior to

analysis. In that case, the R2
YjX is simply the mean of the

R2 statistics computed for each individual multiple

regression of each column of Y on matrix X (Miller

1975). In ecological analysis the species are centered and

not standardized, so R2
YjX is a weighted mean of the R2 of

individual models with weights proportional to the

species variances divided by the total variance. The same

definition based on a weighted mean applies to CCA,

and for the sake of brevity we present the R2
YjX used in

CCA in Appendix A.

AN ADJUSTED REDUNDANCY STATISTIC FOR CANONICAL

ANALYSIS—THE CONTINUOUS CASE

Our first task was to determine whether adjustments

for the multiple coefficient of determination (R2
adj)

developed for a single response variable could also be

applied to the canonical R2
YjX. Dawson-Saunders (1982)

has shown that Ezekiel’s adjustment (1930), commonly

used in the case of multiple regressions (Legendre and

Legendre 1998, Zar 1999), is appropriate for the case

where response variables are standardized prior to

analysis. Ezekiel’s formulation applied to canonical

analysis based on centered values is as follows:

R2
ðYjXÞadj ¼ 1� n� 1

n� p� 1
ð1� R2

YjXÞ

¼ 1� trace½ðYcent � ŶÞðYcent � ŶÞ�=ðn� p� 1Þ
traceðY 0

centYcentÞ=ðn� 1Þ
ð2Þ

where n is the sample size, p is the number of predictors,

and R2
YjXis the sample estimation of the q2

YjX.
Since fractions of variation represent redundancy

statistics, they also need to be adjusted. Fractions [aþ b

þ c], [bþ c], and [aþ b] can be adjusted directly, leading

to [aþ bþ c]adj, [bþ c]adj, and [aþ b]adj. The individual

fractions [a]adj, [b]adj, [c]adj, and [d]adj have to be

calculated by appropriate subtractions based on [a þ b

þ c]adj, [b þ c]adj, and [a þ b]adj.

We conducted a Monte Carlo study equivalent to the

one used by Kromrey and Hines (1995) who assessed the

accuracy of different methods for adjusting sample R2 in

the univariate multiple regression case. The first step was

to generate large population matrices (200 000 individ-

uals) with known q2
YjX and then draw a large number of

samples with replacement from these populations and

calculate R2
YjXand R2

ðYjXÞadj for each sample. We decided

to use large generated populations instead of standard

protocols such as generating samples using established

correlation matrices (see Peres-Neto et al. 2003 for an

example) or by defining the q2 as in the method

introduced by Cramer (1987). The reason is that these

previously used methods are capable of generating

population values only for continuous variables; hence

we cannot generate species-like data (e.g., abundance)

where some sites are occupied (values . 0) and others

are not (values ¼ 0).

We started with a real data set comprised of stream

fish communities of a watershed in eastern Brazil (Peres-

Neto 2004). A total of 27 species and six environmental

variables were considered. The first step was to calculate

individual slopes between the species and the environ-

mental variables (slopes are presented in Appendix B:

Table B1). Slopes were calculated on the centered

species and environmental matrices and used as the

basis for our simulation study. The next step was to

generate a matrix X containing six random normally

distributed variables N (0,1) with 200 000 observations

(rows). The columns of X were then standardized (i.e.,

mean¼ 0 and variance¼ 1). Then, a data matrix Y was

generated as: Y ¼ XBmlt þ E, where B (Appendix B:

Table B1) is a (6 3 27) matrix containing the slopes for

each species on each environmental variable; mlt is a

multiplication factor used to reduce the slopes so that

we can manipulate them to attain the desirable R2
YjX

values. The multiplication factor will be given for each

simulated population. E represents a (200 000 3 27)

matrix containing N (0,1) deviates. The last step was to

calculate the q2
YjX based on the generated X (200 000 3

6) and Y (200 000 3 27) matrices. Since all slopes were

different from zero, all predictors were active in the

sense that they all contributed to the explanation of

matrix Y.

Assessing the accuracy of R2
ðYjXÞadj using a single set of

predictors (canonical analysis)

The first set of simulations considered the simplest

case of matrices X and Y made of continuous data;

abundance-like data will be considered later. In the two

sets of simulations, we considered the influence of

random predictors by manipulating the number of

random N (0,1) variables added to the set of true

predictors X, as well as the sample size n. Two

populations with q2
YjX ¼ 0.2007 (mlt ¼ 0.0004) and

q2
YjX¼ 0.6105 (mlt ¼ 0.001) were considered. In the first

set of simulations, 1000 samples of 100 observations

each were randomly drawn from the population [Y,X]

and a certain number of random N (0,1) variables were

added to the sample X. In the second experiment, 1000

samples with varying numbers of observations were

randomly drawn and no random predictors were added

to the model. Fig. 2 presents the results of the two
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simulations; each point in the graphs represents mean

values of sample R2
YjX and R2

ðYjXÞadj based on 1000

random pairs of matrices [Y,X]. It is evident from these

two simulations that the sample q2
YjX statistic is highly

biased and that R2
ðYjXÞadj is a much more accurate

estimator of the R2
YjX. Results (Fig. 2) show that adjusted

statistics are always to be preferred to R2
YjX sample

values.

Assessing the accuracy of R2
ðYjXÞadj on variation

partitioning (partial canonical analysis)

We conducted a second set of simulations to test

whether R2
ðYjXÞadj also performed well in variation

partitioning in canonical analysis involving three data

matrices [Y,X,W]. The method used for generating

population matrices was basically the same, except that

we considered the case where predictors have a certain

level of correlation between matrices X and W. In order

to generate populations having predictors X and W with

a given level of correlation (i.e., [b] . 0], the following

procedure was applied. (1) Generate a matrix XW

containing 12 random normally distributed variables

N (0,1) with 200 000 observations. As before, the

columns of matrix XW were standardized. (2) Generate

a (123 12) correlation matrix where all cross-correlation

values were 0.1. Next, decompose the correlation matrix

using Cholesky decomposition. Finally, post-multiply

the upper-triangular matrix resulting from the matrix

factorization by the matrix XW of step 1. (3) The matrix

of population slopes BXW (12 3 27) is constructed by

assembling two slope matrices B (6 3 27) (Appendix B:

Table B1). Each one was multiplied by a different

multiplication factor, mlt (i.e., BXW ¼ [BmltX BmltW]),

so that the relative contributions of X and W to the

generated Y are different. (4) As before, a data matrix Y

was generated as: Y¼XWBXWþE. The first six columns

of matrix XW were used to represent matrix X and the

last six columns became matrix W. The population was

then represented by juxtaposing the three pertinent

matrices as [Y,X,W].

Simulations were also done to evaluate the influence

of random predictors and the sample size. Population

fractions based on mltX ¼ 0.0004 and mltW ¼ 0.0003

were as follows: [aþ bþ c]¼ 0.3968, [aþ b]¼ 0.3001, [b

þ c] ¼ 0.2243, [a] ¼ 0.1725, [b] ¼ 0.1276, [c] ¼ 0.0967,

and [d] ¼ 0.6032. Matrix X contributed to Y with a

larger portion of the variation in the population

(30.01%) than W (22.43%), and fraction [b] explained

12.76% of the variation in the population. In the third

series of simulations, 1000 samples of 100 observations

each were drawn from the population [Y,X,W], and

random N (0,1) variables were added to the sample

matrix W. In the fourth set of simulations, 1000

samples of a varying numbers of observations were

drawn. No random predictors were added to the model.

Fig. 3 presents the variation partitioning results from

these two last simulations. Each fraction represents

mean values of sample fractions and adjusted sample

fractions based on the 1000 samples. It is obvious from

these results that sample fraction estimates (left panels)

are highly biased whereas adjusted fractions (right

panels) are much more accurate estimators of the

FIG. 2. The influence of null predictors and sample size on the sample mean R2
YjX (solid symbols) and the mean adjusted R2

ðYjXÞadj
(open symbols) considering two RDA populations with normally distributed data. Triangles represent samples from a population
R2

YjX¼0.608, whereas circles represent samples from a population R2
YjX¼0.201. Horizontal lines represent population values. In the

case of the influence of the number of null predictors (left panel), samples were based on 100 observations, whereas in the case of
the influence of sample size (right panel), no null predictor was added to the model.
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population values. Although the population fraction [a]

is larger than [c], the addition of random variables to

matrix W offset the differences in sample fractions

without adjustment, demonstrating clearly the need for

an adjustment to obtain correct estimates of the

importance of each matrix to the model.

ADJUSTED REDUNDANCY STATISTIC FOR THE DISCRETE

ABUNDANCE CASE

In the previous section, we considered the case of

continuous variables as they represented the case where

we expected a direct match between the multiple

regression R2 and the redundancy statistic R2
YjX. How-

FIG. 3. The influence of null predictors and sample size on fraction estimation in RDA variance partitioning, considering
normally distributed data. Left panels, sample R2

YjX; right panels, adjusted R2
ðYjXÞadj. In the case of the influence of the number of null

predictors (upper panels), samples were based on 100 observations, whereas in the case of the influence of sample size (lower
panels), only active predictors were used (i.e., no null predictor was added to the model). In that case, all predictors in X were
active, whereas inW a mix of active and null predictors was found. The sequence is [a], [b], [c], [d] from bottom to top of each panel.
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ever, ecologists are most interested in the case where

response variables are counts of species abundances,

which are discrete and also generally overdispersed and

zero inflated (Martin et al. 2005). In order to generate

discrete and zero inflated data, we transformed a

simulated population matrix Y as follows: Y0 ¼ ½y 0
ij� ¼

exp(1.2(ystdij� 0.5)). Once generated, matrix Y was first

standardized into Ystd so that a variance value of 1.2

could be applied; subtracting 0.5 from the data provided

a greater number of zeros (absences; the generated

matrices contained roughly 47% zeros). The values y 0
ij

were then rounded to the lower integer to generate Y0. A

similar protocol was applied in Legendre et al. (2005).

We performed simulations similar to those reported in

the previous section, this time using population matrices

Y0. We started by investigating the case of RDA. In

order to generate Y, a value mlt¼ 0.0011 was necessary

to generate a q2
YjX ¼ 0.2089, which is close to the value

generated in the first set of simulations (see An adjusted

redundancy statistic for canonical analysis—the continu-

ous case). Fig. 4 shows the results as a function of the

number of random variables added to sample predictor

matrices X and the sample size. As before, in the case of

random predictors, 100 observations were considered.

Although the adjusted values provided better estimates

than the sample R2
YjX, the estimates were quite biased

when compared to the q2
YjX.

Next we investigated the effect of species trans-

formations in the estimates prior to RDA. We used

the Hellinger transformation (Legendre and Gallagher

2001) as follows:

H ¼ ½hij� ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
y 0

ij

Xk

j¼1

y 0
ij

vuuuut

2
664

3
775 ð3Þ

where hij is the transformed abundance y 0
ij of species j at

site i, and k is the total number of species across all

replicates. The use of Hellinger-transformed data prior

to performing RDA is equivalent to a distance-based

redundancy analysis (db-RDA; Legendre and Anderson

1999) based on Hellinger distance. In the present

simulations, the Hellinger-transformed population ma-

trix H was used instead of Y 0. Two Hellinger-

transformed population data sets with q2
HjX ¼ 0.2071

(mlt ¼ 0.0007) and q2
HjX ¼ 0.6099 (mlt ¼ 0.0500) were

generated. Contrary to RDA on raw species abun-

dance-like data (Fig. 4), the Hellinger transformation

produced much more accurate estimates of R2
HjX

regarding both sample size and number of random

predictors added to the sample matrices (see Appendix

C: Fig. C1). The same conclusions were attained when

considering variation partitioning as results showed

identical patterns as the ones depicted in Fig. 3 for the

continuous case (see Appendix C: Fig. C2). Thus, for

continuous response variables, Ezekiel’s adjustment to

RDA R2 gives quite accurate values, and for the

discrete zero inflated data with many zeros (as

simulated here), Ezekiel’s adjustment using Hellinger-

transformed data (i.e., db-RDA on Hellinger distance)

is appropriate.

FIG. 4. The influence of null predictors and sample size on the sample mean R2
YjX and the adjusted mean R2

ðYjXÞadj considering an
RDA population (R2

YjX ¼ 0.2089) with abundance-like dependent variables. Solid circles represent sample values, and open circles
represent adjusted values. Horizontal lines represent population values.
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THE CASE OF CCA AND A PERMUTATIONAL FORM

OF ADJUSTMENT

Here we present the results of simulations using CCA.

As in the two previous sections, we assessed the influence

of sample size and number of random predictors added

to the model. In the case of random predictors, sample

sizes of 100 observations were drawn. Two CCA

populations with q2
CCAjX ¼ 0.2128 (mlt ¼ 0.0011) and

q2
CCAjX¼0.6101 (mlt¼0.0490) were considered. As in the

preceding section, values in matrix Y were transformed

into abundance-like values (Y0) after generation and

prior to CCA. Ezekiel’s adjustments did improve the

large bias obtained when using unadjusted R2 with

CCA; however they were still quite inaccurate, especially

for the population having q2
CCAjX ¼ 0.2128 (Fig. 5). We

propose a new type of adjustment based on the

definition of Ezekiel’s formulation. Ezekiel’s adjustment

is based on the idea that, in regression models, a random

predictor explains, on average, under random sampling

variation, 1/(n – 1) of the variation in the response

variable. Hence p random predictors explain, on

average, under random sampling variation, p/(n – 1) of

the variation. The adjustment can be rewritten as

R2
ðYjXÞadj ¼ 1� n� 1

n� p� 1
ð1� R2

YjXÞ

¼ 1� 1

1� p
n � 1

ð1� R2
YjXÞ: ð4Þ

Note that when R2
YjX equals p/(n – 1), R2

ðYjXÞadj equals

zero. In CCA, because a weighted multiple regression is

used (see Appendix A), the average R2
CCAjX expected by

chance is unknown. We propose that this may be

estimated for a given situation using a permutation

procedure. The new adjustment hereafter referred to as

R2
perm substitutes p/(n – 1) in Eq. 4 by an empirical

estimate of the value expected under chance alone

estimated as follows: (1) randomly permute entire rows

of data matrix X (i.e., no substantial difference was

found if regressors were permuted separately), leading to

Xperm; (2) Calculate R2
CCAjX for a CCA based on Xperm;

(3) repeat steps 1 and 2 m times (in this study we used m

¼ 1000); (4) calculate the mean Xperm across all 1000

R2
CCAjX obtained under permutation in step 3. The

proposed adjustment is then simply

R2
perm ¼ 1� 1

1� Xperm

ð1� R2
CCAjXÞ: ð5Þ

The correction provides improved estimations in

comparison to Ezekiel’s adjustment (Fig. 5). The CCA

code used here can be used on matrices containing huge

number of observations (200 000 observations or more;

see Supplement 1 code for CCA) and may be useful for

researchers interested in analyzing large data sets.

TESTING THE DIFFERENCE BETWEEN FRACTIONS

Although the adjustment of fractions is an important

step toward achieving unbiased canonical models, there

FIG. 5. The influence of null predictors and sample size on the sample mean R2
CCAjX (circles), the mean adjusted R2

adj (squares),
and the permutation-based adjusted R2

adj�perm (triangles) considering two CCA populations. Solid symbols in each panel represent
samples from a population with R2

CCAjX ¼ 0.610, while open symbols represent samples from a population with R2
CCAjX ¼ 0.213.

Horizontal lines represent population values. In the case of the influence of the number of null predictors (left panels), samples were
based on 100 observations, whereas in the case of the influence of sample size (right panels), only active predictors were used (i.e.,
no null predictor was added to the model).
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remains the question of whether the influences of two or

more groups of predictors (factors), after adjustments,

are significantly different. Methods for testing the

significance of fractions are well established in the

literature as in Legendre and Legendre (1998:608–612).

However, one aspect that has not been addressed yet is

whether two fractions, say [a] and [c], come from the

same statistical population of explained fractions of

variation and that they only differ by sampling

variation. Such an assessment would provide an

important step toward attaining an understanding of

the factors patterning community structure. For in-

stance, do environmental factors explain more variation

than spatial patterning? In this section, we propose a

method for testing for the difference between fractions

in canonical variation partitioning. The test proposed

here is based on a bootstrap procedure for empirically

constructing sampling distributions reflecting the differ-

ences between adjusted R2
YjX. The use of bootstrapping

as means of adjustment in multiple regressions has been

advocated by Kromrey and Hines (1995), but our

proposed bootstrap procedure provided a much better

estimate than the one proposed by them. The proposed

procedure for RDA is as follows.

(1) Compute the RDA residuals based on the original

sample for fractions [a þ b] and [b þ c]:

EX ¼ Ycent � XBX EW ¼ Ycent �WBW ð6Þ

where EX and EW are (n 3 k) matrices of residuals

related to the matrix of predictors X (i.e., [aþ b]) and W

(i.e., [bþ c]), respectively; n is the number of sites and k

is the number of species. BX and BW are the matrices of

slopes for the predictors in X and W, respectively, and

can be calculated simply as: BX¼ (X0X)�1X0Ycent; BW ¼
(W0W)�1W0Ycent. Note that X and W can be either

centered or standardized.

(2) Rescale each column of matrices EX and EW as

EX-scl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=ðn� pXÞ

p
EX

EW-scl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=ðn� pWÞ

p
EW ð7Þ

where pX and pW are the number of predictors in

matrices X and W, respectively. Residuals are scaled in

this fashion so that the average squared residuals in the

bootstrap sample has expectation r2 (Wu 1986; i.e., E¼
[ej] ; IID(0, r2I)) where I is a (n 3 1) vector of 1’s).

(3) Resample entire rows from the matrix of joint

residuals [EX-scl, EW-scl] with replacement, so that the

bootstrapped sample is consistent with the original

dimensions of the data matrices leading to EX-boot and

EW-boot. Matrices of residuals were juxtaposed during

the bootstrap sampling to make sure that the same rows

were randomly chosen in EX-scl and EW-scl, hence

maintaining the covariance among predictors in X and

W during resampling.

(4) Calculate bootstrapped Y data tables based on

matrices X and W as the sum of original fitted values

plus bootstrapped residuals:

YX-boot ¼ XBX þ EX-boot

YW-boot ¼WBW þ EW-boot: ð8Þ

(5) Calculate fitted values based on the centered values

of each set:

ŶX-boot ¼ XBXðI� PÞYX-boot

ŶW-boot ¼WBWðI� PÞYW-boot: ð9Þ

Bootstrapped adjusted R2
YjX based on each set of

predictors were calculated as shown in Eq. 10 (at

bottom of page). R2
ðY jX Þadj-booti

was calculated in the

same way by replacing YX-boot � ŶX-boot by YW-boot �
ŶW-boot. Note that the total sum of squares (TSS ¼
trace(Y 0

centYcent)) in Eq. 10 was divided by n instead of

(n – 1) as in Eq. 2. Our decision was based on the fact

that the maximum likelihood estimator of TSS provided

better adjusted estimates under bootstrap (see Appen-

dix D).

(6) Repeat steps 3–5 m times (m¼ 1000 in this study).

For each bootstrap replicate, calculate the difference

between the two adjusted estimates as Di ¼ R2
ðYjXÞadj-booti

� R2
ðYjWÞadj-booti

. Then, using all bootstrapped Di values,

build a confidence interval for the differences between

adjusted fraction values. There are a number of

procedures for estimating confidence intervals (Manly

1997); we used the percentile method (Manly 1997:39).

First, Di values were ordered in ascending order, then we

identified the Di values that occupied the am/2-th and (1

– a/2)m-th values in the sorted list, which were then used

as confidence limits estimates. Both am/2 and (1 – a/2)m
were rounded to the nearest integer. Note that if

confidence intervals are reported they can be helpful in

comparing differences between fractions based on

different data sets (e.g., two or more landscapes). We

considered an a¼ 0.05 significance level throughout this

study. If the estimated interval did not encompass zero,

then the null hypothesis was rejected. Alternatively, a P

value can also be estimated. First, calculate the median

of Di values. If the median is positive, then calculate the

number of Di smaller than zero; or alternatively if Dobs is

negative, calculate the number of Di larger than zero,

R2
ðYjXÞadj-booti ¼ ½aþ b�adji

¼ 1�
trace

�
I� Pð ÞYX-boot � ŶX-boot

� � 0
I� Pð ÞYX-boot � ŶX-boot

� ��
= n� px � 1ð Þ

trace Y 0
centYcent

� �
=n

ð10Þ
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divided by the number of bootstrap samples, and then

multiplied by two in order to make the test two tailed.

In order to assess the statistical robustness of the

proposed test, we empirically estimated Type I error

rates and power based on Monte Carlo simulations

(Peres-Neto and Olden 2001). The complete description

of the method involved in this assessment and the

detailed results are presented in Appendix E. Type I

error rates were either equal to or smaller than the

established significance level for both the RDA based on

the Hellinger transformation and CCA, hence validating

the test (Appendix E).

VARIATION PARTITIONING—AN EXAMPLE OF FRACTION

ADJUSTMENT AND TESTING

In this section we present a complete example of the

approaches introduced here, where we contrast results

based on unadjusted and adjusted fractions in variation

partitioning. Data were comprised of the abundances of

35 species of oribatid mites and five habitat variables

from 70 soil cores 103 2.6 m in area in the peat blanket

surrounding a bog lake originally presented by Borcard

et al. (1992). Three of the five environmental variables

are qualitative and were transformed into Helmert

orthogonal contrasts as used in ANOVA (i.e., each k-

level categorical variable was represented by k – 1

contrasts). A total of 11 environmental predictors were

then used (nine Helmert contrasts representing qualita-

tive variables and two quantitative variables). In order

to generate spatial descriptors, we applied a distance-

based eigenvector map (Dray et al. 2006) to the spatial

coordinates of the cores. Here, the 22 eigenvectors with

positive eigenvalues were retained as spatial descriptors

to be used in the variation partitioning of the oribatid

data. We applied variation partitioning by RDA to the

matrix of Hellinger-transformed data. Results of varia-

tion partitioning based on adjusted and unadjusted

fractions are presented in Fig. 6. Differences between

adjusted and unadjusted fractions were quite noticeable,

especially given the large number of spatial descriptors

considered and when comparing the residual fraction [d]

between the unadjusted and adjusted partitioning. Based

on permutation tests (see Legendre and Legendre

1998:608–610), both fractions [a] and [c] explained a

significant portion of the variation (P[a]¼ 0.001; P[c] ¼
0.001; 1000 permutations were applied). Based on our

bootstrap procedure, however, the spatial and environ-

mental components explained similar proportions of

variation (P ¼ 0.4865) of the species distribution.

DISCUSSION

Canonical analyses have become standard tools to

analyze ecological community data in order to search

for patterns and test hypotheses regarding species

distributions and structuring factors. Although the issue

of adjustment of the explained variation has been greatly

stressed in univariate multiple regression modeling, it

had not been discussed for canonical analysis applied to

ecological data, especially for the case of variation

partitioning. The present study brought attention to the

importance of adjusting model explanation in canonical

analysis and assessed the appropriateness of standard

procedures used in regression analysis; it also offered a

novel adjustment in the case of CCA. Our study

demonstrated that sample R2
YjX used in canonical

analysis and variation partitioning is biased and that

adjustments are not only preferable but necessary to

provide more accurate estimations and valid compar-

isons between sets of factors in explaining community

structure. Discrepancies between nonadjusted and ad-

FIG. 6. Variation partitioning Venn diagrams representing the unadjusted (left) and adjusted (right) percentages of unique
contribution of [c] spatial and [a] environmental components to the oribatid mite distribution. Fraction [b] represents the shared
variation between the environmental and spatial components and [d] the residual variation left unexplained by the canonical model.
Distance-based eigenvector maps were used to analyze the spatial component of the mite variation. Although fractions [a] and [c]
were both significant in terms of explaining the variation in oribatid mite distribution, the proportions of variation explained by
each do not differ significantly from each other (bootstrap test for fractions, P ¼ 0.4865).
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justed fractions in variation partitioning will depend on

the differences between the numbers of variables in each

set of predictors. For instance, spatial regressors are

always simpler to generate in comparison to environ-

mental variables. As a result, the spatial fraction could

appear more important due to a large number of

unimportant spatial predictors considered in the canon-

ical analysis. Indeed, in our example (Fig. 6), we found

that the fraction due to the spatial component con-

tributed with almost twice as much variation as the

fraction due to the environmental component. Once

adjusted, both fractions were quite similar and indeed

the bootstrap test of fractions did not detect a significant

difference between the environmental and spatial con-

tributions. Adjustments will also permit comparisons

between different canonical analyses as they adjust not

only for the number of predictors but also for the

number of samples. Cottenie (2005), comparing the

contribution of environmental and spatial fractions

based on 158 published data sets using canonical

analysis, was forced to control for the potential bias in

the estimation by using subsets of 30 sites and four

spatial and environmental predictors in each analysis

since appropriate adjustments were not yet available.

Our assessment did not consider the case of presence–

absence data, other species transformations (Legendre

and Gallagher 2001), and different types of distances

such as Bray-Curtis that can be considered in distance-

based RDA (Legendre and Anderson 1999). However,

the simulation protocols applied here could be easily

adapted to assess the accuracy of the adjustments

considered here. The permutation approach used in

the case of CCA can also be easily implemented in the

case of other transformations prior to RDA and to

different distances in the case of db-RDA.

The testing procedure for assessing the difference

between two fractions of variation in canonical analysis

is analogous to the comparison of nonnested models.

There is a large body of literature dealing with tests for

nonnested models for multiple regressions (Royston and

Simpson 1995, Watnik et al. 2001), where sets of

predictors are compared. The existing methods for

comparing nonnested models, however, determine which

set of predictors (model) is the most important in

explaining the response variable. In the bootstrap test of

fractions proposed here, we consider that the combina-

tion of the two sets of regressors is important in

explaining the response variable, but that one set may

be more important than the other in patterning the

response variables (e.g., species). Current implementa-

tions for comparing nonnested models may identify

whether two sets of predictors are significant or not, but

not if the contribution of one set is significantly greater

than the other. In addition, these implementations are

only applicable to the case of multiple regressors having

one response variable and are not implemented for the

case of canonical analysis. Overall, we hope that the

methods suggested will aid ecologists in attaining an

understanding of the factors driving community struc-

ture.

A Matlab library and an executable version for

conducting variation partitioning based upon adjusted

R2 values in RDA or CCA, and testing fractions, are

available in Supplement 2 and Supplement 3, respec-

tively. The R-language function ‘‘varpart,’’ available in

the vegan library (Version 1.7-81 or higher; Oksanen et al.

2005), automatically conducts variation partitioning of a

response table with respect to two, three, or four tables of

explanatory variables, using RDA-adjusted R2 values.
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26:329–358.

Rodrı́guez, M. A., and W. M. Lewis, Jr. 1997. Structure of fish
assemblages along environmental gradients in floodplain lakes
of the Orinoco River. Ecological Monographs 67:109–128.

Royston, P., and S. G. Simpson. 1995. Comparing non-nested
regression models. Biometrics 51:114–127.

ter Braak, C. J. F. 1986. Canonical correspondence analysis: a
new eigenvector technique for multivariate direct gradient
analysis. Ecology 67:1167–1179.

ter Braak, C. J. F., and P. Smilauer. 2002. Canoco reference
manual and CanoDraw for Windows user’s guide: software
for canonical community ordination (Version 4.5). Micro-
computer Power, Ithaca, New York, USA.

Watnik, M., W. Johnson, and E. J. Bedrick. 2001. Nonnested
linear model selection revisited. Communications in statis-
tics—theory and methods 30:1–20.

Wu, C. F. J. 1986. Jackknife, bootstrap and other resampling
methods in regression-analysis. Annals of Statistics 14:1261–
1295.

Zar, J. H. 1999. Biostatistical analysis. Third edition. Prentice
Hall, London, UK.

APPENDIX A

A detailed description of the steps involved in calculation of the redundancy statistics in canonical correspondence analysis
(CCA) (Ecological Archives E087-158-A1).

APPENDIX B

A table presenting the slopes relating the species to the environmental variables considered in the simulations (Ecological
Archives E087-158-A2).

APPENDIX C

Results for the Hellinger-transformed species data (Ecological Archives E087-158-A3).

APPENDIX D

A simulation study showing the accuracy of the suggested bootstrapped adjusted R2 (Ecological Archives E087-158-A4).
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APPENDIX E

Results of simulations to assess the Type I error and power of the proposed bootstrap test of the difference between fractions in
variation partitioning, including results for redundancy analysis (RDA) and canonical correspondence analysis (CCA) (Ecological
Archives E087-158-A5).

SUPPLEMENT 1

Matlab function for conducting canonical correspondence analysis for very large data sets (Ecological Archives E087-158-S1).

SUPPLEMENT 2

Matlab library for conducting variation partitioning and test of fractions in multiple regression and canonical models (Ecological
Archives E087-158-S2).

SUPPLEMENT 3

An executable program for conduction variation partitioning with adjustments, test of fractions in redundancy analysis (RDA)
and canonical correspondence analysis (CCA) (Ecological Archives E087-158-S3).
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Appendices to: 

Peres-Neto, P.R., P. Legendre, S. Dray, and D. Borcard. 2006. Variation partitioning of species 
data matrices: estimation and comparison of fractions.  Ecology 87:2614–2625. 
 

APPENDIX A 

Ecological Archives E087-158-A1 
 

DETAILED DESCRIPTION OF THE STEPS INVOLVED IN CALCULATION OF THE REDUNDANCY 
STATISTICS IN CANONICAL CORRESPONDENCE ANALYSIS (CCA) 

1. Transform matrix Y into a matrix Q  of chi-square contributions: 

1 1

1/ 1/

[ ] [ / ]P Y Y

Q D PD D 1D
i i

n k

ij ij ij
i j

f f j f f j

p

+ +

= =

+ +

= =

= −

∑∑
 (1)   

where P is a (n x k) matrix of elements pij. 1/ if +
D  is a (n x n) diagonal matrix with 

elements 1/ if + . if +  is described below; n is the number of sites and k is the number of 

species (i.e., number of columns of matrix Y). jf+  is the sum of all frequencies 

(presence-absence or abundances) f  of species j. 1/
D

jf+
 is a (k x k) diagonal matrix 

with elements 1/ if + . 1 is a (n x k) matrix with all elements equal to unity. For 

completeness, D
if +

 is a (n x n) diagonal matrix with elements if + and D
if +

 is a (n x 

n) diagonal matrix with elements if + . The matrix calculation of Q  presented here 

gives the same results as equation 9.32 in Legendre and Legendre (1998; p 453). 

2. Standardize matrix X with weights given by the sum of the species frequencies at each 

site (i.e., the rows of matrix Y) as follows:  
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1 1

2 2

1 1 1

1
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D D X
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i i

std ip n n n

i p i p i
i i i

n

i
i

f f

f X f f

f

+ +
= =

+ + +
= = =

+
=

⎡ ⎤
⎢ ⎥
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⎢ ⎥

−⎢ ⎥
⎢ ⎥= =
⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑

∑ ∑ ∑

∑

 (2) 

where p the number of regressors, and if +D  is a (n x n) diagonal matrix with elements 

equal to the sum of the rows if +  of the species matrix Y. For instance, the first diagonal 

element of this matrix is the sum of all species frequencies (abundances or presence-

absences) f  present at site 1. Note that 
1 1 1

n n k

i ij
i i j

f Y+
= = =

=∑ ∑∑ (i.e., the sum of all values in 

matrix Y) where Yij is the frequency of species j at site i. In the case of presence-absence 

matrices, Yij is either 1 or 0.   

3. Calculate the fitted values for all columns of Q  using weighted multiple regression, 

instead of the multiple regression used in RDA: 

1( ' ) '
ii istd std f std stdf f++ +

−=Q D X X D X X D Q  (3) 

4. Calculate 2
YR X :  

( ' ) / ( )X trace trace=2
YR Q Q Q'Q  (4) 

or in terms of species weights: 
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22

2 1 1
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1

R
( )

Q Q

Q'Q Q

ij ij

ij

n n

k
i i

X n
j

i

trace
= =

=

=

=
∑ ∑

∑
∑

 (5) 

 

As for RDA (eq. 5 main text), 
2
YR X in CCA also becomes a weighted average of 

independent R2 of individual models (i.e., 2
jR ) weighted by the species variance, divided 

by the total variance (i.e.,
2

1

/ ( )Q Q'Q
ij

n

i

trace
=
∑ ). 
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APPENDIX B 

Ecological Archives E087-158-A2 
 

A TABLE PRESENTING THE SLOPES RELATING THE SPECIES TO THE ENVIRONMENTAL 

VARIABLES CONSIDERED IN THE SIMULATIONS 

TABLE B1. Individual slopes relating the 27 species to the 6 environmental variables 
considered in the simulations throughout this study.  
 Species 1 Species 2 Species 3 Species 4 Species 5 Species 6 

Predictor 1 0.662 0.831 0.246 -0.470 -0.161 -0.530 

Predictor 2 -0.058 0.022 -0.315 -0.013 -0.247 -0.233 

Predictor 3 56.348 20.106 -723.217 -611.426 858.843 -983.626 

Predictor 4 56.035 22.099 -723.406 -611.564 859.091 -983.669 

Predictor 5 55.597 19.513 -724.010 -611.311 858.307 -983.262 

Predictor 6 56.478 20.592 -722.688 -610.936 858.360 -983.391 

 Species 7 Species 8 Species 9 Species 10 Species 11 Species 12 

Predictor 1 -0.158 -0.581 0.249 -0.952 0.445 0.010 

Predictor 2 0.043 0.120 -0.006 0.198 -0.294 -0.229 

Predictor 3 625.902 -562.233 -615.060 90.175 208.564 -589.630 

Predictor 4 626.807 -562.550 -613.868 89.884 209.552 -588.530 

Predictor 5 625.533 -561.534 -614.349 91.327 208.770 -589.006 

Predictor 6 625.536 -562.246 -614.050 90.695 209.134 -589.330 

 Species 13 Species 14 Species 15 Species 16 Species 17 Species 18 

Predictor 1 -0.734 0.540 1.033 0.225 0.522 0.373 

Predictor 2 -0.044 -0.169 -0.231 -0.083 -0.423 -0.043 

Predictor 3 83.618 -582.083 738.813 196.453 -774.486 598.534 

Predictor 4 84.156 -581.295 740.993 195.128 -774.428 599.473 

Predictor 5 85.186 -581.814 739.852 195.905 -773.304 600.224 

Predictor 6 83.961 -581.782 740.028 195.368 -773.486 599.045 

 Species 19 Species 20 Species 21 Species 22 Species 23 Species 24 

Predictor 1 -1.270 -0.049 0.788 -0.966 0.123 0.476 

Predictor 2 -0.081 -0.135 0.211 0.044 -0.102 -0.236 

Predictor 3 -26.611 -142.535 25.803 -1220.003 -8.512 1051.437 

Predictor 4 -27.338 -142.657 27.617 -1217.841 -7.279 1053.185 

Predictor 5 -25.948 -143.463 27.467 -1218.485 -7.496 1051.579 

Predictor 6 -26.698 -143.515 26.568 -1219.019 -8.147 1052.437 
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Table B1 – continued 

 Species 25 Species 26 Species 27     

Predictor 1 -0.266 0.853 0.884    

Predictor 2 0.010 0.090 -0.523    

Predictor 3 -9.037 1240.212 656.884    

Predictor 4 -9.214 1240.604 657.273    

Predictor 5 -8.376 1239.787 656.591    

Predictor 6 -8.904 1239.763 656.530    
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APPENDIX C 
 

Ecological Archives E087-158-A3 
 

RESULTS FOR THE HELLINGER-TRANSFORMED SPECIES DATA 

number of random N(0,1) predictors
added to the model
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Fig. C1 - The influence of null predictors and sample size on the sample mean 2
H YR  

(solid) and the mean adjusted 2
(H X)R adj  (open symbols) considering two RDA populations 

with abundance-like dependent variables that were Hellinger-transformed (see text for 
explanation).  Triangles represent samples from a population with 2

H YR = 0.610 whereas 

circles represent samples from a population with 2
H YR = 0.207.  Horizontal lines represent 

population values.  In the case of the influence of the number of null predictors (left 
panel), samples were based on 100 observations, whereas in the case of the influence of 
sample size (right panel), only active predictors were used (i.e., no null predictor was 
added to the model). 
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number of random N(0,1) variables added to the predictors in W
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Fig. C2 - he influence of null predictors and sample size on fraction estimation in RDA 
variance partitioning considering abundance-like dependent variables that were 
Hellinger-transformed (see text for explanation). Left panels: sample 2

H XR ; right panels: 

adjusted 2
(H X)R adj . In the case of the influence of the number of null predictors (upper 

panel), samples were based on 100 observations, whereas in the case of the influence of 
sample size (lower panel) only active predictors were used (i.e., no null predictor was 
added to the model). In that case, all predictors in X were active, whereas in W was 
found a mix of active and null predictors.   
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APPENDIX D 
 

Ecological Archives E087-158-A4 
 

Simulation study showing the accuracy of the Suggested bootstrapped adjusted R2: 
 

Bootstrapped adjusted 2
Y XR was calculated as in equation 11, where the total sum-

of-squares (SST = ( ' )cent centtrace Y Y ) in the equation was divided by n instead of (n–1) 

as in equation 4.  Our decision was based on the fact that the maximum likelihood 

estimator of SST based on n provided better adjusted estimates under bootstrap (Table 

D2).  Here we provide the simulations used to advocate the proposed estimator in 

equation 11 (text).  Simulations were based on multiple regressions (i.e., one response 

variable) rather than canonical analysis since the only simulation work to assess the 

accuracy of bootstrap 2
adjR  used multiple regressions (Ohtani 2000).  Another set of 

simulations, not shown here, indicates that our estimator is also better in the case of 

canonical analysis.  He used a formulation like the one in equation 10, but considering 

the denominator based on SSTBoot ( ( ' ) /( 1)Y Yboot boottrace n − ) instead of 

( ' ) /Y Ycent centtrace n  or ( ' ) /( 1)Y Ycent centtrace n − .  He also applied a bootstrap 

based on residuals, so that results are directly comparable between formulations.  

To compare these estimators we applied the protocol implemented in Ohtani (2000) as 

follows: 
1. Generate sample response y and predictor X variables from 2ρ (i.e., population R2) as 

follows: 

 2 2= ρ (1 ρ )nλ −  

where n is sample size 

 /γ pλ=  

where γ is a (1 x p) vector with all elements equal to / pλ  
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-0.5( )β X'X γ=  

whereβ is a (p x 1) vector of slopes, X is a (n x p) matrix containing p random normally 

distributed variables N(0,1).  Note that columns of X were standardized (i.e., mean = 0 

and variance = 1). 

 

 y Xβ e= +  

 where e represents a (n x 1) vector containing N(0,1) deviates.   
2.  Generate 1000 samples based on step 1 for a particular combination of 2ρ , n and p and 

estimate bootstrap adjustments based on 1000 bootstrap samples. Since the 

2ρ (population R2) is known, we can estimate accuracy by taking the mean over the 1000 

estimates of adjusted values and compare it with 2ρ .   

3. We considered the same values for 2ρ , the number of predictors and sample size. Table 

D1 presents the results, indicating that the suggested estimator in equation 1 is the most 

accurate.   
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Table D1.  Values used in the simulation for comparing bootstrapped adjusted R2. 

p n 2ρ  
2
(YX) (n)R  −adj boot

2
(YX) (n-1)R  −adj boot  Ohtani’s

3 20 0.9000 0.9044 0.9092 0.9042 
  0.6670 0.6699 0.6864 0.6709 
  0.5000 0.4994 0.5244 0.5153 
  0.3330 0.3337 0.3670 0.3608 
 40 0.9000 0.9017 0.9041 0.9029 
  0.6670 0.6667 0.6751 0.6662 
  0.5000 0.5056 0.5180 0.5060 
  0.3330 0.3338 0.3504 0.3450 
 80 0.9000 0.9013 0.9025 0.9008 
  0.6670 0.6680 0.6722 0.6689 
  0.5000 0.5026 0.5088 0.4977 
  0.3330 0.3303 0.3387 0.3429 

8 20 0.9000 0.9081 0.9127 0.9066 
  0.6670 0.6770 0.6932 0.7027 
  0.5000 0.5164 0.5406 0.5816 
  0.3330 0.3456 0.3783 0.4548 
 40 0.9000 0.9034 0.9058 0.9031 
  0.6670 0.6714 0.6796 0.6846 
  0.5000 0.4997 0.5122 0.5392 
  0.3330 0.3350 0.3517 0.3950 
 80 0.9000 0.9005 0.9018 0.9021 
  0.6670 0.6693 0.6734 0.6751 
  0.5000 0.5074 0.5136 0.5217 
  0.3330 0.3356 0.3440 0.3703 
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APPENDIX E 
 

Ecological Archives E087-158-A5 
 

RESULTS OF SIMULATIONS TO ASSESS THE TYPE I ERROR AND POWER OF THE PROPOSED 

BOOTSTRAP TEST OF THE DIFFERENCE BETWEEN FRACTIONS IN VARIATION PARTITIONING: 

AN EXPLANATION AND RESULTS FOR REDUNDANCY ANALYSIS (RDA, TABLES E1 AND E2) 

AND CANONICAL CORRESPONDENCE ANALYSIS (CCA, TABLES E3 AND E4) 

 

In order to assess the statistical robustness of the proposed test, we set out to 

empirically estimate type I error rates and power based on Monte Carlo experiments 

(Peres-Neto and Olden 2001). Type I error rates were estimated by considering 

populations where fractions [a] and [c] were equal in values, whereas power was assessed 

by creating populations where fractions [a] and [c] had different value. As in our previous 

experiments, we considered populations by manipulating the slopes in Table B1 to obtain 

the desired fractions. Here, due the computational limitations given the large number of 

scenarios considered, instead of building large populations (i.e., n = 200 000), we simply 

generated samples with the desired sample sizes. Both procedures are equivalent, but in 

the first set of experiments where we wanted to measure the accuracy of the proposed 

adjustment, it was necessary to know the exact values of the fractions for the populations.  

By setting equal multiplication factors for the slopes used to generate matrices X 

and W (Table B1), we created populations that were suitable for estimating type I error 

rates associated with the proposed test, whereas by applying different multiplication 

factors we created populations suitable for estimating the power of the test procedure. 

Several populations were considered by the combination of multiplication factors and 

correlations among predictors to generate desirable [a] and [c] fractions. In addition, in 

many scenarios, a certain number of null predictors containing only normal error were 

added to either X or W, or both. We also used a forward selection procedure in order to 
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assess whether the performance of the testing procedure is increased, especially in the 

presence of null predictors. The stepwise selection procedure is the same as the 

permutation-based selection procedure implemented in the program Canoco (ter Braak 

and Smilauer 2002). 1000 permutations were applied and the selection procedure was 

stopped when the probability associated with a candidate variable was equal to or smaller 

than α = 0.05. Selection was performed in matrices X and W separately. 

The simulation parameters for each population, the average values across samples 

for fractions [a], [b] and [c] and rejections rates are presented in Table E1 (type I error) 

and Table E2 (power). The response variables (species) were Hellinger-transformed. 

Type I error rates were estimated as the number of times the procedure erroneously 

reported a significant outcome at the 5% significance level when mltX = mltW. Power was 

estimated as the number of times a test correctly rejected the null hypothesis at the 5% 

significance level when mltX ≠ mltW). We considered sample sizes of n = 100 and 50 

observations. In addition, in order to assess the potential influence of the number of 

species in the test, we considered populations comprised of 27 species (all species of 

Table B1 were used) and 10 species (only the first 10 species of Table B1 were 

considered). Estimates were based on 1000 generated sets of data tables. A statistical test 

is considered valid if the associated type I error rates are not larger than the established 

level of significance α for any α value. For simplicity, in the case of type I error 

assessment, we established a fixed confidence interval around the alpha level as 0.036-

0.064 (confidence intervals were estimated as: 0.05 0.05(1 0.05) /1000± −  where 0.05 

represents α and 1000 is the number of trials). In this way, any estimated type I error rate 

larger than 0.064 would be considered as significantly different from the expected value 

of 0.05.  

Although type I error rates were not constant across simulations, they were either 

equal or smaller than the established alpha level when forward selection was not used, 

hence validating the test (Table E1). While the stepwise procedure was efficient in 
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eliminating the null predictors present in matrices X and W, the selected sets of active 

predictors (i.e., b ≠ 0) were not always consistent across the two matrices of predictors, 

leading to increased type I error rates (Table E1), especially in the case of samples of 50 

observations. Type I error was not affected by considering a smaller number of species.  

Power depended consistently on the difference between fractions [a] and [c] and 

was only slightly affected by the presence of null predictors in the model (Table E2). This 

was especially the case when only the matrix of predictors having the smallest population 

fraction contained null predictors, or when both sets of predictors contained null 

predictors. Since sampling variation of the adjusted fractions may increase in the 

presence of null predictors, this is also reflected in the bootstrap confidence intervals. 

This brings attention to the potential use of bootstrap variance as a mean of detecting the 

presence of null predictors in a data set.When removing a particular predictor, if the 

bootstrap variance of the statistic 
2
(Y )R −X adj boot  decreases, this may indicate that the 

variable in question is either null or contributes to only a small portion of the variation in 

the model. The power of the test procedure was smaller in the simulations where 10 

species only were considered. By analyzing a larger number of species, greater sampling 

stability was achieved, hence power increased. 

It is interesting to note that the estimation of fractions were in average more 

accurate when using the full set of predictors than when applying forward selection.  

Rencher and Pun (1980) using simulations found that in univariate multivariate 

regression, R2 is in inflated when compared to the expected size. In our case, values were 

slightly smaller given that before applying the forward selection procedure we conducted 

an overall test of significance considering all predictors in the model. If the test was not 

significant, then the forward selection was not conducted and the contribution (R2) of the 

set of predictors that was not significant (X or W, or both) was set to 0.  Therefore, given 

the overall test, our results indicate that the selection procedure provides slightly smaller 

values as opposed to the unrestricted version of Rencher and Pun (1980).   
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The robustness of the proposed testing procedure was also assessed for CCA. 

Note that in this case, CCA residuals were bootstrapped. Simulation parameters and 

results are presented in Table E3 (type I error rate) and Table E4 (power). As before, 

sample sizes of 100 and 50 observations for populations composed of 27 species, as well 

100 observations for populations composed of 10 species, were considered. Forward 

selection of predictors was not conducted here, given its lower performance compared to 

the direct test of fractions for the Hellinger-based RDA, especially for small sample sizes. 

The multiplication factors were modified to obtain measurable differences between the 

CCA fractions. Samples based on mltX = 0.0010 and mltW = 0.0010 and 10 species 

occasionally had 1 or 2 sites per sample without any species present. When this 

happened, a species was chosen at random and a value of 1 was placed in the empty row 

of matrix Y because CCA cannot be computed with species that are missing in all 

samples. An important aspect of CCA is the shared fraction [b]. Even if predictors are 

perfectly orthogonal (i.e., correlation of zero), fraction [b] in CCA is not 0. This is 

because weights based on the species matrix are applied during regression, so that the 

predictors are no longer orthogonal after weighting. This analytical aspect could be 

modified by weighting the regressors prior to orthogonalization. Note, however, that 

current codes (e.g., Canoco, Vegan, PC-ORD) do not carry this implementation since 

orthogonal regressors will always provide a non-zero fraction [b] in CCA. Available 

computer programs for CCA offer no solution to that problem. As currently implemented, 

the analysis of a response data table made of species abundances against factors of an 

ecological experiment that were designed to be orthogonal, CCA will not keep the factors 

orthogonal and will generate a non-zero fraction [b] representing non-existing shared 

explanation of the species abundances data between the orthogonal factors. As in 

Hellinger-based RDA (Table E1), type I error rates in CCA (Table E3) were also equal to 

or smaller than the established alpha level. Power (Table E4) varied according to the 
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differences between fractions, and was also smaller when considering populations 

consisting of 10 species.   
 

LITERATURE CITED 
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TABLE E1. Type I error rates for the bootstrap-based procedure for testing differences between fractions in RDA variation partitioning, based on the Hellinger-
transformed data in matrix Y. Estimates are proportions of rejection of the null hypothesis (∝ = 0.05) after analyzing 1000 sets of generated data tables. Mlt is the 
multiplication factor applied to predictor slopes and r(X,W) is the uniform correlation value among predictors. FS stands for forward selection. 

   Number of N(0,1) Selection of n =100, 27 species n =50, 27 species n =100, 10 species 

Mlt for  variables added variables Mean estimates Rejection Mean estimates Rejection Mean estimates Rejection 

X W r(X,W) X W in model [a] [b] [c] rates [a] [b] [c] rates [a] [b] [c] rates 

none 0.14 0.02 0.14 0.022 0.14 0.02 0.14 0.025 0.15 0.03 0.15 0.024 
0 0 

FS 0.13 0.03 0.13 0.033 0.10 0.04 0.10 0.074 0.14 0.03 0.15 0.040 

none 0.14 0.02 0.14 0.032 0.14 0.02 0.14 0.015 0.15 0.03 0.15 0.034 
0.0070 0.0070 0.1 

5 0 
FS 0.13 0.03 0.13 0.031 0.10 0.04 0.10 0.065 0.15 0.03 0.14 0.046 

none 0.27 0.12 0.27 0.032 0.27 0.10 0.28 0.057 0.27 0.12 0.27 0.053 
0 0 

FS 0.27 0.12 0.26 0.043 0.22 0.14 0.23 0.103 0.27 0.13 0.27 0.058 

none 0.27 0.12 0.27 0.046 0.28 0.10 0.28 0.048 0.28 0.12 0.27 0.048 
5 0 

FS 0.26 0.13 0.26 0.055 0.23 0.14 0.22 0.104 0.27 0.13 0.26 0.060 

none 0.27 0.12 0.27 0.052 0.27 0.11 0.28 0.051 0.28 0.11 0.28 0.052 

0.1000 0.1000 0.05 

10 0 
FS 0.27 0.13 0.26 0.061 0.23 0.16 0.21 0.149 0.27 0.13 0.26 0.061 

none 0.27 0.12 0.27 0.055 0.27 0.11 0.28 0.056 0.28 0.11 0.28 0.047 
5 5 

FS 0.26 0.13 0.26 0.068 0.22 0.16 0.22 0.130 0.27 0.13 0.27 0.063 

none 0.25 0.04 0.25 0.034 0.25 0.03 0.25 0.048 0.27 0.04 0.27 0.038 
0 0 

FS 0.24 0.05 0.24 0.039 0.19 0.07 0.19 0.113 0.26 0.05 0.26 0.051 

none 0.25 0.04 0.25 0.045 0.25 0.03 0.25 0.031 0.27 0.04 0.27 0.041 

0.0100 0.0100 0.02 

5 0 
FS 0.24 0.05 0.23 0.059 0.19 0.08 0.19 0.112 0.26 0.06 0.25 0.060 

none 0.14 0.02 0.14 0.022 0.14 0.02 0.14 0.025 0.15 0.03 0.15 0.024 
0 0 

FS 0.13 0.03 0.13 0.033 0.10 0.04 0.10 0.074 0.14 0.03 0.15 0.040 

none 0.14 0.02 0.14 0.032 0.14 0.02 0.14 0.015 0.15 0.03 0.15 0.034 
5 0 

FS 0.13 0.03 0.13 0.031 0.10 0.04 0.10 0.065 0.15 0.03 0.14 0.046 

none 0.14 0.02 0.14 0.026 0.14 0.02 0.14 0.019 0.15 0.02 0.15 0.022 
10 0 

FS 0.13 0.03 0.13 0.035 0.10 0.05 0.10 0.085 0.15 0.03 0.14 0.043 

none 0.14 0.02 0.14 0.027 0.14 0.02 0.14 0.021 0.15 0.02 0.15 0.022 

0.0008 0.0008 0.02 

5 5 
FS 0.13 0.03 0.13 0.028 0.10 0.05 0.10 0.076 0.15 0.03 0.15 0.035 

none 0.29 0.00 0.29 0.031 0.29 -0.01 0.30 0.050 0.31 0.00 0.31 0.037 
0 0 

FS 0.28 0.01 0.27 0.043 0.20 0.06 0.21 0.122 0.29 0.01 0.29 0.056 
0.0200 0.0200 0 

5 0 
none 0.29 0.00 0.29 0.044 0.30 -0.01 0.29 0.033 0.31 0.00 0.31 0.036 

     FS 0.28 0.02 0.27 0.055 0.21 0.06 0.20 0.119 0.30 0.02 0.29 0.055 
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TABLE E2. Power estimates for the bootstrap-based procedure for testing differences between fractions in RDA variance partitioning based on the Hellinger 
transformed data. Estimates are based on the average proportion of rejections (∝=0.05) per 1000 sample test. Mlt is the multiplication factor applied to predictor 
slopes and r (X,W) the uniform correlation value among predictors. FS stands for forward selection.

   Number of N(0,1) Selection of  n =100, 27 species n =50, 27 species n =100, 10 species 

Mlt for  variables added variables Mean estimates Rejection Mean estimates Rejection Mean estimates Rejection 

X W r(X,W) X W in model [a] [b] [c] rates [a] [b] [c] rates [a] [b] [c] rates 

None 0.23 0.11 0.05 0.995 0.24 0.10 0.05 0.826 0.25 0.12 0.05 0.985 
0.0018 0.0008 0.1 0 0 

FS 0.23 0.11 0.04 0.996 0.23 0.10 0.03 0.885 0.26 0.12 0.05 0.987 

none 0.21 0.15 0.12 0.323 0.21 0.14 0.12 0.148 0.22 0.16 0.13 0.295 
0.004 0.003 0.1 0 0 

FS 0.21 0.15 0.11 0.347 0.19 0.15 0.10 0.232 0.22 0.16 0.12 0.316 

none 0.25 0.08 0.14 0.398 0.25 0.07 0.14 0.183 0.26 0.09 0.15 0.337 
0 0 

FS 0.24 0.08 0.13 0.444 0.22 0.09 0.10 0.294 0.26 0.09 0.14 0.370 

none 0.25 0.08 0.14 0.399 0.25 0.07 0.14 0.193 0.26 0.09 0.15 0.344 
5 0 

FS 0.24 0.09 0.13 0.453 0.22 0.10 0.10 0.310 0.26 0.09 0.14 0.400 

none 0.25 0.08 0.14 0.378 0.25 0.07 0.14 0.151 0.26 0.09 0.15 0.334 
0 5 

FS 0.24 0.09 0.13 0.417 0.21 0.10 0.10 0.273 0.26 0.10 0.14 0.358 

none 0.24 0.08 0.14 0.334 0.24 0.08 0.14 0.152 0.27 0.08 0.15 0.310 

0.004 0.003 0.005 

5 5 
FS 0.24 0.09 0.13 0.408 0.21 0.11 0.10 0.276 0.26 0.09 0.14 0.380 

none 0.25 0.31 0.06 0.748 0.26 0.30 0.07 0.402 0.26 0.33 0.07 0.697 
0 0 

FS 0.26 0.30 0.06 0.779 0.27 0.29 0.06 0.463 0.27 0.32 0.07 0.717 

none 0.25 0.31 0.06 0.706 0.26 0.30 0.07 0.401 0.26 0.33 0.07 0.677 
5 0 

FS 0.26 0.31 0.06 0.775 0.27 0.29 0.06 0.499 0.27 0.32 0.07 0.742 

none 0.25 0.31 0.06 0.710 0.26 0.30 0.07 0.364 0.26 0.33 0.07 0.665 
0 5 

FS 0.25 0.31 0.06 0.729 0.26 0.30 0.07 0.435 0.27 0.32 0.07 0.690 

none 0.25 0.31 0.06 0.678 0.25 0.31 0.06 0.342 0.27 0.32 0.07 0.676 

0.04 0.02 0.2 

5 5 
FS 0.26 0.31 0.06 0.727 0.26 0.31 0.06 0.451 0.27 0.32 0.07 0.728 

none 0.31 0.09 0.12 0.777 0.31 0.08 0.12 0.407 0.33 0.09 0.13 0.709 
0.008 0.005 0.05 0 0 

FS 0.30 0.09 0.11 0.798 0.28 0.10 0.08 0.530 0.32 0.10 0.12 0.745 

none 0.39 0.03 0.10 0.986 0.39 0.02 0.10 0.771 0.42 0.04 0.10 0.980 
0.01 0.005 0.02 0 0 

FS 0.37 0.05 0.07 0.990 0.35 0.06 0.05 0.851 0.40 0.06 0.08 0.984 

none 0.36 0.04 0.16 0.698 0.36 0.03 0.16 0.332 0.38 0.04 0.17 0.651 
0.015 0.01 0.02 0 0 

FS 0.34 0.05 0.14 0.746 0.31 0.07 0.10 0.529 0.36 0.06 0.15 0.717 
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TABLE E3. Type I error estimates for the bootstrap-based procedure for testing differences between fractions in CCA 
variance partitioning. Estimates are based on the average proportion of rejections (∝=0.05) per 1000 sample test. Mlt is 
the multiplication factor applied to predictor slopes and r (X,W) the uniform correlation value among predictors. 

     n =100, 27 species n = 50, 27 species n =100,10 species 

   Number of N(0,1) Mean Rejection Mean Rejection Mean Rejection 

Mlt for  variables added estimates rates estimates rates estimates rates 

X W r(X,W) X W [a] [b] [c]   [a] [b] [c]   [a] [b] [c]   

0 0 0.10 0.08 0.10 0.016 0.11 0.08 0.11 0.010 0.12 0.10 0.12 0.015 

5 0 0.10 0.08 0.10 0.009 0.10 0.08 0.11 0.009 0.14 0.09 0.13 0.017 

0 5 0.11 0.08 0.10 0.012 0.11 0.08 0.11 0.003 0.15 0.09 0.13 0.030 
0.0010 0.0010 0.01 

5 5 0.11 0.07 0.11 0.015 0.12 0.06 0.12 0.009 0.14 0.09 0.14 0.016 

0 0 0.18 0.23 0.17 0.035 0.18 0.22 0.18 0.032 0.20 0.28 0.20 0.033 

5 0 0.19 0.22 0.18 0.037 0.20 0.21 0.19 0.031 0.21 0.27 0.20 0.025 

0 5 0.19 0.22 0.18 0.036 0.20 0.21 0.19 0.033 0.21 0.27 0.20 0.027 
0.0200 0.0200 0.01 

5 5 0.19 0.22 0.18 0.033 0.19 0.21 0.20 0.030 0.21 0.28 0.21 0.034 

0 0 0.21 0.29 0.21 0.037 0.21 0.28 0.22 0.040 0.21 0.31 0.22 0.037 

5 0 0.22 0.29 0.21 0.035 0.23 0.27 0.23 0.040 0.23 0.31 0.22 0.032 

0 5 0.22 0.29 0.21 0.042 0.23 0.27 0.23 0.039 0.23 0.31 0.22 0.029 
0.0700 0.0700 0.01 

5 5 0.22 0.29 0.21 0.037 0.22 0.27 0.23 0.042 0.22 0.31 0.22 0.037 
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TABLE E4. Power estimates for the bootstrap-based procedure for testing differences between fractions in CCA 
variance partitioning. Estimates are based on the average proportion of rejections (∝=0.05) per 1000 sample test. Mlt 
is the multiplication factor applied to predictor slopes and r (X,W) the uniform correlation value among predictors. 

 

 
     n =100, 27 species n = 50, 27 species n =100,10 species 

   Number of N(0,1) Mean Rejection Mean Rejection Mean Rejection 

Mlt for  variables added estimates rates estimates rates estimates rates 

X W r (X,W) X W [a] [b] [c]   [a] [b] [c]   [a] [b] [c]   

0 0 0.26 0.11 0.05 0.993 0.27 0.11 0.06 0.827 0.30 0.14 0.06 0.986 

5 0 0.27 0.11 0.06 0.998 0.27 0.11 0.06 0.820 0.32 0.14 0.06 0.998 

0 5 0.26 0.11 0.06 0.978 0.27 0.11 0.06 0.717 0.31 0.14 0.08 0.950 
0.01 0.00 0.01 

5 5 0.27 0.11 0.06 0.987 0.28 0.11 0.07 0.755 0.32 0.14 0.07 0.985 

0 0 0.32 0.15 0.06 0.995 0.33 0.15 0.07 0.845 0.37 0.20 0.07 0.992 

5 0 0.33 0.15 0.06 0.999 0.34 0.15 0.07 0.858 0.38 0.20 0.07 0.997 

0 5 0.33 0.15 0.07 0.979 0.33 0.15 0.08 0.741 0.38 0.19 0.08 0.971 
0.02 0.01 0.01 

5 5 0.33 0.15 0.07 0.994 0.34 0.15 0.07 0.802 0.38 0.20 0.08 0.993 

0 0 0.27 0.25 0.13 0.535 0.27 0.24 0.13 0.262 0.29 0.29 0.14 0.496 

5 0 0.28 0.24 0.13 0.570 0.29 0.23 0.14 0.27 0.30 0.28 0.14 0.519 

0 5 0.27 0.24 0.14 0.471 0.28 0.23 0.15 0.204 0.30 0.28 0.15 0.449 
0.04 0.03 0.01 

5 5 0.28 0.24 0.14 0.519 0.29 0.23 0.14 0.216 0.30 0.29 0.15 0.478 

0 0 0.30 0.27 0.13 0.669 0.31 0.26 0.13 0.340 0.31 0.29 0.13 0.626 

5 0 0.31 0.26 0.13 0.696 0.32 0.25 0.14 0.352 0.33 0.29 0.14 0.638 

0 5 0.31 0.26 0.14 0.610 0.32 0.24 0.15 0.274 0.32 0.29 0.15 0.572 
0.07 0.05 0.01 

5 5 0.31 0.27 0.13 0.653 0.32 0.25 0.14 0.284 0.32 0.29 0.14 0.594 


