
Suppl.	Doc.	3	–	Analysis	of	simulated	coenocline	data	with	directional	indices	
	
The	 objective	 of	 this	 exercise	 is	 to	 illustrate	 the	 interpretation	 of	 the	 new	 directional	 indices	
through	an	example	that	would	be	familiar	to	ecologists.	Most	community	ecologists	are	familiar	
with	the	representation	of	species	abundances	along	a	transect	or	an	ecological	gradient	(including	
time)	by	a	graph	showing	the	succession	of	species	along	the	gradient,	like	the	one	presented	at	the	
bottom	of	this	page.	
	
Note	 –	 Overlap	 is	 the	 similarity	a.	 It	will	 not	 be	 analysed	 in	 detail	 because	 it	 is	 not,	 as	 such,	 a	
directional	index.	Overlap	is,	however,	included	in	the	numerator	of	Nestedness	indices.	
	
Basic	reference	on	coenoclines:	
Whittaker,	R.	H.	1972.	Evolution	and	measurement	of	species	diversity.	Taxon	21:	213–251.	
	
Part	1	–	Coenocline	with	increasing	tolerances	
	

Simulate	 a	 coenocline	 (matrix	Y)	with	 increasing	 tolerances	 (standard	 deviations):	 51	 sites,	 51	
species	with	identical	maximum	abundances	of	20	(function	argument	h).	
After	cut-off	at	abundances	>2,	Y	contains	a	large	proportion	of	zeros	in	the	first	36	sites	
	
library(coenocliner)	
#	Coenocline	with	increasing	tolerances.	Y	contains	about	43%	zeros:	length(which(Y<2))	
x	<-	seq(from=1,	to=51,	by=1)		 #	Coenocline	variable	or	transect	positions	(graph	abscissa)	
opt	<-	seq(from=1,	to=51,	by=1)				 #	Positions	of	species	optima	along	transect	x	
tol	<-	seq(1,16.2,	by=0.3)		 #	Species	tolerances,	increasing	along	the	species	list	
h	<-	rep(20,	51)																														 #	Maximum	abundances	of	individual	species	(all	equal)	
	
Y	<-	coenocline(x,	responseModel	=	"gaussian",	
	 params	=	cbind(opt	=	opt,	tol	=	tol,	h	=	h),	
	 countModel	=	"poisson",	expectation	=	TRUE)	
	
plot(Y,	type	=	"l",	lty	=	"solid",	xlab="Ecological	variable",		
	 ylab="Species	abundances",	main="Coenocline")	
abline(v=36.5,	col="red")	 #	Marks	the	cut-off	point	along	the	transect	at	abscissa=36.5	
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Y2.1	<-	ifelse(Y	>	2,	1,	0)	 #	Transform	to	binary	(absence-presence)	data	
#	Species	richness	at	the	51	sites	
apply(Y2.1,1,sum)	
[1]		7		9	12	14	16	19	20	23	25	27	30	31	34	36	38	41	42	41	41	40	40	39	38	38	37	37	36	35	35	
[30]	34	34	33	32	32	31	31	30	29	29	28	27	27	26	26	25	24	24	23	23	22	21	
	
#	For	illustration	of	calculation	of	the	directional	indices,	we	use	a	subset	of	sites	(8	sites)		
#	well	spaced-out	along	the	coenocline,	5	sampling	units	apart	
(	sample.seq	=	seq(1,	40,	by=5)	)	
[1]		1		6	11	16	21	26	31	36	
	
Y2.2 = Y2.1[sample.seq,] #	Binary	data	at	8	spaced-out	sites	along	the	coenocline 
apply(Y2.2, 1, sum) 
[1] 7 19 30 41 40 37 34 31   #	Species	richness	at	the	8	selected	sites 
 
#	Compute	matrices	with	a,	b	and	c	to	check	the	calculations	on	the	following	pages	
a = Y2.2 %*% t(Y2.2) 
b = (1 - Y2.2) %*% t(Y2.2) 
c = Y2.2  %*% (1 - t(Y2.2 )) 
 
b 
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] 
[1,]    0   14   28   41   40   37   34   31 
[2,]    2    0   14   28   30   30   30   30 
[3,]    5    3    0   14   16   16   16   16 
[4,]    7    6    3    0    2    2    2    2 
[5,]    7    9    6    3    0    0    0    0 
[6,]    7   12    9    6    3    0    0    0 
[7,]    7   15   12    9    6    3    0    0 
[8,]    7   18   15   12    9    6    3    0 
 
c 
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] 
[1,]    0    2    5    7    7    7    7    7 
[2,]   14    0    3    6    9   12   15   18 
[3,]   28   14    0    3    6    9   12   15 
[4,]   41   28   14    0    3    6    9   12 
[5,]   40   30   16    2    0    3    6    9 
[6,]   37   30   16    2    0    0    3    6 
[7,]   34   30   16    2    0    0    0    3 
[8,]   31   30   16    2    0    0    0    0 
 
#	Sub-diagonal	(.sd)	vectors,	from	positions	(2,1)	to	(8,7)	in	the	square	matrices	
 
a.sd = c(5, 16, 27, 38, 37, 34, 31) 
b.sd = c(2, 3, 3, 3, 3, 3, 3) 
c.sd = c(14, 14, 14, 2, 0, 0, 0) 
 
(b.sd+c.sd)  #	c(16,	17,	17,	5,	3,	3,	3)		 #	Total	turnover	 
2*pmin(b.sd,c.sd)  #	c(4,	6,	6,	4,	0,	0,	0)				#	May	be	computed	as	(b.sd+c.sd)	-	abs(b.sd-c.sd) 
(a.sd+b.sd+c.sd)  #	c(21,	33,	44,	43,	40,	37,	34) 
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#	Examine	the	partitioning	of	turnover	into	gain.t,	loss.t	and	neutral.t	
#	The	vectors	of	sub-diagonal	indices	could	be	used	to	draw	a	Figure	showing	all	results	below		
	
#	The	following	function	requires	function	directional.response.R	provided	in	Suppl	Doc	2	
	
#	Function	sub.diag.R	
sub.diag <- function(mat, method="gaining.turnover", relativize="J") 
# 
# Compute directional.response(mat); extract sub-diagonal of output matrices 
{ 
x <- directional.response(mat, method=method, relativize=relativize) 
n.sd <- nrow(x$mat.out)        # Number of values in sub-diagonal of mat.out 
tmp <- cbind( 2:n.sd, 1:(n.sd-1) ) 
   # print(tmp) 
s.diag <- x$mat.out[tmp] 
if(is.na(x$total.t[[1]])) tt <- NA else tt <- x$total.t[tmp] 
if(is.na(x$total.n[[1]])) tn <- NA else tn <- x$total.n[tmp] 
if(is.na(x$total.strict.n[[1]])) tn2 <- NA else tn2 <- x$total.strict.n[tmp] 
# 
list(sub.diag=s.diag, total.t=tt, total.n=tn, total.strict.n=tn2) 
} 
	
#	Examine	the	partitioning	of	turnover	into	gain.t,	loss.t	and	neutral.t	
#	Turnover	–	The	change	in	species	composition	between	adjacent	sites	along	a	gradient.	
	
(	total.t	=	sub.diag(Y2.2,	method=	"gaining.turnover",	relativize=NULL)$total.t	)	
[1]	16	17	17		5		3		3		3	 #	Total	turnover	=	(b+c)	
	
(	gain.t	=	sub.diag(Y2.2,	method=	"gaining.turnover",	relativize=NULL)$sub.diag	)	
#	Method:		gaining.turnover	
[1]	16	17	17		4		0		0		0	 #	if(c>b	then	b+c,	else	2*min(b,c)	
	
(	loss.t	=	sub.diag(Y2.2,	method=	"losing.turnover",	relativize=NULL)$sub.diag	)	
#	Method:		losing.turnover			
[1]	4	6	6	5	3	3	3	 #	if(c<b	then	b+c,	else	2*min(b,c)	
	
(	neutral.t	=	sub.diag(Y2.2,	method=	"neutral.turnover",	relativize=NULL)$sub.diag	)	
#	Method:		neutral.turnover		 #	2*min(b,c)	
[1]	4	6	6	4	0	0	0	
	
=>	Note:	total.t	=	max(gain.t,	loss.t);		neutral.t	=	min(gain.t,	loss.t)	
	
#	The	results	show	that	total	turnover	is	high	between	sites	1-2	(16	species),	2-3	(17	species)	and	
3-4	(17	species);	then	it	drops	to	a	lower	level	(5	and	3	species).	Total	turnover	is	dominated	by	
gaining	turnover	between	sites	1-2	(16	species),	2-3	(17	species)	and	3-4	(17	species),	and	by	losing	
turnover	between	sites	4-5	(5	species),	5-6,	6-7	and	7-8	(3	species).	
	
#	--------	
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#	Compute	standardized	turnover	indices,	controlling	for	total	turnover.		
=>	It	is	easier	to	appreciate	the	ecological	importance	of	individual	turnover	fractions	by	computing	
the	fraction	of	total	turnover	attributed	to	the	three	indices.	
	
gain.t	/	total.t	
[1]	1.0	1.0	1.0	0.8	0.0	0.0	0.0	
	
loss.t	/	total.t	
[1]	0.2500000	0.3529412	0.3529412	1.0000000	1.0000000	1.0000000	1.0000000	
	
neutral.t	/	total.t	
[1]	0.2500000	0.3529412	0.3529412	0.8000000	0.0000000	0.0000000	0.0000000	
	
#	When	controlling	for	total	turnover,	the	results	clearly	show	that	total	turnover	is	dominated	by	
gaining	turnover	between	sites	1-2	(16	species),	2-3	(17	species)	and	3-4	(17	species),	and	by	losing	
turnover	between	sites	4-5	(5	species),	5-6,	6-7	and	7-8	(3	species),	as	predicted	by	the	relationship	
total.t	=	max(gain.t,	loss.t)	mentioned	in	the	previous	subsection.	
	
#	Neutral	turnover	is	the	highest	(80%)	in	relation	to	total	turnover	between	sites	4-5.	This	means	
that	 the	 balance	 between	 gain	 and	 loss	 is	 the	 largest	 between	 sites	 4-5	 in	 relation	 to	 the	 total	
turnover,	as	predicted	by	the	relationship	neutral.t	=	min(gain.t,	loss.t)	mentioned	in	the	previous	
subsection.	
	
#	========	
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#	Examine	the	partitioning	of	nestedness	into	gain.n,	loss.n	and	neutral.n	
#	Nestedness	–	A	type	of	richness	difference	pattern	characterized	by	the	species	at	a	site	being	a	
strict	subset	of	the	species	at	a	richer	site.	
	
(	total.n	=	sub.diag(Y2.2,	method=	"gaining.nestedness",	relativize=NULL)$total.n	)	
[1]	17	27	38	39	40	37	34	
	
(	gain.n	=	sub.diag(Y2.2,	method=	"gaining.nestedness",	relativize=NULL)$sub.diag	)	
#	Method:		gaining.nestedness		
[1]	17	27	38	38	37	34	31	 #	Maximum	at	(3,4)	and	(4,5)	
	
(	loss.n	=	sub.diag(Y2.2,	method=	"losing.nestedness",	relativize=NULL)$sub.diag	)	
#	Method:		losing.nestedness		
[1]		5	16	27	39	40	37	34	 #	Maximum	at	(5,6)	
	
(	neutral.n	=	sub.diag(Y2.2,	method=	"neutral.nestedness",	relativize=NULL)$sub.diag	)	
#	Method:		neutral.nestedness		
[1]		5	16	27	38	37	34	31	 #	Maximum	at	(4,5)	
	
=>	Note:	total.n	=	max(gain.n,	loss.n);		neutral.n	=	min(gain.n,	loss.n)	
	
#	-----	
	
#	Compute	standardized	nestedness	indices,	controlling	for	total	nestedness.		
=>	 It	 is	 easier	 to	 appreciate	 the	 ecological	 importance	 of	 individual	 nestedness	 fractions	 by	
computing	the	fraction	of	total	nestedness	attributed	to	the	three	indices.	
	
(	gain.n	/	total.n	)	
[1]	1.0000000	1.0000000	1.0000000	0.9743590	0.9250000	0.9189189	0.9117647	#	Decreasing	
=>	gain.n	decreases	along	the	series	of	pairs	of	sites.	
	
(	loss.n	/	total.n	)			
[1]	0.2941176	0.5925926	0.7105263	1.0000000	1.0000000	1.0000000	1.0000000	#	Increasing	
=>	loss.n	increases	along	the	series	of	pairs	of	sites.	
	
(	neutral.n	/	total.n	)	
[1]	0.2941176	0.5925926	0.7105263	0.9743590	0.9250000	0.9189189	0.9117647				#Max	at	(4,5)	
=>	neutral.n	increases	along	the	first	4	pairs,	then	it	decreases	very	slightly.		
	
#	When	controlling	for	total	nestedness,	the	results	clearly	show	that	total	nestedness	is	dominated	
by	gaining	nestedness	between	sites	1-2	(17	species),	2-3	(27	species)	and	3-4	(38	species),	and	by	
losing	nestedness	between	sites	4-5	(39	species),	5-6	(40	species),	6-7	(37	species)	and	7-8	(34	
species),	as	predicted	by	the	relationship	total.n	=	max(gain.n,	 loss.n)	mentioned	in	the	previous	
subsection.	
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#	Neutral	nestedness	is	the	highest	(97%)	with	respect	to	total	nestedness	between	sites	4-5.	This	
means	that	the	balance	between	gain	and	loss	is	the	largest	between	sites	4-5	in	relation	to	the	total	
nestedness,	as	predicted	by	the	relationship	neutral.n	=	min(gain.n,	loss.n)	mentioned	above.	
	
#	Examine	the	partitioning	of	strict.nestedness	into	gaining.strict.n	and	losing.strict.n.	
	
#	Strict	nestedness	–	Here	nestedness	is	interpreted	in	the	strict	sense,	meaning	that	nestedness	
does	not	exist	for	sampling	units	with	equal	numbers	of	species.	
	
(total.strict.n	=	sub.diag(Y2.2,	method="gaining.strict.nestedness",	relativize=NULL)$total.strict.n)	
[1]	17	27	38	39	40	37	34	 	
	
(	gain.strict.n	=	sub.diag(Y2.2,	method="gaining.strict.nestedness",relativize=NULL)$sub.diag	)	
#	Method:		gaining.strict.nestedness		
[1]	17	27	38	38	37	34	31	
	
(	gain.strict.n	/	total.strict.n	)		
[1]	1.0000000	1.0000000	1.0000000	0.9743590	0.9250000	0.9189189	0.9117647	
	
(	loss.strict.n	=	sub.diag(Y2.2,	method=	"losing.strict.nestedness",	relativize=NULL)$sub.diag	)	
#	Method:		losing.strict.nestedness		
[1]		5	16	27	39	40	37	34	
	
(	loss.strict.n	/	total.strict.n	)		
[1]	0.2941176	0.5925926	0.7105263	1.0000000	1.0000000	1.0000000	1.0000000	
	
#	-----	
	
#	For	 this	 coenocline,	 the	 interpretation	 is	 the	 same	as	with	 simple	nestedness	of	 the	previous	
section.	It	is	based	on	the	relationship	total.strict.n	=	max(gain.strict.n,	loss.strict.n).	For	other	data	
sets,	the	interpretation	could	differ	between	the	two	types	of	nestedness.	
	
#	========	
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Part	2	–	Coenocline	with	constant	change	in	community	composition	
	
A	 coenocline	with	 constant	 change	 in	 community	 composition	 can	 easily	 be	 generated	with	 the	
coenocline.R	 function,	 but	 it	 would	 not	 produce	 a	 signature	 that	 could	 be	 identified	 by	 the	
directional	indices	described	in	the	present	paper.	This	is	an	example	of	the	“null	situation”	in	the	
paper.	It	shows	what	the	new	indices	cannot	do.	
	
library(coenocliner)	
	
Example	of	 a	 coenocline	with	 constant	 tolerances:	 51	 sites,	 51	 species	with	 identical	maximum	
abundances.	After	cut-off	at	values	>2	(first	36	sites),	Y	contains	a	large	proportion	of	zeros.	
	
#	Coenocline	with	constant	tolerances,	
x	<-	seq(from=1,	to=51,	by=1)		 #	Coenocline	variable	or	transect	positions	(graph	abscissa)	
opt	<-	seq(from=1,	to=51,	by=1)				 #	Positions	of	species	optima	along	transect	x	
tol	<-	rep(3.0,	51)	 #	Equal	species	tolerances	
h	<-	rep(20,	51)																														 #	Maximum	abundance	of	individual	species	(all	equal)	
	
Y.const	<-	coenocline(x,	responseModel	=	"gaussian",	
	 params	=	cbind(opt	=	opt,	tol	=	tol,	h	=	h),	
	 countModel	=	"poisson",	expectation	=	TRUE)	
	
#	Y.const	contains	about	46%	zeros:		length(which(Y.const<1e-5))	/	length(Y.const)	
	
Y.const.1	<-	ifelse(Y.const	>	2,	1,	0)	
rich	=	apply(Y.const.1,	1,	sum)	 #	Species	richness	at	the	51	sites	
[1]		7		8		9	10	11	12	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	
[31]	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	12	11	10		9		8		7	
plot(rich)	 #	Plot	species	richness	at	the	51	sites	
	
#	The	portion	with	constant	richness	(rich=13)	is	in	the	interval	[7,45]	along	the	ecological	variable.	
	
#	Plot	the	coenocline	with	constant	tolerances	
	
plot(Y.const,	type	=	"l",	lty	=	"solid",	xlab="Ecological	variable",		
	 ylab="Species	abundances",	main="Coenocline,	constant	tolerances")	
	
#	Materialize	this	interval,	in	the	graph,	with	vertical	red	lines	at	positions	6.5	and	45.5	
abline(v=6.5,	col="red")	;	abline(v=45.5,	col="red")	
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#	Save	the	presence-absence	data	in	that	interval	to	a	data	file	containing	these	39	sites:	
	
Y.const.39	=	Y.const.1[7:45,]	
	
#	We	could	run	the	function	directional.response	(see	Suppl	Doc	2)	on	the	whole	data	file.	Here	we	
select	the	sites	with	spacing	of	5,	as	in	the	first	simulations	above:	
	
samp.seq	=	seq(1,	39,	by=5)	
	
#	We	obtain	8	sites	again:		
samp.seq	
[1]		1		6	11	16	21	26	31	36	
	
Y.const.8	=	Y.const.39[samp.seq,]	 #	or:	Y.const.8	=	Y.const.1[seq(7,	45,	by=5),]	
dim(Y.const.8)	
[1]		8	51	
	
#	Load	functions	directional.response.R	and	sub.diag.R,	as	in	part	1	of	this	Supplement	
	
#	Examine	the	partitioning	of	turnover	into	gain.t,	loss.t	and	neutral.t	
	
#	Turnover	–	The	change	in	species	composition	between	adjacent	sites	along	a	gradient.	
	
(	total.t	=	sub.diag(Y.const.8,	method=	"gaining.turnover",	relativize=NULL)$total.t	)	
[1]	10	10	10	10	10	10	10	 #	Total	turnover	=	=	max(gain.t,	loss.t)	(computed	below)	
	
(	gain.t	=	sub.diag(Y.const.8,	method=	"gaining.turnover",	relativize=NULL)$sub.diag	)	
Method:		gaining.turnover		
[1]	10	10	10	10	10	10	10	 #	if(c>b	then	b+c,	else	2*min(b,c)	
	
(	loss.t	=	sub.diag(Y.const.8,	method=	"losing.turnover",	relativize=NULL)$sub.diag	)	
Method:		losing.turnover			
[1]	10	10	10	10	10	10	10	 #	if(c<b	then	b+c,	else	2*min(b,c)	
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(	neutral.t	=	sub.diag(Y.const.8,	method=	"neutral.turnover",	relativize=NULL)$sub.diag	)	
#	Method:		neutral.turnover		 #	2*min(b,c)	
[1]	10	10	10	10	10	10	10	
	
=>	Note:	total.t	=	max(gain.t,	loss.t);		neutral.t	=	min(gain.t,	loss.t)	
	
#	-----	
	
#	Examine	the	partitioning	of	nestedness	into	gain.n,	loss.n	and	neutral.n.	
	
#	Nestedness	–	A	type	of	richness	difference	pattern	characterized	by	the	species	at	a	site	being	a	
strict	subset	of	the	species	at	a	richer	site.	
	
(	total.n	=	sub.diag(Y.const.8,	method=	"gaining.nestedness",	relativize=NULL)$total.n	)	
[1]	8	8	8	8	8	8	8	 	
	
(	gain.n	=	sub.diag(Y.const.8,	method=	"gaining.nestedness",	relativize=NULL)$sub.diag	)	
#	Method:		gaining.nestedness		
[1]	8	8	8	8	8	8	8	 #	Constant	values	
	
(	loss.n	=	sub.diag(Y.const.8,	method=	"losing.nestedness",	relativize=NULL)$sub.diag	)	
#	Method:		losing.nestedness		
[1]	8	8	8	8	8	8	8	 #	Constant	values	
	
(	neutral.n	=	sub.diag(Y.const.8,	method=	"neutral.nestedness",	relativize=NULL)$sub.diag	)	
#	Method:		neutral.nestedness		
[1]	8	8	8	8	8	8	8	 #	Constant	values	
	
=>	Note:	total.n	=	max(gain.n,	loss.n);		neutral.n	=	min(gain.n,	loss.n)	
	
#	 Analysis	 of	 these	 data	 (all	 39	 sites,	 or	 reduced	 to	 8	 sites	 as	 in	 this	 example)	 with	 the	 new	
directional	indices	did	not	produce	any	signal	because	there	is	no	variation	in	the	rates	of	change	
between	sites.	It	does	not	mean	that	there	is	no	directionality,	but	that	our	indices	are	not	meant	to	
capture	community	composition	changes	with	constant	rates.	
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The	directionality	of	the	broad-scale	data	structure	could	still	be	shown	by	a	PCoA	of	the	Jaccard	or	
Sørensen	dissimilarity	matrix.	Indeed,	in	the	PCoA	ordination,	the	sites	are	ordered	following	their	
entry	 positions	 in	 the	matrix.	 If	 the	 replacement	 of	 species	 is	 regular	 along	 the	 coenocline,	 an	
ordination	should	show	a	standard	horseshoe	shape.	An	example	follows.	
	
Demonstration	–	The	coenocline	produces	a	regular	horseshoe	shape	in	PCoA	
library(ape)	 #	where	functions	pcoa	and	biplot.pcoa	are	found	
library(adespatial)	 #	where	function	dist.ldc	is	found	
pcoa.res	=	pcoa(dist.ldc(Y.const.8,	"sorensen"))	
biplot(pcoa.res,	type="n",	main=c("PCoA	ordination	of	Yconst.8",	"	Sørensen	dissimilarity"))	
lines(pcoa.res$vectors[,1:2],	type="l",	col="red")	
points(pcoa.res$vectors[,1:2],	type="p",	pch=21,	bg="white")	
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