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Abstract

Spatial heterogeneity of ecological structures originates either from the physical forcing of environmental variables
or from community processes. In both cases, spatial structuring plays a functional role in ecosystems. Ecological
models should explicitly take into account the spatial structure of ecosystems. In previous work, we used a polynomial
function of the geographic coordinates of the sampling sites to model broad-scale spatial variation in a canonical
(regression-type) modelling context. In this paper, we propose a method for detecting and quantifying spatial patterns
over a wide range of scales. This is obtained by eigenvalue decomposition of a truncated matrix of geographic
distances among the sampling sites. The eigenvectors corresponding to positive eigenvalues are used as spatial
descriptors in regression or canonical analysis. This method can be applied to any set of sites providing a good
coverage of the geographic sampling area. This paper investigates the behaviour of the method using numerical
simulations and an artificial pseudo-ecological data set of known properties. © 2002 Elsevier Science B.V. All rights
reserved.
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1. Introduction

In ecological theory, a major paradigm states
the importance of spatial structure, not only as a
potential nuisance for sampling or statistical test-
ing, but also as a functional necessity, to be
studied for its own sake and included into ecolog-
ical modelling (Legendre and Fortin, 1989; Legen-
dre, 1993; Legendre and Legendre, 1998). In the
framework of multivariate data analysis, several
methods have been proposed to include space as

an explicit predictor. Legendre and Troussellier
(1988) used a matrix of Euclidean (geographic)
distances among their sampling sites in a series of
Mantel and partial Mantel tests. Legendre (1990)
proposed using geographic coordinates directly as
explanatory variables in constrained ordination
techniques (redundancy analysis, RDA, and
canonical correspondence analysis, CCA), by
placing the terms of a cubic trend-surface equa-
tion into the explanatory (i.e. constraining) data
matrix. This approach, called multivariate trend-
surface analysis, was later integrated into a
method of variation partitioning, where ecological
variation was decomposed into four fractions
(pure environmental, pure spatial, explained both
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by space and environment, and unexplained) us-
ing partial constrained ordination (Borcard et al.,
1992; Borcard and Legendre, 1994; Méot et al.,
1998). This technique, which was summarised by
Legendre and Legendre (1998), Section 13.5, has
proved very successful and is now widely applied
in various fields of ecology (see references in
Legendre and Legendre (1998), p. 775).

The coarseness of trend-surface analysis pre-
sents a problem, however. This method is devised
to model broad-scale spatial structures with sim-
ple shapes like planes, saddles, or parabolas repre-
senting bumps or troughs. Finer structures cannot
be adequately modelled by this method: too many
parameters would be required to do so.

In recent years, researchers have increased their
awareness of the fact that ecological processes
occur at defined scales, and that their perception
depends upon a proper matching of the sampling
strategy to the size, grain and extent of the study,
and the statistical tools used to analyse the data.
This has generated the need for analytical tech-
niques devised to reveal the spatial structures of a
data set at any scale that can be perceived by the
sampling design. In this paper, we propose a
method for detecting and quantifying spatial pat-
terns over a wide range of scales. This method can
be applied to any set of sites providing a good
coverage of the geographic sampling area. This
method will first be presented in the unidimen-
sional context, where it has the further advantage
of being usable even for short (n�25) data series.

2. The method

The analysis begins by coding the spatial infor-
mation in a form allowing us to recover various
structures over the whole range of scales encom-
passed by the sampling design. This technique will
work on data sampled along linear transects as
well as on geographic surfaces or in three-dimen-
sional space. This paper will focus on the unidi-
mensional case, demonstrating the efficiency of
the method by way of simulations of simple and
complex data.

In the framework of linear modelling, the most
straightforward technique for modelling spatial

structures is polynomial regression (trend-surface
analysis in the bidimensional case), where the
spatial variables are used to generate a polyno-
mial function of the X (or X and Y, or X, Y and
Z) coordinates of the sampling units (Legendre,
1990; Borcard et al., 1992; Borcard and Legendre,
1994). For a linear transect, using the X coordi-
nates of the sampling units as an explanatory
variable allows one to model a linear trend that
may be present in the data. Adding a second-or-
der (X2) monomial term allows the model to be
bent once in the form of a parabola. Each higher-
order term generates one more bend, and hence
increases the fit of the model to finer-scale spatial
structures. One major problem with this approach
is that the individual terms are highly correlated,
thereby preventing the modelling of independent
structures at different scales. Furthermore, espe-
cially in the bidimensional case, the number of
terms of the polynomial function grows very
quickly, making the third order (with nine terms)
the highest one to be usable practically, despite its
coarseness in terms of spatial resolution. Polyno-
mials can be turned into orthogonal polynomials,
either by using a Gram–Schmidt orthogonaliza-
tion procedure, or by carrying out a principal
component analysis (PCA) on the matrix of mo-
nomials. A new difficulty arises: each new orthog-
onal variable is a linear combination of several (in
the case of the Gram–Schmidt orthogonalization)
or all (in the case of PCA) the original variables;
it does not represent a single scale any longer. To
solve these problems, our new approach has a
different starting point involving the close neigh-
bourhood relationships among the sampling sites.

2.1. Modified matrix of Euclidean distances

Fig. 1 displays the steps of a complete spatial
analysis using the new method based on principal
coordinates of neighbour matrices (PCNM).

First, we construct a matrix of Euclidean dis-
tances among the sites. Then, we define a
threshold under which the Euclidean distances are
kept as measured, and above which all distances
are considered to be ‘large’, the corresponding
numbers being replaced by an arbitrarily large
value. For a reason explained later, this large
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value can be set equal to four times the threshold
value. For instance, in the case of a linear transect
made of sampling points regularly spaced 1 m
apart, we could set the threshold at 1 m to retain
only the closest neighbours, and replace all other

distances in the matrix by 1.0 m×4=4.0 m.
Contrary to the polynomial regression/trend-sur-

face analysis approach, our idea is to reconstruct
the spatial patterns by starting from the fine-scale
relationships instead of the broad-scale trends.

Fig. 1. Principle of the new method of spatial analysis based on principal coordinate analysis of a truncated matrix of Euclidean
(geographic) distances among sampling sites (PCNM).
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2.2. Principal coordinate analysis

The second step is to compute the principal
coordinates of the modified distance matrix. This
is necessary because we need our spatial informa-
tion to be represented in a form compatible with
applications of multiple regression or canonical
ordination (RDA or CCA) i.e. as an object-by-
variable matrix. We obtain one or several null,
and several negative eigenvalues. Principal coordi-
nate analysis of the truncated distance matrix
makes it impossible to represent the distance ma-
trix entirely in a space of Euclidean or complex
coordinates. The negative eigenvalues cannot be
used as such because the corresponding axes are
complex (i.e. the coordinates of the sites along
these axes are complex numbers). In any case, the
positive eigenvalues represent the Euclidean com-
ponents of the neighbourhood relationships of
our truncated matrix; these are the components
that are of interest to us. Of course, one could
correct for the negative eigenvalues using one of
the methods described in Gower and Legendre
(1986) or Legendre and Legendre (1998). These
methods consist in adding a constant either to the
original non-diagonal distances, or to the squared
non-diagonal distances in the matrix. By doing so,
one increases all distances and changes the recon-
structed spatial arrangement of the sampling sites.
We have empirically compared the results ob-
tained using either the original real-number axes
corresponding to positive eigenvalues, or all axes
after correction for negative eigenvalues. Results
indicate that a good reconstruction of the spatial
structures is obtained by using the former
method, i.e. only the axes corresponding to posi-
tive eigenvalues, without correcting the axes hav-
ing negative eigenvalues.

The principal coordinates derived from these
positive eigenvalues can now be used as explana-
tory variables in multiple regression, RDA, or
CCA, depending on the context.

To investigate the process of truncation of the
distance matrix, explained above, we built a series
of truncated distance matrices with ‘large dis-
tance’ values made of a series of factors ranging
from 2 to 8. We observed that beyond a factor of
four times the threshold for the ‘large’ distances,

the principal coordinates remain the same to
within a multiplicative constant. In other words,
the first principal coordinate obtained with a fac-
tor of 4 had a correlation of 1.0 with the first
principal coordinate obtained with a factor of 5,
or any other value; the same was true for the
whole series of principal coordinates. Conse-
quently, multiple regressions using principal coor-
dinates obtained with a multiplicative constant of
4 and above will yield the same R2 and the same
P-values as with any other multiplicative constant
larger than 4. Thus we decided to apply the factor
4 in all subsequent steps of our investigation.

When computed from a distance matrix corre-
sponding to n equidistant objects arranged as a
straight line, as in Fig. 1, truncated with a
threshold of one unit (MAX=1 i.e. only the
immediate neighbours are retained), the principal
coordinates correspond to a series of sinusoids
with decreasing periods (Fig. 2); the largest period
is n+1, and the smallest one is equal to or
slightly larger than 3. The number of principal
coordinates is a round integer corresponding to
two-thirds of the number of objects. If the trunca-
tion threshold is larger than 1, fewer principal
coordinates are obtained, and several among the
last (finer) ones are distorted, showing aliasing of
structures having periods too short to be repre-
sented adequately by the discrete site coordinates.
This behaviour will later be shown to have impor-
tant consequences on the performance of the
method. Thus, our method presents a superficial
resemblance to Fourier analysis and harmonic
regression, but it will be shown to be more general
since it can model a wider range of signals, and
can be used with irregularly spaced data.

3. Numerical simulations

We conducted extensive simulations to explore
the behaviour of the method regarding type I
error and power to detect various kinds of signals
(Fig. 3); power was measured as the rate of rejec-
tion of the null hypothesis, at significance level
0.05, when an effect was present in the data. The
simulation setup consisted of a straight line with
100 equidistant points representing the sampling
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Fig. 2. Eight of the 67 principal coordinates obtained by principal coordinate analysis of a matrix of Euclidean distances among 100
objects, truncated after the first neighbours (MAX=1).

Fig. 3. Eight examples of dependent variables used in the simulation study.

sites. We experimented with the method using
multiple regression (i.e. with a single dependent
variable at a time), for various types of dependent
variables. Every simulation run, described below,

consisted of 5000 independent analyses. The
global statistical significance of each analysis was
tested by a permutation test involving 999 permu-
tations. Notwithstanding the fact that one can
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never simulate all possible or relevant ecological
situations, the following results are presented as
support for the sensitivity of the method described
in this paper.

For statistical testing, we used the method of
permutation of residuals under a full model (ter
Braak, 1990, 1992; Anderson and Legendre,
1999); in this method, the permutable units are
the residuals of the multiple regression. As a test
statistic for the global test, we used the R2 of the
multiple regression; within any given permutation
test, the values of R2 and F are monotonic to each
other and, thus, represent equivalent statistics for
permutation testing. In applications on complex
data involving tests of individual regression coeffi-

cients, we also tested by permutation the t-statis-
tic associated with each regression coefficient.

3.1. Random �ariables and type I error

The first series of simulations focussed on the
type I error of the method. The dependent vari-
ables were random numbers drawn from four
different distributions: uniform (Fig. 3a), normal
(Fig. 3b), exponential, and (as an extreme case)
exponential cubed, following Manly (1997) and
Anderson and Legendre (1999). Fig. 4 shows the
results of these runs, carried out using two differ-
ent truncation thresholds (value MAX) of the
spatial matrix. Several independent series of 5000

Fig. 4. Type I error of the method (a, b) and percentage of variance explained (R2: c, d) on series of 100 data points randomly drawn
from four different distributions, with spatial matrices with two different resolutions set by the truncation threshold (value MAX)
of the Euclidean distance matrix. Each run consisted of 5000 independent simulations. The error bars in (a) and (b) represent 95%
confidence intervals.
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simulations showed that the frequency distribu-
tion of the P-values was approximately flat (re-
sults not illustrated), yielding an appropriate
number of type I error cases (Fig. 4a and b).
Thus, the method showed good performance on
this crucial aspect. Note also the percentage of
variance ‘explained’ (non-significantly): in linear
regression, when the dependent variable is com-
pletely random, as it is the case in these simula-
tions, the expected value of R2 is equal to the
ratio between the number of explanatory variables
and the number of objects minus 1. The results
presented in Fig. 4c and d are right on the spot.

3.2. Power to detect autocorrelation in random
response �ariables

In a second series of simulations, we added
autocorrelation to the random response variables
(Fig. 3c and d). After generating a series of ran-
dom numbers drawn from a standard normal
distribution, we computed moving averages on
the series, with window widths varying from 3 (i.e.
one random value and its first neighbours on
either side) to 9 (one value and its four neigh-
bours on either side). The number of neighbours
(on one side of a point) that are included in the
moving average are used as a measure of the
range of the autocorrelation: the window width of
3 has a range of 1 while the window width of 9
has a range of 4. The results, displayed in Fig. 5,
show that the method detected spatial structures
generated by autocorrelation almost faultlessly
(power=1), provided that the truncation value of
the spatial matrix was smaller than the window
width of the autocorrelation. This is an important
result which can be related to the number and
shape of the principal coordinates described be-
fore. Retaining more distant neighbours produced
fewer principal coordinates, the ones representing
the finest structures being lost. Besides, the last
part of the series of principal coordinates, which
should have contained the sines with the shortest
periods, were distorted if the truncation of the
matrix of Euclidean distances retained more than
the first neighbours. This in turn decreased the
ability of the set of principal coordinates to detect
fine spatial structures in the dependent variables.

As will be shown below, this property of the
method also appears when one looks for other
types of spatial structures in the dependent
variables.

3.3. Power to detect Gaussian cur�es

The third series of simulations was devoted to
the detection of a single, Gaussian-shaped bump,
because species frequencies often have unimodal
(Gaussian-like) distributions along environment
gradients (Austin, 1976). A Gaussian function (i.e.
a normal density function) was computed, with a
given maximum height and width; the width was
defined as two standard deviations on either side
of the mean, measured in sampling intervals.
Within each simulation run, the width and maxi-
mum height were fixed, while the position of the
mean of the curve along the transect varied at
random.

A first series of runs involved only a thin Gaus-
sian curve (5 sampling intervals wide, Fig. 3e),
which was submitted to spatial matrices of in-
creasing coarseness (Fig. 6a). These simulations
showed that the method had no problem in de-
tecting the signal, provided that the threshold of
the spatial matrix was lower than or equal to the
width of the Gaussian curve. The percentage of
variance explained varied, though, increasing
when the spatial matrix allowed finer resolution
i.e. when the truncation value tended to 1 (Fig.
6b).

In another series of runs, normal noise was
added to the Gaussian curve (Fig. 3f) with a
signal-to-noise ratio (SNR) arbitrarily defined as
the maximum height of the Gaussian curve di-
vided by twice the standard deviation of the noise.
With this definition, a SNR equal to 1 implies a
normal noise component where 68% of the ran-
dom values fall within a range equal to the maxi-
mum height chosen for the Gaussian curve. The
data generation algorithm was the following:
1. Generate a Gaussian curve with a known max-

imum height MH (for instance MH=20).
2. Draw random values from a normal distribu-

tion with mean=0 and standard deviation=
1.

3. Select a SNR (for instance SNR=2).
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Fig. 5. Power to detect random autocorrelated variables (left) and percentage of variance explained (R2: right) for spatial matrices
with various resolutions, set by the truncation threshold of the Euclidean distance matrix, and various ranges of autocorrelation
(abscissa) in the dependent variable. Each run consisted of 5000 independent simulations. The 95% confidence intervals are omitted
if they are narrower than the symbols.
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Fig. 6. Power to detect Gaussian-shaped bumps (a) and percentage of variance explained (R2: b) for spatial matrices with various
resolutions set by the truncation threshold of the Euclidean distance matrix (abscissa). Each run consisted of 5000 independent
simulations. The 95% confidence intervals are omitted if they are narrower than the symbols. In the absence of noise in the data,
the variation in the results (shown by the error bars) are due to some dependence of the power to the position of the Gaussian bump
in the data series.

4. Adjust the standard deviation of the noise by
multiplying its values by MH/(SNR×2); this
works because multiplying the values of a
random normal series by a given number mul-
tiplies its standard deviation by that number.
In our example: noise SD=20/(2×2)=5, so
multiply all values obtained in (2) by 5.

5. Add signal (obtained in (1)) and noise (ob-
tained in (4)).

6. Set all negative values of the data obtained in
(5) to zero. Because they simulate species dis-
tributions, these values cannot be negative.

7. Rescale the data so obtained to the pre-se-
lected maximum height.

Fig. 7 shows that the capacity of detection of
the method depended on both the SNR and the
width of the Gaussian curve. With SNR=1 (Fig.
7a–d), power was 0.74 in the best case. This
occurred with the broadest curve (40 sampling
intervals) and, interestingly, the coarsest spatial
matrix (truncation threshold=4: Fig. 7d). This
feature, better power obtained when using a
coarser spatial matrix, held true for all but the
narrowest Gaussian curve. The coarseness of the
spatial matrix seemed to allow it to ‘see’ through
the noise better than finer ones. As expected, the
broader the Gaussian curve, the easier its detec-
tion is by our method.
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With less noise in the data (SNR=2, Fig.
7e–h), power increased dramatically, varying be-
tween 0.93 and 1.00 for all but the narrowest

Gaussian curve. Here again, power was better
when the spatial matrix was coarser. Observe,
however, that again the percentage of variance

Fig. 7. Power to detect Gaussian-shaped bumps (a, c, e, g) and percentage of variance explained (R2: b, d, f, h) for spatial matrices
with two resolutions (left, right) set by the truncation threshold of the Euclidean distance matrix) and noise added to the data.
SNR=signal-to-noise ratio; see definition in text. Each run consisted of 5000 independent simulations. The 95% confidence intervals
are omitted if they are narrower than the symbols.
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explained was higher when the spatial matrix was
finer (truncation threshold=1); this is a logical
result considering that finer explanatory variables
can model finer structures in the data.

3.4. Power to detect sine cur�es

A fourth series of simulations was devoted to
sinusoids, with periods varying from 5 to 40 inter-
site distances, and SNR having values of 1 (Fig.
3g) and 2 (Fig. 3h). The results, shown in Fig. 8,
bear some resemblance with those obtained for
Gaussian curves: power depended on the amount
of noise in the data (compare Fig. 8a–e and Fig.
8c–g), and more variance was explained when the
spatial matrices were finer (truncation
threshold=1; compare Fig. 8b–d and Fig. 8f–h).
Interestingly and predictably, the finest sinusoids
were never detected when the spatial matrix was
too coarse (Fig. 8c–g, periods of 5). In that case,
the period of the finest spatial principal coordi-
nate was larger than that of the dependent vari-
able. Another noteworthy feature is that, contrary
to the Gaussian case, the amount of variance
explained did not vary with the period of the
sinusoid for given combinations of SNR and spa-
tial matrix resolution, provided that the latter was
fine enough to detect the signal. When this was
not the case, no combination of the available
variables could adequately model the dependent
variable.

3.5. Power to detect gradients

Our last series of simulations focussed on linear
gradients with SNR values of 1 and 2. Strikingly,
the method never failed to detect the pattern, and
always explained practically all the variance; the
proportion of the dependent variable’s variance
explained was between 0.998 and 0.999.

4. Test on complex data

This section is devoted to the illustration of the
use of our method with actual data sets. Our
example involves artificial data constructed by

combining various kinds of signals usually present
in real data, plus two types of noise. This provides
a pattern that has the double advantage of being
realistic and controlled, thereby permitting a pre-
cise assessment of the potential of the method to
recover the structured part of the signal and to
dissect it into its primary components. Other pa-
pers will be devoted to the application of the
method to real ecological data sets.

4.1. The data

We constructed the data by adding the follow-
ing components together (Fig. 9) into a transect
consisting of 100 equidistant observations:
1. a linear trend (Fig. 9a);
2. a single normal patch in the centre of the

transect (Fig. 9b);
3. four waves (i.e. a sine wave with a period of 25

sampling units) (Fig. 9c);
4. 17 waves (i.e. a sine wave with a period of

�5.9 sampling units) (Fig. 9d);
5. a random autocorrelated variable, with auto-

correlation determined by a spherical vari-
ogram with nugget value=0 and range=5
(Fig. 9e);

6. a noise component drawn from a random
normal distribution with mean=0 and vari-
ance=4 (Fig. 9f).

Fig. 9 shows the partial contributions of the six
components to the variance of the final artificial
response variable. The random noise (Fig. 9f)
contributed for more than half of the total vari-
ance. Thus, the spatially structured components
of the compound signal (Fig. 9a–e) were well
hidden in the noise, as it is often the case with real
ecological data.

4.2. Analytical procedure

4.2.1. Detrending the dependent �ariable
As it is the case in most techniques of spatial

analysis, the first step is to detrend the data. We
recommend doing it whenever a significant linear
trend is detected even though our method is able
to model linear trends, because this preliminary
step allows a separate modelling of the trend
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Fig. 8. Power to detect sine curves (a, c, e, g) of different periods (abscissa measured in sampling intervals) and percentage of
variance explained (R2: b, d, f, h) for spatial matrices with two resolutions set by the truncation threshold of the Euclidean distance
matrix (left, right) and noise added to the data. Each run consisted of 5000 independent simulations. The 95% confidence intervals
are omitted if they are narrower than the symbols.

while retaining all the potential of the principal
coordinates to model more complex features.
While our example is unidimensional and thus

requires only the fitting of a straight line by
simple linear regression, bidimensional data sets
must be detrended by fitting a plane.
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In our example, the trend was significant (P=
0.001 after 999 permutations), with an R2 of
0.172, which is a bit higher than the 12.1% that
we had built into the data (Fig. 9a). This prelimi-
nary regression has thus modelled 5.1% of addi-
tional trend present in the combination of the
other components, particularly the random nor-
mal component which is a finite sample of a
distribution with mean=0, and can thus show a
local trend.

After this step, one works on the detrended

data. In our case, the single central bump that we
had built into the data accounted for 8% of the
variance of the detrended data, the 4 waves for
17%, the 17 waves for 11% and the random
autocorrelated signal for 11%. The spatially struc-
tured components thus contributed 47% of the
total variance of the detrended data, and the pure
random component 53%. These values are the
contributions of the variables to the variation of
the detrended data, in the sense of Scherrer
(1984). They were obtained as follows. (1) Regress

Fig. 9. Construction of the artificial pseudo-ecological data set of known properties. The six components added together are shown,
with their contributions to the variance of the final signal.
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the detrended data on the central bump, 4 waves,
17 waves, random autocorrelated and random
signals originally built into the data. (2) Compute
the correlation of each variable with the de-
trended data. (3) Compute each contribution as
the product of the standardised (partial) regres-
sion coefficient with the correlation coefficient.
These contributions will be compared later with
the structures revealed by the PCNM method.

4.2.2. Building the matrix of spatial �ariables
This step involves the procedure described in

Section 2: build a matrix of Euclidean distances
among objects, truncate it to the first neighbours,
replace the removed values by the highest value
retained multiplied by 4, and compute the princi-
pal coordinates of the resulting matrix. Our exam-
ple being built upon the same linear transect of
100 objects as the one used in the simulations, the
results were the same: we obtained 67 principal
coordinates representing a series of sine waves of
decreasing periods, starting from a period of 101,
and ending with a period slightly larger than 3.
These are the spatial variables that will be used in
the next steps.

4.2.3. Running the spatial analysis
Since our example involves a single dependent

variable, the spatial analysis consists in a multiple
linear regression of the detrended dependent vari-
able onto the 67 spatial variables built in step 2.
The main question at this step is to decide what
kind of model is appropriate: a global one, retain-
ing all the spatial variables and yielding an R2 as
high as possible, or a more parsimonious model
based on the most significant spatial variables?
The answer may depend on the problem, but in
our opinion the general procedure should include
some sort of thinning of the model. Remember
that the number of parameters of the global
model is equal to about 67% of the number of
objects, a situation which may often lead to an
overstated value of R2 by chance alone. The
solution that we propose, and have applied to this
example, consists in testing the significance of all
the (partial) regression coefficients and retaining
only the principal coordinates that are significant
at a predetermined (one-tailed) probability value.

All tests can be done using a single series of
permutations if the permutable units are the resid-
uals of a full model (Anderson and Legendre,
1999; Legendre and Legendre 1998), which is the
case here. The explanatory variables being orthog-
onal, no recomputation of the coefficients of the
‘minimum’ model are necessary. Note, however,
that a new series of statistical tests based upon the
minimum model would give different results, since
the denominator (residual mean square) of the F
statistic would have changed.

The analysis of our detrended artificial data
yielded a complete model explaining 75.3% of the
variance when using the 67 explanatory variables.
Reducing the model as described above allowed
us to retain 8 spatial variables at P=0.05, ex-
plaining together 43.3% of the variance. This
value compares well with the 47% of the variance
representing the contributions of the single bump,
the two variables with 4 and 17 waves, and the
random autocorrelated component of the de-
trended data. The spatial variables retained were
principal coordinates no. 2, 6, 8, 14, 28, 33, 35
and 41.

4.2.4. Dissecting the spatial model
One major advantage of our method is that the

components of the spatial model obtained are
orthogonal, and can thus be either examined sepa-
rately or combined at will into independent sub-
models that can be interpreted with the help of
external information. When such knowledge is
not available, the submodels may help generate
hypotheses about the underlying processes that
have generated the structures.

It often happens that the significant variables
are grouped in series of roughly similar periods.
In our example, for instance, there is a clear gap
between the first four significant variables and the
last four. Thus, a first step may be to draw two
submodels, one involving variables 2, 6, 8 and 14
(added together, using their regression coefficients
as weights) and the other involving variables 28,
33, 35 and 41. The results are shown in Fig.
10a–d, respectively. The ‘broad-scale’ submodel
(Fig. 10a) shows 4 major bumps, the two central
ones being much higher than the two lateral ones.
This may indicate that two mechanisms are actu-
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Fig. 10. Minimum spatial model and its additive submodels obtained by the new method of spatial analysis.

ally confounded, one producing the four bumps
and another process elevating the two central
ones. Subdividing this submodel further by sepa-
rating variable 2 from variables 6, 8 and 14
allowed indeed to distinguish a central bump (Fig.
10b) and 4 waves (Fig. 10c). The fine-scale sub-
model (Fig. 10d) shows 17 waves, with hints of a
4-bump pattern. The spatial model made of the 8
variables is shown in Fig. 10e.

The method has successfully revealed the four
deterministic components that we built into the
data: trend, single central bump, 4 waves and 17
waves, despite the large amount of noise added.
The amount of variance explained by the model
suggests that most of the spatially-structured in-
formation present in the random autocorrelated
component of the data is also contained in the
model (in accordance with our simulation results),
but that it could not be separated from the peri-
odic signals because it was ‘diluted’ over several
scales. The successful extraction of the structured
information can be further illustrated by compar-
ing the model of the detrended data obtained
above (Fig. 11b) to the sum of the four compo-

nents ‘central bump’, ‘4 waves’, ‘17 waves’ and
‘random autocorrelated’ (Fig. 11a), and by com-
paring the residuals of the spatial model (Fig.
11d) to the real noise built into the data, i.e. the
uncorrelated random variate (Fig. 11c).

5. Discussion

For most applications to ecology, the method
presented above will be one element integrated
into an analytical procedure involving not only
the dependent and spatial variables, but also some
environmental data. Procedures to interpret the
spatial structures revealed by the analysis de-
scribed above will depend on the context. When
one has several environmental variables available
for analysis, one possible way is to run a separate,
complete spatial analysis for each environmental
variable, and subsequently look for structures
emerging at similar scales in the dependent and
one or several of the environmental variables. A
possible shortcut is to analyse the environmental
data together with a set of spatial variables re-
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stricted to those significant for the dependent
variable. This would allow a quicker assessment
of the similarity of significant scales.

Another approach is to use the Borcard et al.
(1992), Borcard and Legendre (1994) method of
variation partitioning, where the sets of environ-
mental and spatial variables are used alone, in
combination, and as partial explanatory variables,
to assess the amounts of variation explained to-
gether by environment and space, or by one com-
ponent alone while controlling for the other. The
efficiency of the variation partitioning method will
be greatly improved by replacing the traditional
polynomial function by the spatial variables re-
sulting from our new PCNM method. For exam-

ple, in the case of the Oribatid mite data pre-
sented in Borcard et al. (1992), fraction [a] (non-
spatial environmental component) accounted for
13.1% of the total variation with the polynomial
approach, and 12.1% with the PCNM method.
Fraction [b] (explanation shared by the environ-
mental and spatial variables) changed from 31.0
to 32.6%, and the ‘pure’ spatial component in-
creased from 12.2 to 23.8%. The overall percent-
age of explained variation increased from 56.9 to
68.5%. Thus, in this case, the improvement con-
sisted of the increase of the pure spatial fraction:
more spatial structures not explained by the envi-
ronmental variables have been detected. In other
cases, however, the change may also affect the

Fig. 11. Comparison of the structured (a) and random (c) components of the data on the one hand, and the spatial model (b) and
its residuals (d) on the other hand, and correlations between the homologous components. (c) The left-hand (a+c) and right-hand
(b+d) sides of the figure sum to the original detrended data.
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other components. For instance, the detection
of fine spatial structures also explained by
the environmental variables would increase the
share of component [b] at the expense of fraction
[a].

These considerations open the door to applica-
tions of the PCNM method to multivariate data.
In this case the multiple regression used above is
replaced by a method of constrained ordination
suitable to the data: RDA (Rao, 1964), CCA (ter
Braak, 1986), or redundancy analysis on trans-
formed species data (Legendre and Gallagher,
2001). For these applications, however, no exist-
ing program provides the appropriate statistical
tests on individual regression or canonical coeffi-
cients to allow the selection of a proper subset of
spatial variables. One would have to rely upon
more traditional, non-permutational tests for ap-
proximate results, or on stepwise procedures. The
t-values of regression coefficients provided by the
program Canoco (ter Braak and Smilauer, 1998)
can also be used for assessment of the most
important spatial variables, although they are not
accompanied by permutational probabilities. In
the future, programs of canonical analysis should
include permutational tests of significance of indi-
vidual regression coefficients.

Another possible extension concerns data sam-
pled across a surface i.e. bidimensional spatial
data. Preliminary attempts in this direction show
that our method still provides periodic spatial
variables if the data are regular, but that the
spatial resolution is about half that obtained in
the unidimensional case; the bidimensional model
includes the same number of principal coordi-
nates as the unidimensional. Besides, the princi-
pal coordinates do not show the simple
scale-to-variance relationship which allows them
to appear readily in decreasing order of periods
in the unidimensional case.

Finally, a word must be said about irregularly
sampled data. The effect of a missing data point
in a regular series is to disrupt the sine waves
provided by the principal coordinate analysis.
This disruption acts on the amplitude, phase and
period of the sines, thereby affecting the interpre-
tation of the spatial variables in terms of scales.
Truly irregular sampling patterns result in totally

irregular principal coordinates. Note that these
are still suitable spatial descriptors, but their in-
terpretation is complicated by the fact that each
one of them often bears structures at several
scales.

In cases where a regular sampling series suffers
from one or a few missing observations, there is a
simple way of overcoming the problem. It con-
sists in filling the voids i.e. adding points where
they are missing in the file of spatial coordinates;
nothing is added or interpolated in the dependent
variable. The filled-up series is then submitted to
the analysis yielding the principal coordinates,
and then the supplementary objects are removed
from the matrix of principal coordinates before it
is used as a set of spatial explanatory variables.
This trick has a cost, however: removal of the
supplementary objects introduces some correla-
tion among the spatial variables, which were pre-
viously uncorrelated. As long as the number of
supplementary objects remains low in comparison
to the number of observed objects, these correla-
tions are low. But an exaggerated use of supple-
mentary objects may introduce unwanted
amounts of correlation among the spatial vari-
ables, thereby compromising one major feature of
the method, i.e. the independence of the spatial
variables, which is required for their combination
into orthogonal submodels.

This paper raises a number of mathematical
questions; for instance, the relationship between
our method of decomposition of the spatial rela-
tionships among sites and the one proposed by
Méot et al. (1993), Fourier analysis, and the de-
composition of Toeplitz matrices. We hope that
the paper will attract the interest of mathemati-
cians who can help us understand these proper-
ties and develop methods of spatial modelling
further.

A FORTRAN program (SPACEMAKER: source
code, compiled versions for Macintosh and DOS,
and program documentation) to carry out the
principal coordinate decomposition of spatial lo-
cations described in this paper is available on the
WWWeb site http://www.fas.umontreal.ca/biol/
legendre/ or via anonymous ftp at ftp://
ftp.umontreal.ca/pub/casgrain/labo/SPACEMAKER

/.

http://www.fas.umontreal.ca/biol/legendre/
http://www.fas.umontreal.ca/biol/legendre/
ftp://ftp.umontreal.ca/pub/casgrain/labo/SpaceMaker/
ftp://ftp.umontreal.ca/pub/casgrain/labo/SpaceMaker/
ftp://ftp.umontreal.ca/pub/casgrain/labo/SpaceMaker/
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