Suppl. Doc. 3 - Analysis of simulated coenocline data with directional indices

The objective of this exercise is to illustrate the interpretation of the new directional indices
through an example that would be familiar to ecologists. Most community ecologists are familiar
with the representation of species abundances along a transect or an ecological gradient (including
time) by a graph showing the succession of species along the gradient, like the one presented at the
bottom of this page.

Note - Overlap is the similarity a. It will not be analysed in detail because it is not, as such, a
directional index. Overlap is, however, included in the numerator of Nestedness indices.

Basic reference on coenoclines:
Whittaker, R. H. 1972. Evolution and measurement of species diversity. Taxon 21: 213-251.

Part 1 - Coenocline with increasing tolerances

Simulate a coenocline (matrix Y) with increasing tolerances (standard deviations): 51 sites, 51
species with identical maximum abundances of 20 (function argument h).
After cut-off at abundances >2, Y contains a large proportion of zeros in the first 36 sites

library(coenocliner)

# Coenocline with increasing tolerances. Y contains about 43% zeros: length(which(Y<2))

x <- seq(from=1, to=51, by=1) # Coenocline variable or transect positions (graph abscissa)
opt <- seq(from=1, to=51, by=1) # Positions of species optima along transect x

tol <- seq(1,16.2, by=0.3) # Species tolerances, increasing along the species list

h <-rep(20, 51) # Maximum abundances of individual species (all equal)

Y <- coenocline(x, responseModel = "gaussian”,
params = cbind(opt = opt, tol = tol, h = h),
countModel = "poisson”, expectation = TRUE)

plot(Y, type = "1", Ity = "solid", xlab="Ecological variable",
ylab="Species abundances", main="Coenocline")

abline(v=36.5, col="red") # Marks the cut-off point along the transect at abscissa=36.5
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Y2.1 <-ifelse(Y > 2,1,0) # Transform to binary (absence-presence) data

# Species richness at the 51 sites

apply(Y2.1,1,sum)

[1] 7 912141619 2023252730313436384142414140403938383737363535
[30] 34 3433323231313029 29282727 262625242423232221

# For illustration of calculation of the directional indices, we use a subset of sites (8 sites)
# well spaced-out along the coenocline, 5 sampling units apart

( sample.seq = seq(1, 40, by=5) )

[1] 1 6111621263136

Y2.2 = Y2.1l[sample.seq,] # Binary data at 8 spaced-out sites along the coenocline
apply(Y¥2.2, 1, sum)
[1] 7 19 30 41 40 37 34 31 # Species richness at the 8 selected sites

# Compute matrices with a, b and c to check the calculations on the following pages

a = Y2.2 %*% t(¥2.2)
b = (1 - Y2.2) %*% t(Y2.2)
c = Y2.2 $*%% (1 - t(¥2.2 ))
b

(.11 (,21 [,31 [,4] [,5] [,6] [,7] [,8]
[1,] 0 14 28 41 40 37 34 31
[2,] 2 0 14 28 30 30 30 30
[3,] 5 3 0 14 16 16 16 16
[4,] 7 6 3 0 2 2 2 2
[5,] 7 9 6 3 0 0 0 0
[6,] 7 12 9 6 3 0 0 0
[7,] 7 15 12 9 6 3 0 0
[8,] 7 18 15 12 9 6 3 0
C

(.11 €,21 [,31 [,4] [,5] [,6] [,7] [,8]
[1,] 0 2 5 7 7 7 7 7
(2,1 14 0 3 6 9 12 15 18
[3,] 28 14 0 3 6 9 12 15
[4,] 41 28 14 0 3 6 9 12
[5,1] 40 30 16 2 0 3 6 9
[6,] 37 30 16 2 0 0 3 6
[7,1 34 30 16 2 0 0 0 3
[8,] 31 30 16 2 0 0 0 0

# Sub-diagonal (.sd) vectors, from positions (2,1) to (8,7) in the square matrices

a.sd = ¢(5, 16, 27, 38, 37, 34, 31)

b.sd = c¢(2, 3, 3, 3, 3, 3, 3)

c.sd = c(14, 14, 14, 2, 0, 0, 0)

(b.sd+c.sd) #c(16,17,17,5,3,3,3) # Total turnover

2*pmin(b.sd,c.sd) #c(4,6,6,4,0,0,0) # May be computed as (b.sd+c.sd) - abs(b.sd-c.sd)
(a.sd+b.sd+c.sd) # c(21, 33, 44, 43, 40, 37, 34)



# Examine the partitioning of turnover into gain.t, loss.t and neutral.t
# The vectors of sub-diagonal indices could be used to draw a Figure showing all results below

# The following function requires function directional.response.R provided in Suppl Doc 2

# Function sub.diag.R
sub.diag <- function(mat, method="gaining.turnover", relativize="J")
#
# Compute directional.response(mat); extract sub-diagonal of output matrices
{
X <- directional.response(mat, method=method, relativize=relativize)
n.sd <- nrow(x$mat.out) # Number of values in sub-diagonal of mat.out
tmp <- cbind( 2:n.sd, l:(n.sd-1) )

# print(tmp)
s.diag <- x$mat.out[tmp]
if(is.na(x$total.t[[1]])) tt <- NA else tt <- x$total.t[tmp]
if(is.na(x$total.n[[1]])) tn <- NA else tn <- x$total.n[tmp]
if(is.na(xS$total.strict.n[[1l]])) tn2 <- NA else tn2 <- x$total.strict.n[tmp]
#
list(sub.diag=s.diag, total.t=tt, total.n=tn, total.strict.n=tn2)

}

# Examine the partitioning of turnover into gain.t, loss.t and neutral.t
# Turnover - The change in species composition between adjacent sites along a gradient.

( total.t = sub.diag(Y2.2, method= "gaining.turnover”, relativize=NULL)$total.t )
[1]161717 5 3 3 3 # Total turnover = (b+c)

( gain.t = sub.diag(Y2.2, method= "gaining.turnover", relativize=NULL)$sub.diag )
# Method: gaining.turnover
[1]161717 4000 # if(c>b then b+c, else 2*min(b,c)

(loss.t = sub.diag(Y2.2, method= "losing.turnover”, relativize=NULL)$sub.diag )
# Method: losing.turnover
[1]14665333 # if(c<b then b+c, else 2*min(b,c)

( neutral.t = sub.diag(Y2.2, method= "neutral.turnover”, relativize=NULL)$sub.diag )
# Method: neutral.turnover # 2*min(b,c)
[1]14664000

=> Note: total.t = max(gain.t, loss.t); neutral.t = min(gain.t, loss.t)

# The results show that total turnover is high between sites 1-2 (16 species), 2-3 (17 species) and
3-4 (17 species); then it drops to a lower level (5 and 3 species). Total turnover is dominated by
gaining turnover between sites 1-2 (16 species), 2-3 (17 species) and 3-4 (17 species), and by losing
turnover between sites 4-5 (5 species), 5-6, 6-7 and 7-8 (3 species).



# Compute standardized turnover indices, controlling for total turnover.
=> [tis easier to appreciate the ecological importance of individual turnover fractions by computing
the fraction of total turnover attributed to the three indices.

gain.t / total.t
[1]1.01.01.0 0.8 0.0 0.0 0.0

loss.t / total.t
[1] 0.2500000 0.3529412 0.3529412 1.0000000 1.0000000 1.0000000 1.0000000

neutral.t / total.t
[1] 0.2500000 0.3529412 0.3529412 0.8000000 0.0000000 0.0000000 0.0000000

# When controlling for total turnover, the results clearly show that total turnover is dominated by
gaining turnover between sites 1-2 (16 species), 2-3 (17 species) and 3-4 (17 species), and by losing
turnover between sites 4-5 (5 species), 5-6, 6-7 and 7-8 (3 species), as predicted by the relationship
total.t = max(gain.t, loss.t) mentioned in the previous subsection.

# Neutral turnover is the highest (80%) in relation to total turnover between sites 4-5. This means
that the balance between gain and loss is the largest between sites 4-5 in relation to the total
turnover, as predicted by the relationship neutral.t = min(gain.t, loss.t) mentioned in the previous
subsection.



# Examine the partitioning of nestedness into gain.n, loss.n and neutral.n
# Nestedness - A type of richness difference pattern characterized by the species at a site being a
strict subset of the species at a richer site.

( total.n = sub.diag(Y2.2, method= "gaining.nestedness", relativize=NULL)$total.n )
[1] 17 27 38 39 40 37 34

( gain.n = sub.diag(Y2.2, method= "gaining.nestedness", relativize=NULL)$sub.diag )
# Method: gaining.nestedness
[1] 17 27 383837 34 31 # Maximum at (3,4) and (4,5)

(loss.n = sub.diag(Y2.2, method= "losing.nestedness", relativize=NULL)$sub.diag )
# Method: losing.nestedness
[1] 516 27 39 40 37 34 # Maximum at (5,6)

( neutral.n = sub.diag(Y2.2, method= "neutral.nestedness", relativize=NULL)$sub.diag )
# Method: neutral.nestedness
[1] 516273837 3431 # Maximum at (4,5)

=> Note: total.n = max(gain.n, loss.n); neutral.n = min(gain.n, loss.n)

# Compute standardized nestedness indices, controlling for total nestedness.
=> [t is easier to appreciate the ecological importance of individual nestedness fractions by
computing the fraction of total nestedness attributed to the three indices.

( gain.n / total.n )
[1] 1.0000000 1.0000000 1.0000000 0.9743590 0.9250000 0.9189189 0.9117647 # Decreasing
=> gain.n decreases along the series of pairs of sites.

(loss.n / total.n)
[1] 0.2941176 0.5925926 0.7105263 1.0000000 1.0000000 1.0000000 1.0000000 # Increasing
=> loss.n increases along the series of pairs of sites.

( neutral.n / total.n )
[1] 0.2941176 0.5925926 0.7105263 0.9743590 0.9250000 0.9189189 0.9117647 #Max at (4,5)
=> neutral.n increases along the first 4 pairs, then it decreases very slightly.

# When controlling for total nestedness, the results clearly show that total nestedness is dominated
by gaining nestedness between sites 1-2 (17 species), 2-3 (27 species) and 3-4 (38 species), and by
losing nestedness between sites 4-5 (39 species), 5-6 (40 species), 6-7 (37 species) and 7-8 (34
species), as predicted by the relationship total.n = max(gain.n, loss.n) mentioned in the previous
subsection.
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# Neutral nestedness is the highest (97%) with respect to total nestedness between sites 4-5. This
means that the balance between gain and loss is the largest between sites 4-5 in relation to the total
nestedness, as predicted by the relationship neutral.n = min(gain.n, loss.n) mentioned above.

# Examine the partitioning of strict.nestedness into gaining.strict.n and losing.strict.n.

# Strict nestedness — Here nestedness is interpreted in the strict sense, meaning that nestedness
does not exist for sampling units with equal numbers of species.

(total.strict.n = sub.diag(Y2.2, method="gaining.strict.nestedness", relativize=NULL)$total.strict.n)
[1] 17 27 38 39 40 37 34

( gain.strict.n = sub.diag(Y2.2, method="gaining.strict.nestedness",relativize=NULL)$sub.diag )
# Method: gaining.strict.nestedness
[1] 17 27 383837 34 31

( gain.strict.n / total.strict.n )
[1] 1.0000000 1.0000000 1.0000000 0.9743590 0.9250000 0.9189189 0.9117647

(loss.strict.n = sub.diag(Y2.2, method= "losing.strict.nestedness", relativize=NULL)$sub.diag )
# Method: losing.strict.nestedness
[1] 516 27 3940 37 34

(loss.strict.n / total.strict.n )
[1] 0.2941176 0.5925926 0.7105263 1.0000000 1.0000000 1.0000000 1.0000000

# For this coenocline, the interpretation is the same as with simple nestedness of the previous
section. [t is based on the relationship total.strict.n = max(gain.strict.n, loss.strict.n). For other data
sets, the interpretation could differ between the two types of nestedness.



Part 2 - Coenocline with constant change in community composition

A coenocline with constant change in community composition can easily be generated with the
coenocline.R function, but it would not produce a signature that could be identified by the
directional indices described in the present paper. This is an example of the “null situation” in the
paper. It shows what the new indices cannot do.

library(coenocliner)

Example of a coenocline with constant tolerances: 51 sites, 51 species with identical maximum
abundances. After cut-off at values >2 (first 36 sites), Y contains a large proportion of zeros.

# Coenocline with constant tolerances,

X <- seq(from=1, to=51, by=1) # Coenocline variable or transect positions (graph abscissa)
opt <- seq(from=1, to=51, by=1) # Positions of species optima along transect x

tol <-rep(3.0, 51) # Equal species tolerances

h <-rep(20, 51) # Maximum abundance of individual species (all equal)

Y.const <- coenocline(x, responseModel = "gaussian",
params = cbind(opt = opt, tol = tol, h =h),
countModel = "poisson”, expectation = TRUE)

# Y.const contains about 46% zeros: length(which(Y.const<le-5)) / length(Y.const)

Y.const.1 <- ifelse(Y.const > 2, 1, 0)

rich = apply(Y.const.1, 1, sum) # Species richness at the 51 sites

[1]1 78 9101112131313131313131313131313131313131313131313131313
[31]1313131313131313131313131313131211109 8 7

plot(rich) # Plot species richness at the 51 sites

# The portion with constant richness (rich=13) is in the interval [7,45] along the ecological variable.

# Plot the coenocline with constant tolerances

plot(Y.const, type = "I", Ity = "solid", xlab="Ecological variable",
ylab="Species abundances", main="Coenocline, constant tolerances")

# Materialize this interval, in the graph, with vertical red lines at positions 6.5 and 45.5
abline(v=6.5, col="red") ; abline(v=45.5, col="red")



Coenocline, constant tolerances

I I
0 10 20 30 40 50

15 20
l l
\gé

Species abundances
5 10
l

—

0
I

Ecological variable

# Save the presence-absence data in that interval to a data file containing these 39 sites:
Y.const.39 = Y.const.1[7:45,]

# We could run the function directional.response (see Suppl Doc 2) on the whole data file. Here we
select the sites with spacing of 5, as in the first simulations above:

samp.seq = seq(1, 39, by=5)
# We obtain 8 sites again:

samp.seq
[1] 1 6111621263136

Y.const.8 = Y.const.39[samp.seq,] # or: Y.const.8 = Y.const.1[seq(7, 45, by=5),]
dim(Y.const.8)
[1] 851

# Load functions directional.response.R and sub.diag.R, as in part 1 of this Supplement
# Examine the partitioning of turnover into gain.t, loss.t and neutral.t
# Turnover - The change in species composition between adjacent sites along a gradient.

( total.t = sub.diag(Y.const.8, method= "gaining.turnover", relativize=NULL)$total.t )
[1]10101010101010 # Total turnover = = max(gain.t, loss.t) (computed below)

( gain.t = sub.diag(Y.const.8, method= "gaining.turnover”, relativize=NULL)$sub.diag )
Method: gaining.turnover
[1]10101010101010 # if(c>b then b+c, else 2*min(b,c)

(loss.t = sub.diag(Y.const.8, method= "losing.turnover”, relativize=NULL)$sub.diag )
Method: losing.turnover
[1]10101010101010 # if(c<b then b+c, else 2*min(b,c)



( neutral.t = sub.diag(Y.const.8, method= "neutral.turnover", relativize=NULL)$sub.diag )
# Method: neutral.turnover # 2*min(b,c)
[1110101010101010

=> Note: total.t = max(gain.t, loss.t); neutral.t = min(gain.t, loss.t)

# Examine the partitioning of nestedness into gain.n, loss.n and neutral.n.

# Nestedness - A type of richness difference pattern characterized by the species at a site being a
strict subset of the species at a richer site.

( total.n = sub.diag(Y.const.8, method= "gaining.nestedness", relativize=NULL)$total.n )
(118888888

( gain.n = sub.diag(Y.const.8, method= "gaining.nestedness", relativize=NULL)$sub.diag )
# Method: gaining.nestedness
[118888888 # Constant values

(loss.n = sub.diag(Y.const.8, method= "losing.nestedness", relativize=NULL)$sub.diag )
# Method: losing.nestedness
[118888888 # Constant values

( neutral.n = sub.diag(Y.const.8, method= "neutral.nestedness", relativize=NULL)$sub.diag )
# Method: neutral.nestedness
[118888888 # Constant values

=> Note: total.n = max(gain.n, loss.n); neutral.n = min(gain.n, loss.n)

# Analysis of these data (all 39 sites, or reduced to 8 sites as in this example) with the new
directional indices did not produce any signal because there is no variation in the rates of change
between sites. It does not mean that there is no directionality, but that our indices are not meant to
capture community composition changes with constant rates.
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The directionality of the broad-scale data structure could still be shown by a PCoA of the Jaccard or
Sgrensen dissimilarity matrix. Indeed, in the PCoA ordination, the sites are ordered following their
entry positions in the matrix. If the replacement of species is regular along the coenocline, an
ordination should show a standard horseshoe shape. An example follows.

Demonstration - The coenocline produces a regular horseshoe shape in PCoA

library(ape) # where functions pcoa and biplot.pcoa are found
library(adespatial) # where function dist.ldc is found

pcoa.res = pcoa(dist.Idc(Y.const.8, "sorensen"))

biplot(pcoa.res, type="n", main=c("PCoA ordination of Yconst.8", " Sgrensen dissimilarity"))
lines(pcoa.res$vectors[,1:2], type="1", col="red")

points(pcoa.res$vectors[,1:2], type="p", pch=21, bg="white")

PCoA ordination of Yconst.8
Sgrensen dissimilarity

AXxis.2
-0.2 00 02 04

-0.4

-0.6

-06 -04 -02 00 02 04 06

AXxis.1



