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Abstract. Mercury levels in fish in reservoirs and natural lakes have been monitored on
a regular basis since 1978 at the La Grande hydroelectric complex located in the James
Bay region of Québec, Canada. The main analytical tools historically used were analysis of
covariance {ANCOVA), linear regression of the mercury-to-length relationship and Student-
Newman-Keuls (SNK) multiple comparisons of mean mercury levels. Inadequacy of linear
regression (mercury-to-length relationships are often curvilinear) and difficulties in comparing
mean mercury levels when regressions differ lead us to use polynomial regression with indicator
variables.

For comparisons between years, polynomial regression models relate mercury levels to
length (L), length squared (L%), binary (dummy) indicator variables (B, ), each regreseming a
sampled year, and the products of each of these explanatory variables (L x By, L" x By, L x
B,, etc.). Optimal transformations of the mercury levels (for normality and homogeneity) were
found by the Box-Cox procedure. The models so obtained formed a partially nested series
corresponding to four situations: (a) all years are well represented by a single polynomial
model; (b) the year-models are of the same shape, but the means may differ; (c) the means are
the same, but the year-models differ in shape; (d) both the means and shapes may differ among
years. Since year-specific models came from the general one, rigorous statistical comparisons
are possible between models.

Polynomial regression with indicator variables allows rigorous statistical comparisons of
mercury-to-length relationships among years, even when the shape of the relationships differ.
It is simple to obtain accurate estimates of mercury levels at standardized length, and multiple
comparisons of these estimations are simple to perform. The method can also be applied to
spatial analysis (comparison of sampling stations), or to the comparison of different biological
forms of the same species (dwarf and normal lake whitefish).

1. Introduction

Since the 1970’s, many studies have shown the relation between impoundment
of reservoirs and rise of mercury concentrations in fish (Potter et al. 1975;
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Kelly et al. 1975; Abemathy & Cumbie 1977; Bruce et al. 1979; Bodaly
et al. 1984; Messier & Roy 1987; McMurtry et al. 1989; Brouard et al.
1990; Monteiro et al. 1991). Some authors have also demonstrated that a
rise of mercury in fish in natural lakes may be related to the anthropogenic
sources and activities (Hakanson et al. 1988; Lucotte et al. 1995). Most of the
time, the relation between mercury concentration and length, weight or age
of fish was described by linear regression and comparison between year or
sampling station (if any) was made with covariance analysis. In some instance
comparisons were based on more simple statisticals tools like analysis of
variance and multiple range tests of means mercury levels.

As for other water bodies contaminated with mercury, a monitoring
program for fish was implemented in the La Grande hydroelectric complex,
located in the James Bay region of Québec (Canada). A first attempt was
made in 1987 at formulating an appropriate statistical procedure for analysis
of data (Brouard et al. 1987), which include length, weight, sex, age, year and
sampling station. The goals were to follow the temporal evolution of mercury
levels in fish, which are related to length, and to compare the levels and
relationships of mercury to length within reservoirs, and between reservoirs
and natural lakes. The analysis should also be able to provide information on
the duration of elevated mercury levels in reservoir fish.

Some problems arose using earlier methods. Linear regression equations
did not always fit the data well. In addition, the square root transformation of
mercury concentration was not always appropriate. Analysis of covariance,
using fish length as the covariate, was also difficult to apply because for many
cases the conditions of equality of the variances and slopes among the linear
regression models were not met. In these cases, the alternative SNK procedure
(noregression technique involved in this test) was also unsatisfactory because
the mercury levels being compared did not correspond to fish of similar
lengths.

The revised method of data analysis includes (1) transformation for
normality and homoscedasticity treated on a species-specific basis, (2) a
non-linear generalisation of the analysis of covariance (Legendre & McArdle
1997), involving polynomial regression with indicator variables of mercury-
to-length relationships; (3) comparison of confidence intervals of mercury
levels estimated at standardized length by the polynomial regression; and
(4), when mercury levels have returned to background concentrations, power
analysis following Student’s r-test between levels found in impoundments
and in natural lakes of the same region.

This paper describes the former and new methods stressing the differences
and the points of improvement. We also describe polynomial regression analy-
sis with indicator variables and present a few examples of the application of
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the method. This method, with a fully worked example, is described in a
guidance document (Tremblay et al. 1996) which is available both in French
and English by request from the authors.

2. Description and comparison of the methods
2.1 Former procedure (1987)

Figure 1 shows the flow diagram of data analysis under the former statistical
approach (Brouard et al. 1987). Three decision points are found in the diagram,
based on five conditions of application for analysis of covariance. The first
decision point considers normality and homoscedasticity, which are required
for parametric methods such as analysis of covariance and SNK comparisons.
The second decision point tests the homogeneity of residual variances among
regression lines. If this condition was not met, non-parametric Kruskall-Wallis
tests were used to compare mean mercury levels.

The third decision point occurs when testing for equality of slopes of
the regression lines. If that condition is met, analysis of covariance can be
used to compare mercury levels by testing for equality of the intercepts
(elevation). If slopes are not equal, a situation often encountered, the analysis
of mercury levels can only be made by the SNK multiple comparison test.
Because of differences in mean total lengths, there were discrepancies in some
cases between mean mercury levels compared by the SNK procedure and the
estimated mercury levels at standardized length. An example is presented
in Table 1. Mercury levels reported in column “ST” (estimated from linear
regression) indicate that the statistical decision in column “Mean” is incorrect,
the value from 1989 being in fact the lower. Interpretation of the temporal
evolution of mercury as well as the spatial comparisons of mercury levels
could thus be seriously biased.

Even when the analysis of covariance could be applied, estimation of
mercury levels at standardized length was not realistic in many cases because
of the lack of fit of a linear model to the data, particularly a few years after
impoundment of the reservoirs, when the mercury-to-length relationships
often became curvilinear (Figure 2).

2.2 New procedure (1995)

The new approach is much less restrictive in its conditions of application.
There is only one decision box in the diagram (Figure 3), referring to assump-
tions of normality and homogeneity of the variances. The other conditions
required by the analysis of covariance (equality of slopes and variance) are not
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Figure 1. Data analysis flow diagram under the former statistical approach (1987).

Table 1. Temporal evolution of mercury levels in lake whitefish from the Caniapiscau
river (Calcaire station, 1989 to 1993).

Total mercury (mg/kg) Total length (mm)
Year N ST' Mean® Min. Max. Coeff. Mean Min. Max.
var. (%)
1989 11 0.12 0.29(a)3 008 054 46 479 370 555
1991 23 0.18 0.18(b) 0.05 045 69 400 179 578
1993 30 0.15 0.20(b) 007 0.37 48 443 318 537

'+ Mercury levels estimated for standardized length by linear regression.
2. Arithmetic means levels tested with the SNK procedure.
3. Mean levels with different letters are significantly different at the 5% level.
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Figure 2. Inadequacy of the linear model (straight line) for the walleye (Stizostedion vitreum).
A quadratic model (curve) fits this data better.

required for polynomial regression, so recourse to non parametric methods
is not necessary. Estimated mercury levels, obtained by polynomial regres-
sions for standardized lengths, are compared through their 95% confidence
intervals.

In temporal analysis (between years), when mercury levels seem to have
returned to normal conditions (i.e., before impoundment of a reservoir), a
Student’s ¢-test is run between the reference condition (natural mercury level)
and the levels to be tested. If the test fails to show any difference, a minimal
detectable difference is determined (based on observed natural variation) and
a power analysis is run to determine the power offered by the test considering
sample size (Cohen 1988). If the observed difference is less than the minimal
difference determined above, and the power of the test is at least 0.80 (1-
power is the probability of making a type II error by incorrectly accepting
the null hypothesis of equality of means; Zar 1984), the level of mercury is
considered to have returned to normal conditions.

3. Polynomial regression with indicator variables

3.1 Construction of the model

Any problem of analysis of variance or covariance can be recast into a multiple
regression analysis (Draper & Smith 1981; Freund & Littel 1981; Snedecor &
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Figure 3. Data analysis flow diagram under the new statistical approach.

Cochran 1980). Polynomial regression analysis offers a way of generalizing
the analysis of covariance to nonlinear situations, and this method is adequate
for the requested analysis. The main advantage of the new approach is to
explicitly model the mercury-to-length relationships being compared.

In polynomial regression analysis with indicator variables, the aim is to
develop a general equation describing the relationship between mercury levels
and length, for all years involved in the analysis, while taking in account not
only the differences in mean mercury levels but also the different shapes of
the mercury-to-length relationships. This goal is achieved by introducing a
set of binary (dummy) variables into the model. Each variable describes a
particular year or station. The following example is for a temporal analysis,
but the technique can also be applied to spatial comparisons.
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Figure 4. Polynomial regression with indicator variables makes it possible to distinguish the
following four cases: (a) All mercury-to-length relationships can be described by a single
equation (the curves should actually be drawn on top of one another; they are only separated
to show that there are several curves). (b) Differences in means but no difference in shapes. (c)
Differences in shapes but no difference in means. (d) Differences in means and shapes. The
shapes of the curves in this figure are not intended to represent mercury-to-length relationships.

Mercury levels in fish can be adequately described by a polynomial
function of their length. In this example, second degree polynomials only
(quadratic functions) were used because we found them sufficient to describe
the relationships; polynomes of higher order may be necessary for other types
of data. For a single group of fish, or for different groups with the same mean
and shape of the mercury-to-length relationship (Figure 4a), the quadratic
model is:

Hg =a+bL +cL*+¢ (D

where Hg is the mercury level, L represents fish length, and a, b and ¢
are the parameters (coefficients) of the model; ¢ is the usual error term of
the regression model, describing the difference between the observed and
predicted values.

Differences in mean mercury levels among years (Figure 4b) can be
expressed by introducing binary (dummy) variables (B, B3, ...) into the
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model, with each binary variable representing a sampled year. The reference
year, before impoundment, is omitted from the model because when all the
other binary variables are set to 0, the only remaining choice is 1 for that
binary variable. The following' equation illustrates a model for two years
only:

Hg=a+bL +cL*+dB+¢ )

When the dummy variable B is set to 0, the equation represents the first-year’s
mercury-to-length relationship, and when set to 1, the model describes the
second-year’s curve. The new parameter d estimates the difference in mean
mercury levels between the two years. The reference year (usually the first) is
given the value B = 0. This has a useful consequence: the first three terms of
the equation model the mercury-to-length relationship of the reference year,
while the fourth term expresses the fact that the second-year curve may have
a different mean value, although it has the same shape as the first-year curve.

Differences in shape among years (Figure 4c) can be modelled by adding
new terms to equation 1. These terms are obtained by multiplying the binary
variables with the length variables (L, L?). For simplicity, the following
equation illustrates a model containing a single binary variable B (two years
only):

Hg = a+bL +cL? + eBL + fBL? + ¢ 3)

Using the same convention as above (B = O for the reference year), the
first three terms of the equation model the shape of the mercury-to-length
relationship for the reference year, while the next two terms allow the model
to express a difference in shape for the second-year curve.

Combining equations 2 and 3 allows the modelling of differences in mean
as well as in shape among years (Figure 4d). Considering two years only, the
model is:

Hg=a+bL +cL?*+dB +eBL+ fBL? +¢ (4)

The same model, extended to several years, would include one binary
variable fewer than the number of years being studied:

Hg = a+bL+cL®>+dBy+eBy+...+0Bp + pBL +qBL* +
rBoL + sBoL? + ...+ yB,L + zB,L? + ¢ (5)

where a . ..z are parameters of the model. This equation allows modelling
of all possible combinations of differences in mean and shape among several
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years of data (Figure 4d). Using a step-by-step backward elimination proce-
dure, terms that do not significantly contribute to the coefficient of deter-
mination (R?, which is the proportion of variance explained by the model)
are removed in order to ease the use of equation. Note that lengths are first
centered by subtracting the mean, before calculation of the squared length
term, in order to reduce the linear dependence between L and L? which creates
a side effect on the stepwise procedure and on the regression (collinearity).
The resulting general equation can be split into parts, as indicated above, to
describe specific mercury-to-length relationships for the various years.

3.2 Comparing the curves and the estimated mercury at standardized length

The equations for the various years can be compared directly, since they
have the same basic structure (quadratic in our models). They are compared
on the basis of their means (coefficient of binary variables) and their shapes
(coefficient of L and L? terms when present; equations with different terms are
differents). A set of letters may be used to summarise, in a table, the possible
groupings of years as to their mean mercury levels and shapes, based upon
comparisons of the confidence intervals of the model parameters (Figure 5).

The mercury level at standardized length for each year can be estimated,
along with the 95% confidence interval of its mean, from the resulting equa-
tion, using standard matrix calculations. The estimated mean mercury levels
at standardized length are compared by their confidence intervals. Letters
may be used to indicate, in a table, the possible grouping of years based upon
confidence intervals comparisons as it is done for comparing the equation
coefficients (Figure 6). In this example, results indicate that years 1984 and
1986 on the one hand, and 1988 through 1992 on the other, have undistin-
guishable mercury levels at the standardized length of 700 mm

While the examples given above concern temporal analysis, the method
can also be used for spatial analysis or for comparing different biological
forms of the same species.

3.3 Normality and homoscedasticity

Parametric statistical methods require that the conditions of normality and
homogeneity of the variances of the dependant variable (mercury) be met
before applying those techniques. Data transformations are often used to
correct for possible deviations from these conditions, but in some cases it
is not possible to find an adequate data transformation, or one finds that the
optimal transformation is not the same among data sets.

Polynomial regression with indicator variables is moderately robust to
deviations from these conditions. However, in order to come as close as
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Figure 5. Temporal evolution of mercury-to-length relationships for the northern pike (Esox
lucius) from the La Grande 2 reservoir from 1982 to.1994 (noted 82-94).

possible to optimal analysis conditions, the three major species in the monitor-
ing program (lake whitefish, Coregonus clupeaformis; northern pike, Esox
lucius; and longnose sucker, Catostomus catostomus) have been analysed
for optimal transformation using the Box-Cox-Bartlett procedure (Sokal &
Rohlf 1995), using subsamples drawn from the data sets accumulated for
reservoirs La Grande 2, La Grande 3 and Opinaca for the years 1986, 1988
and 1990. This technique selected the transformation that optimises both
normality and homoscedasticity. The logarithmic (base 10) and the square
root transformations appeared to be the best ones, when one is required.
These two transformations, or no transformation at all, have been checked
systematically for every species involved in the monitoring program; we
selected in each case the one that appeared more regularly to be the best one
for that species.

For example, the optimal transformation for lake whitefish and lake trout
(Salvelinus namaycush) was the log (base 10); the square root was the best
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Figure 6. Temporal evolution of mean mercury levels and 95% confidence intervals estimated
at the standardized length for the northern pike (Esox lucius) from 1982 to 1994 (noted 82-94).

one for the northern pike, brook trout (Salvelinus fontinalis) and longnose
sucker; while no transformation was required for the walleye (Stizostedion
vitreum). After modelling by polynomial regression with indicator variables,
each adjusted model was checked by looking at a plot of the residuals, in
order to detect discrepancies with respect to the conditions of application. No
deviation large enough to adversely affect the results was detected. All figures
are «back» transformed for the mercury variable, so confidence intervals may
be asymetric with respect to their means.

4. Conclusions

Polynomial regression with indicator variables is a powerful tool for interpret-
ing mercury levels in fish. It is much less restrictive than previous methods.
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The model can use higher-order polynomials but sufficient flexibility has been
obtained using the quadratic form. It allows rigorous statistical analyses of
mercury-to-length relationships among years, even when the shape of the rela-
tionships differ. It is simple to obtain accurate estimates of mercury levels at
standardized length, and multiple comparisons of these estimations are simple
to perform. The method can also be applied to spatial analysis (comparison of
sampling stations), or to the comparison of different biological forms of the
same species. Normality and homoscedasticity of the distributions are still
required, although the method is robust to moderate deviations from these
conditions, which can be satisfied by applying appropriate transformations of
the data.
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