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Abstract: The choice of spatial scale and modelling technique used to capture species–habitat relationships needs to be
considered when ascertaining environmental determinants of habitat quality for species and communities. Fish densities and
environmental data were collected at three Laurentian lakes using underwater surveys by four snorkelers collecting fine
spatial data acquired through geographic positioning systems. At both fine (20 m) and broad (100 m) spatial scales, tree-
based approaches, which incorporated both linear and nonlinear relationships, explained more variation than their linear
counterparts. At the finest spatial scale considered (20 m), local environmental conditions, such as habitat structure and
heterogeneity, were important determinants of fish habitat selection. At the broadest spatial scale considered (100 m), fish
tended to select habitat based on both local environmental features and riparian development. Moran’s eigenvector maps
further revealed that fish–habitat associations were operating at broader spatial scales than the predefined analytical units,
which can be partially attributed to the spatial structure of environmental conditions acting at spatial scales greater than
100 m. This study highlights the importance of evaluating statistical approaches at different spatial scales to identify key
determinants of habitat quality for species, ultimately to assess the effects of perturbations on ecosystems.

Résumé : Le choix de l’échelle spatiale et de la technique de modélisation utilisées pour cerner les relations
espèce–habitat doit être pris en considération dans l’évaluation des déterminants environnementaux de la qualité de
l’habitat pour les espèces et les communautés. Des densités de poissons et des données environnementales ont été mesurées
pour trois lacs laurentiens dans le cadre de levés sous-marins par quatre plongeurs en apnée qui ont recueilli des données
de haute résolution spatiale à l’aide de systèmes de positionnement global (GPS). Aux échelles spatiales tant fine (20 m)
que plus grossière (100 m), les approches arborescentes, qui intègrent des relations linéaires et non linéaires, expliquaient
une plus grande partie de la variation que leurs pendants linéaires. À l’échelle spatiale étudiée la plus fine (20 m), les
conditions environnementales locales, comme la structure et l’hétérogénéité de l’habitat, étaient des déterminants
importants de la sélection de l’habitat par le poisson. À l’échelle la plus grossière (100 m), les poissons avaient tendance à
choisir leur habitat en fonction de caractéristiques environnementales locales et de l’aménagement des rives. Les cartes de
vecteurs propres de Moran (MEM) ont en outre révélé que les associations poisson–habitat s’exprimaient à des échelles
spatiales plus larges que les unités analytiques prédéfinies, ce qui peut être partiellement attribuable à la structure spatiale
des conditions environnementales opérant à des échelles spatiales supérieures à 100 m. L’étude met en relief l’importance
d’évaluer les approches statistiques à différentes échelles spatiales pour cerner les déterminants clés de la qualité de
l’habitat pour les espèces afin, ultimement, d’évaluer les effets de perturbations sur les écosystèmes.

[Traduit par la Rédaction]

Introduction

Habitats can be altered by anthropogenic means, such as
resource exploitation and habitat destruction, and can have
wide-ranging ecological repercussions, including alterations in
habitat availability. Numerous studies have shown that species
across many taxa select habitat based on environmental con-

ditions. For example, studies on arthropods (e.g., Schaffers
et al. 2008), butterflies and birds (e.g., Storch et al. 2003),
woodland caribou (e.g., Leroux et al. 2007), white-tailed deer
(e.g., Plante et al. 2004), and freshwater fish communities
(e.g., Sharma and Jackson 2007) have demonstrated this pat-
tern. More specifically for freshwater fish communities, envi-
ronmental variables describing habitat heterogeneity and
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riparian development have been used to explain the ecological
niche of fish communities. Complex habitat structure and
heterogeneity have been shown to increase diversity in fish
communities (MacRae and Jackson 2001; Mayo and Jackson
2006), whereas decreased integrity of the riparian zone has
been negatively related to diversity in the fish community
(Meador and Goldstein 2003).

Species respond to environmental conditions and select
habitat at different spatial scales. In this study, spatial scale is
defined as the size of the units used during statistical analyses
(analytical units) that correspond to the sampling sites at
which species and habitat data are collected (Dungan et al.
2002; Fortin and Dale 2005; Brind’Amour and Boisclair
2006). Depending upon spatial scale, apparent species–habitat
associations may vary, thereby providing more detailed un-
derstanding of the underlying biological processes driving
species distributions. Numerous studies highlight the impor-
tance of examining species–habitat relationships at different
spatial scales to detect patterns of habitat selection (e.g., Graf
et al. 2005; Huettmann and Diamond 2006; Guisan et al.
2007a). For example, Plante et al. (2004) related white-tailed
deer (Odocoileus virginianus) distribution to landscape fea-
tures at both the 500 m and 1 km scale and found that deer
were selecting habitat features at the broader spatial scale.
Thompson et al. (2001) examined habitat selection of long-
nose dace (Rhinichthys cataractae) at three hierarchical spatial
scales. Significant relationships between longnose dace and
their abiotic and biotic environment were only found at the
secondary and tertiary (finer) scales (Thompson et al. 2001).
Brind’Amour et al. (2005) hypothesized that species’ habitat
associations can be described at different spatial scales. For
example, a generalist fish species that inhabits a broad eco-
logical range should use a wide range of habitat characteristics
spanning fine to broad spatial conditions owing to their ability
to utilize different types of habitats. Conversely, a specialist
fish species that typically uses a narrow ecological range can
be associated with very few spatial conditions, as specialist
species tend to be adapted to specific habitat characteristics
that would only be found at a few spatial scales. The distri-
bution of species can be modelled by eigenfunctions corre-
sponding to the habitat characterizing its ecological niche to
identify the spatial scales at which the species was responding
to its environmental conditions. Therefore, the distribution of
the specialist species will be linked to a small range of spatial
scales, represented by the few eigenfunctions modelling it
(Brind’Amour et al. 2005). Thus, the choice of spatial scale
may yield different types of information as to the habitat
features that species are selecting. The advent of spatial sta-
tistical methods, such as Moran’s eigenvector maps (MEMs;
Borcard and Legendre 2002; Borcard et al. 2004; Dray et al.
2006), permits quantification of the size and relative impor-
tance of spatial scales acting on environmental conditions and
community composition by providing a more objective ap-
proach to which spatial scales are important to species com-
munities and their habitat. The added value of including the
spatial representation of MEM variables is the ability to quan-
tify the spatial dependency at multiple spatial scales.

Species habitat selection can be characterized in several
ways. If species are highly mobile, resource selection func-
tions are useful, as species occurrence is designated by avail-
able and locations used by species and are commonly used in

wildlife ecology (e.g., Boyce et al. 2002; Manly et al. 2002;
Lele and Keim 2006). For species that are not as highly
mobile, ecological niche models have often been used to charac-
terize habitat use by species and communities based on a suite of
biologically relevant environmental conditions (e.g., Ferrier et al.
2007; Araújo and New 2007; Elith and Leathwick 2009).

The ability to develop ecological niche models with high
explanatory power is imperative to understanding the impor-
tance of environmental conditions and habitat selection of
species in an effort to ultimately assess the effects of pertur-
bations and develop conservation and adaptive management
strategies for ecosystems. As statistical approaches differ in
their ability to model relationships, an evaluation of different
statistical approaches can provide insight into which approach is
most appropriate for the biological question being asked at both
the species and community levels (Guisan and Zimmermann
2000; Elith et al. 2006; Sharma and Jackson 2008). Numerous
studies have compared a suite of statistical approaches (e.g.,
Elith et al. 2006; Lawler et al. 2006; Prasad et al. 2006; Cutler
et al. 2007; Guisan et al. 2007b; Peters et al. 2007; Elith and
Leathwick 2009; Knudby et al. 2010; Oppel and Huettmann
2010; Drew et al. 2011; Evans et al. 2011; Hardy et al. 2011),
including linear models, generalized linear models, general-
ized additive models, classification and regression trees
(Breiman et al. 1984; De’ath and Fabricius 2000), multivariate
regression trees (De’ath 2002), and other models such as
Maxent (Phillips et al. 2006; Phillips and Dudik 2008),
multiadaptive regression splines (MARS; Friedman 2001;
Leathwick et al. 2005), boosted regression trees (De’ath 2007;
Buhlmann 2004; Elith et al. 2008), bagging regression trees
(Breiman 1996; Buhlmann 2004), and random forest methods
(Breiman 2001; Evans et al. 2011). Typically in comparisons
where tree-based approaches were included, they generally
performed better than many of the other methods. Among
tree-based approaches, random forests are considered to be
superior (e.g., Lawler et al. 2006; Prasad et al. 2006; Knudby
et al. 2010). Random forests have been recently extended to
consider a multivariate version (Segal and Xiao 2011) and
gradients (Ellis et al. 2012). However, further studies on
statistical comparisons are warranted to show which statistical
approaches are best to use for species occurrence and com-
munity composition data sets.

The primary objective of our study was to ascertain which
environmental determinants of habitat quality are important to
fish species and communities by considering two methodolog-
ical aspects: (i) identifying the spatial scale at which environ-
mental processes are acting on fish species and communities
and (ii) partitioning the linear and nonlinear relationships
acting on fish species and communities. The analyses were
performed at both the species and community levels, as con-
servation strategies are often developed for both target species
and native communities. More specifically, we extended the
use of MEMs to identify the spatial scales at which environ-
mental variables are structuring fish communities without us-
ing predefined scales and used a variation partitioning
framework to attribute variation to linear and nonlinear com-
ponents when modelling community–habitat relationships us-
ing multivariate approaches. This study focused on modelling
the relationships between littoral fish species and their envi-
ronment at fine and broad spatial scales using a data set typical
of those collected by aquatic ecologists.
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In this study, we limited our comparison to linear (multiple
linear regression and redundancy analysis) and tree-based (re-
gression tree and multivariate regression trees) models at
different spatial scales to identify important environmental
variables structuring fish species and communities. Linear
approaches are often used to relate environmental conditions
to species occurrence (Sharma et al. 2008). Tree-based ap-
proaches can be beneficial to use with data sets that exhibit
linear and nonlinear relationships between predictor variables,
high-order interactions, and multicollinearity, and they are
generally faster and more accurate than traditional linear ap-
proaches (Breiman et al. 1984; De’ath and Fabricius 2000).
We limited our comparison to the aforementioned approaches
for several reasons: (i) multivariate versions were available for
both linear and tree-based methods; (ii) direct identification of
important predictor variables was possible; (iii) to permit
quantification of the importance of fine to broad spatial scales
using a variation partitioning framework in conjunction with
MEMs; and (iv) to allow us to quantify and partition the
variation attributed to linear and nonlinear processes acting on
fish communities, thereby presenting a unique contribution to
the literature.

Methods

Study lakes
Our study focused on the littoral zone of three lakes of

comparable sizes located in the Quebec Laurentian region:
Purvis Lake (45.99°N, 74.09°W), Rond Lake (45.95°N,
74.14°W), and Violon Lake (45.94°N, 74.09°W). Fish species
diversity does not tend to be high in small Laurentian lakes.

There were four and five fish species found in the littoral
regions of Purvis and Rond Lakes, respectively, in July 2005.
The fish community in Violon Lake comprised seven species
(Table 1).

Purvis Lake has a surface area of 19.1 ha, a perimeter of
2.4 km, and a mean depth of 7.6 m. It is a dystrophic lake with
a single tributary. Human development around the perimeter
of Purvis Lake is intermediate, with 27 cottages. The littoral
zone of Purvis Lake is characterized by a diversity of habitats,
including sandy beaches, rocky substrate, woody debris, and
patches of macrophytes. Rond Lake has a surface area of
16.6 ha, a perimeter of 1.6 km, and a mean depth of 7.2 m.
Rond Lake is highly developed and presently hosts 314 cot-
tages. The littoral zone of Rond Lake is relatively homogenous
and dominated by weed beds. The surface area of Violon Lake
is 15.5 ha, the perimeter is 2.5 km, and the mean depth is
7.3 m. Of the three lakes, Violon Lake is the least developed
and is home to 3 cottages. Violon Lake is characterized by the
presence of numerous dead trees and high coverage of woody
debris and macrophytes, which are commonly removed by
cottage owners (Table 2).

Characterization of the fish community
The littoral zone fish community was described by conduct-

ing three surveys in each lake. The three surveys were com-
pleted during the day between 1000 and 1600 h of July 2005.
Please see Brind’Amour and Boisclair (2006) for a complete
description of the sampling methodology. The surveys con-
ducted in this study were a modified form of the visual
approach used by Brind’Amour and Boisclair (2006). Our

Table 1. Occurrence of fish (number of sections in which species is present) and
maximum and mean densities of fish observed in the littoral zones of Purvis
Lake, Rond Lake, and Violon Lake in July 2005 in sampling units consisting of
sections 20 m long.

Fish species Occurrence Maximum Mean

Lake Purvis (123 sections)
Pumpkinseed (Lepomis gibbosus) 114 1.11 0.26
Rock bass (Ambloplites rupestris) 66 0.06 0.01
Smallmouth bass (Micropterus dolomieu) 98 0.08 0.02
Yellow perch (Perca flavescens) 34 0.04 0.003

Lake Rond (81 sections)
Banded killifish (Fundulus diaphanus) 75 3.66 0.41
Bluntnose minnow (Pimephales notatus) 21 1.00 0.15
Goldfish (Carassius auratus) 18 0.02 0.002
Pumpkinseed (Lepomis gibbosus) 79 0.54 0.15
Smallmouth bass (Micropterus dolomieu) 67 0.07 0.01

Lake Violon (116 sections)
Creek chub (Semotilus atromaculatus) 4 0.05 0.001
Fathead minnow (Pimephales promelas) 16 0.01 0.001
Golden shiner (Notemigonus crysoleucas) 54 0.26 0.02
Pearl dace (Margariscus margarita) 66 0.26 0.01
Pumpkinseed (Lepomis gibbosus) 104 1.05 0.09
Walleye (Sander vitreus) 4 0.02 0.0002
White sucker (Catostomus commersonii) 20 0.03 0.001

Note: The minimum densities of all fish in all lakes was zero.
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approach involved four snorkellers (instead of the two snor-
kellers in Brind’Amour and Boisclair 2006) trained and cali-
brated to identify, count, and estimate the length of the fish
observed during visual surveys. From a common starting
point, two snorkellers surveyed the perimeter of the lake
clockwise and the other two snorkellers surveyed the perime-
ter of the lake counterclockwise, eventually meeting after
surveying approximately 50% of the perimeter of the lake. For
each pair of snorkellers, one swam approximately 1 m from
shore and one swam near the 2.5 m depth isobath (limit to
discriminate and identify fish during the day and night in the
study lakes). In contrast to the approach used by Brind’Amour
and Boisclair (2006), who used painted rocks to set the limits
of predefined sampling sites, in the present study all snor-
kellers carried a geographic positioning system (GPS)
(Garmin model; �5 m under prevailing field conditions) that
recorded their position at 1 s intervals. Snorkellers recorded
the species, the number, and the length of the fish (classes of
5 cm total length) they observed together with the time of
observation (hh:mm) on polyvinyl chloride tubes they wore on
their forearms. Snorkellers also collected information required
to estimate the volume they sampled by estimating variations
of the width and the depth of the area they surveyed (at an
accuracy of 25 cm based on distance to shoreline and visibil-
ity). Combining the data of the position of the snorkellers and
the time noted by the GPS together with the data of the fish
observed and the time of observation noted by the snorkellers
permitted the estimation of the spatial distribution of fish
around the complete perimeters of the lakes.

We divided the perimeter of each lake into a series of
contiguous 20 m long sections. The length of 20 m sections
was selected as the finest spatial scale on which models could
be developed to summarize species–habitat relationships.
Given the precision of the GPS used (�5 m), the maximum
difference between the time at which the position of snor-

kellers and that of fish were recorded (1 min), and the mean
swimming speed of snorkellers (5 m·min–1; e.g., half a perim-
eter of 2.5 km lake in 4 h), the potential error of the spatial
position of fish at any given point of the perimeter of the lakes
is taken as �10 m. This means that at the limit of a given 20 m
section, the probability of assigning fish to the proper 20 m
section is 50%. This probability reaches 75% at 5 m from the
limit of a 20 m section and 100% in the centre of this section.
Taken together, the probability of assigning fish to the 20 m
section in which they were effectively observed is 70%. This
value is taken as the worst-case scenario associated with fish
position because (i) it assumes that the error imputable to the
GPS and that associated with the time difference between the
positioning of the snorkeler and the fish are always perfectly
additive and (ii) it assumes that the swimming speed of the
snorkeler is constant, while it is certainly slower (and hence,
less subjected to an error due to the difference in time of the
positioning of the snorkeler and the fish) when snorkellers
encounter fish than when they go through a fishless area.

Characterization of environmental conditions
Corresponding to the characterization of the fish commu-

nity, a suite of local and riparian environmental data were
recorded for each 20 m section over the complete perimeter of
the study lakes. Local habitat variables were noted and geo-
referenced by snorkellers within a few days of sampling for
fish. Habitat variables designated as local were the slope at the
bottom of the lake (estimated using the depth at a point 20 m
from shore), the composition of the substrate (percent cover by
nine size categories of substrate as identified by Bouchard and
Boisclair (2008) from clay to bedrock), the percent cover of
macrophytes, and the number of dead trees with trunk diam-
eters greater than 15 cm. Riparian habitat variables were
estimated from a boat following the shoreline. Riparian habitat
variables were all categorical variables: for example, the slope
of the shoreline (1 � 0°–30°, 2 � 30°–60°, 3 � 60°–90°), and
the use of riparian zone such as the presence or absence of
cottages, walls, platforms, docks, or vegetation (i.e., lawn
grass, natural vegetation, wooded area, and forest).

Data analyses
Data were analysed at two spatial scales (analytical units on

which statistical analyses was performed): 20 and 100 m. The
largest analytical unit was an amalgamation of data in five
elementary units, thus a 100 m section. Amalgamation of data
was completed as follows. Fish counts and sampling volumes
were summed, and the ratio of the total number of fish in a
sampling volume was the density of fish in a 100 m section.
Values for the slope at the bottom of the lake, composition of
substrate, and the percent cover of macrophytes were averaged
across the five elementary units to obtain mean conditions in a
100 m section. The number of dead trees with trunk diameters
greater than 15 cm was summed for a 100 m section. Finally,
the mode value of the slope of the shoreline and the use of the
riparian zone were taken for each 100 m section.

For each sampling site we calculated the density of each fish
species per volume sampled. Volume was calculated for each
sampling site using the length of the transect, the width of the
sampling area, and mean lake depth at that particular sampling
site. For univariate analysis, the square-root transformation
was used to attempt to achieve normality of the residuals of the

Table 2. Mean environmental conditions observed in the littoral
zones of Purvis Lake, Rond Lake, and Violon Lake, in July 2005
in sampling units consisting of sections 20 m long.

Variable
Purvis
Lake

Rond
Lake

Violon
Lake

Depth at 10 m from
shoreline (m)

2.9 — 4.8

Bottom slope (°) 16 10.7 24.9
Clay substrate (%) 0 0.7 0.04
Silt substrate (%) 59.5 73.1 58.7
Sand substrate (%) 5.2 19.4 2.7
Gravel substrate (%) 0.3 2.4 0.5
Pebble substrate (%) 0.3 0.1 0.1
Cobble substrate (%) 0.6 0.1 3.7
Boulder substrate (%) 10.6 1.6 16.2
Metric boulder substrate (%) 12.9 2.6 14.9
Bedrock substrate (%) 10.6 0 3.1
Macrophyte coverage (%) 38.6 67.9 10.6
Woody debris (%) 23.2 0.4 27.3
Abundance of dead tree trunks 3.26 0.1 26.3
Shoreline vegetationa 3.3 — 3.9

aShoreline vegetation key: 1, lawn grass; 2, natural vegetation; 3, wooded
area; 4, forest.
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response variable prior to analysis. For multivariate analyses,
fish density data were subjected to the Hellinger transforma-
tion. The transformation consists of expressing each fish den-
sity as a proportion of the sum of all densities in the analytical
unit and taking the square root of the resulting value (Legendre
and Gallagher 2001). The square-root portion of the transfor-
mation decreases the importance of the most abundant species.
This transformation is recommended for use in linear ordina-
tions (Rao 1995; Legendre and Legendre 1998; Legendre and
Gallagher 2001). All data analyses were performed in the R
language environment (R Development Core Team 2010).

Performance of environmental variables was assessed based
on the proportion of the response variable’s variation ex-
plained in the data set by each statistical approach (R2). Since
R2 as an estimator of the proportion of variation explained is
biased and increases with the number of explanatory variables
even if they are random, we calculated the adjusted R2 (Radj

2 ),
which provides unbiased estimates of the variation of the
response data explained by the explanatory variables (Ohtani
2000, Peres-Neto et al. 2006). Adjusted R2 allows a compar-
ison of linear models composed of different numbers of pre-
dictor variables and sample sizes in a statistically unbiased
manner (Peres-Neto et al. 2006). However, if different trans-
formations of the data or different measures of variation are
used, the valid comparisons are between linear or tree-based
methods within univariate and multivariate responses at dif-
ferent spatial scales (Anderson-Sprecher 1994).

Linear approaches
Multiple regression assumes that the mean of the response

variable can be expressed as a linear combination of known
functions of the predictor variables. The “linearity” in linear
models is with respect to the unknown parameters, not the
predictor variables. The multivariate counterpart we adopt
here is redundancy analysis (RDA), which is a canonical
analysis approach (Legendre and Legendre 1998). In both
cases, the R2 is the proportion of the species or community
variation explained by a linear combination of the envi-
ronmental variables (Legendre and Legendre 1998). We
calculated the adjusted R2 for the linear approaches as
Radj

2 � 1 – (1 – R2) � [(n – 1)/(n – m – 1)], where m is the
number of regressors and n is sample size (Legendre and
Legendre 1998, p. 525). For a fair comparison with tree-based
models, second- and third-degree polynomials of each quan-
titative environmental variable were used to model curvilinear
species–habitat relationships. The same suite of predictor vari-
ables together with their higher degree polynomial terms were
all initially used for the univariate and multivariate models.
Environmental variables were then selected using a modified
forward selection procedure that corrects for highly inflated
type I error and overestimated amounts of explained variation,
which are classical problems of forward selection (Blanchet
et al. 2008). Environmental variables that were significant at an
� level of 0.05 based on 999 random permutations were subse-
quently used in multiple regression and redundancy analysis.

Tree-based approaches
Regression trees and multivariate regression trees were used

as representative approaches from the family of tree-based
approaches for a statistical comparison with the linear meth-
ods. We limited our comparison to regression trees and mul-

tivariate regression trees from the large number of tree-based
approaches for several reasons: (i) multivariate versions with
known ecological applications were available for both linear
and tree-based methods; (ii) direct identification of important
predictor variables was possible; and (iii) the ability to quan-
tify and partition the variation attributed to linear and nonlin-
ear processes acting on fish communities was possible.
Regression trees and multivariate regression trees iteratively
divide data into two homogenous groups along the values of
one of the explanatory variables in such a way that they have
mutually exclusive memberships and minimize the variation
(sum of squares) of the response variable(s) within the two
groups. Regression trees can be constructed using continuous
and (or) categorical predictor variables (Breiman et al. 1984;
De’ath and Fabricius 2000; De’ath 2002). We constructed
regression trees using all environmental variables with the
constraint that there was a minimum sample size of six in the
groups produced at each split. The most parsimonious regres-
sion trees were selected by pruning the trees to the level where
the complexity parameter minimized the cross-validation er-
ror. All regression trees were developed using the rpart pack-
age in R, and multivariate regression trees were developed in
the mvpart package in R (Ripley 2007; R Development Core
Team 2010). The percent variation (R2) explained by the
regression tree using the predictor variables was calculated
using R2 � 1 – relative error. The relative error is the sum,
over all groups of a partition level, of the within-group sum of
squares, divided by the total sum of squares of the response
data.

Variation partitioning of multivariate linear and
tree-based approaches

We compared the results of redundancy analyses and mul-
tivariate regression trees at both spatial scales by partitioning
the variation explained by each method using the same set of
predictor variables. This approach summarized the amount of
variation in the fish community data that is responding linearly
and nonlinearly to environmental conditions.

Spatial–environmental relationships
The distance-based MEM was used to quantify symmetric

spatial structure, that is, spatial patterns that do not incorporate
an assumption of directionality. MEMs are obtained by eigen
decompostion of the product of a matrix of connectivity
among the sites, representing the edges or links between sites,
by a matrix of edge weights. These MEM variables, or eigen-
functions, are obtained from a spectral decomposition of a
truncated distance matrix of the spatial relationships among
sampling locations. Distance-based MEM eigenfunctions are
constructed by computing the Euclidean distance among the
sites (the centre of each 20 m section). In the matrix of
Euclidean distances, one finds the smallest distance that main-
tains connections between all sites along a minimum spanning
tree; this value is called the truncation distance. The distances
between sites that are larger than the truncation distance are
replaced by four times the truncation distance. The modified,
truncated distance matrix is referred to as the neighbour ma-
trix. A principal coordinates analysis (PCoA) is conducted on
the neighbour matrix. Two-thirds of the eigenvalues produced
by the PCoA will be positive. The MEM eigenfunctions mod-
elling positive autocorrelation (i.e., eigenfunctions with Mo-
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ran’s I larger than the expected value) will be referred to as
MEM variables and represent the spatial structure in the data
set. The MEM variables will be in the form of a series of sine
waves with decreasing periods that are orthogonal to one
another. Finally, a linear analysis (such as redundancy analysis
if the response data are multivariate and multiple linear re-
gression if response data are univariate) is performed on the
response data with a set of predictor variables (Appendix A;
Borcard and Legendre 2002; Borcard et al. 2004). MEM
eigenfunctions describe symmetric spatial structures at all
spatial scales that can be expressed by the sampling design.
The first MEM variables model broad spatial structures, and
subsequent MEM variables represent smaller spatial patterns.
The last eigenfunctions accommodate fine-scale spatial struc-
tures (see Borcard and Legendre 2002; Borcard et al. 2004;
Dray et al. 2006 for details).

To quantify the spatial scale at which the environmental
conditions were acting on the fish community, we related four
groups of environmental features to the MEM spatial descrip-
tors: lake morphology (based on depth, slope, distance to
tributary), riparian development, substrate type, and habitat
complexity characteristics (percent cover of macrophytes,
woody debris, and branches). We identified the significant
MEM variables corresponding to each category of environ-
mental variables using forward selection based on a signifi-
cance level of 0.05 and 999 random permutations. The MEM
variables explaining the most variation for each set of habitat
features were plotted spatially. Spatial scale was quantified by
counting the minimum number of like-coloured squares in a
patch (for example, counting the continuous number of black
squares) and multiplying that value by the size of the analyt-
ical unit (20 m section; Fig. 1). The spatial representation of
MEM variables can quantify the spatial dependency at multi-
ple spatial scales rather than a predetermined analytical unit
size.

Results

Linear approaches
At the fine spatial scale (20 m), the variation explained by

the fish density models developed using multiple regression
generally yielded low explanatory power ranging from 0% to
approximately 37%. At the broad spatial scale (100 m), the
explained variation of the multiple regression models ranged
from 0% to approximately 84% (Table 3). At the fine spatial
scale, the multiple regression model explaining pumpkinseed
density in Violon Lake suggests that higher densities of pump-
kinseed were found in regions with intermediate coverage of
boulder and clay substrate and tree trunks (Appendices B–C).
At the broad spatial scale, the multiple regression model
predicting rock bass density in Violon Lake suggests that

higher densities of rock bass were found in regions with high
abundances of tree trunks, high percent cover of pebble sub-
strate, and low percent cover of cobble substrate (Appendi-
ces B–C).

With respect to the fish community, the RDAs were signif-
icant at p � 0.05 based on 999 random permutations and
explained between 3.4% and 12.1% of the variation in density
of the fish community at the fine spatial scale (Table 3).
Combinations of substrate type and habitat complexity vari-
ables were significant in describing the fish community in the
Laurentian lakes (Appendix D). At the broad spatial scale, the
RDA was significant at p � 0.05 based on 999 random
permutations and explained between 4.7% and 27.5% of the
variation in fish community density (Table 3). Combinations
of substrate type, habitat complexity, and riparian habitat were
significant in describing the fish community at the broad
spatial scale (Appendix D).

Tree-based approaches
At the fine spatial scale, the explained variation of regres-

sion tree models ranged from 0% to 71% (Table 3). For
example in Lake Violon, highest densities of pumpkinseed
were found in regions with low woody debris and intermediate
coverage of boulder substrate, macrophytes, and tree trunks. In
general, species densities tended to be highest in sites with
high natural habitat heterogeneity (i.e., associated with a va-
riety of habitat types; Appendices B–C). At the broad spatial
scale, variation explained by regression tree models ranged
from 31% to 95% (Table 3). In Lake Purvis, high densities of
rock bass were found in the littoral area characterized by a
developed riparian habitat, complex habitat structure, and in
substrates with a low percent cover of metric boulder (Fig. 2;
Appendices B–C).

Fig. 1. Schematic description of the procedure used to determine the smallest spatial scale modelled by the Moran’s eigenvector map
variables. One counts the number of like-coloured squares (i.e., black or white) in a patch multiplied by the size of the analytical unit
(20 m section). In this hypothetical example of a linearized set of sites, the finest spatial processes are acting at a scale of 60 m.

4 sites   20 m=80 m 6 sites   20 m 08=m 02 setis 4m 021=m 3 sites   20 m 
=60 m

× × ××

Table 3. Mean explained variation (R2; bolded values) and the
range of R2 values for all statistical approaches (LR (multiple
linear regression); RT (regression tree); RDA (redundancy
analysis); and MRT (multivariate regression trees)) used to model
fish density–habitat relationships in Purvis, Rond, and Violon lakes
at fine (S1: 20 m) and broad (S5: 100 m) spatial scales.

Spatial scale Adjusted R2 LR RT RDA MRT

Fine (S1) Mean 14.3 35.3 7.3 17.4
Fine (S1) Minimum 0 0 3.4 9.9
Fine (S1) Maximum 36.8 71 12.1 25.8
Broad (S5) Mean 49.7 68.2 14.6 42.4
Broad (S5) Minimum 0 31 4.7 39.2
Broad (S5) Maximum 84 95.3 27.5 48.5
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At the fine spatial scale, the multivariate regression tree
explained approximately 10%–26% of the variation in the fish
community (Table 3). Combinations of substrate and habitat
complexity variables were significant in describing the fish
community in the Laurentian lakes (Appendix D). At the broad
spatial scale, the multivariate regression tree explained ap-
proximately 39%–48.5% of the variation in the fish commu-
nity. Combinations of substrate, habitat complexity, and
riparian habitat were significant in describing the fish commu-
nity at the broad spatial scale (Appendix D).

Comparison of statistical approaches
At the fine and broad spatial scales, the tree-based approaches

yielded higher predictive power and outperformed their linear
counterparts (Table 3). This indicates that there are interactions
between environmental variables and that fish densities are
responding in a nonlinear fashion, beyond a third-degree poly-
nomial, to the environmental variables used in this study.
Furthermore, the percent variation explained by the commu-
nity level models was higher at the broad spatial scale, sug-
gesting that the fish in the Laurentian lakes are selecting
habitat features and forming community assemblages at the
broad spatial scale.

On average, across lakes at the fine and broad spatial scales,
2.2% of the variation is explained uniquely by redundancy anal-
yses. Approximately 43.4% of the variation is shared between
redundancy analysis and multivariate regression trees. The re-
maining 54.3% of the variation is explained solely by multivar-
iate regression trees (Table 4). The shared variation represents
linear relationships modelled by both the redundancy analyses
and multivariate regression trees. The independent fraction
explained solely by multivariate regression trees can be attrib-
uted to relationships modelled by multivariate regression trees that
are not modelled by redundancy analysis, such as interactions be-
tween predictor variables and nonlinear relationships.

The environmental variables identified by the linear and the
tree-based approaches tended to be a subset of one another and in
other cases were not identical environmental variables (Appen-
dices C and D). For example, at the broad spatial scale in Violon
Lake, RDA identified the presence of docks, macrophyte
coverage, and silt substrate as significant predictor variables
of fish community composition, whereas MRT identified
silt and bedrock coverage and the abundance of tree trunks
as important environmental conditions structuring fish com-
munity composition.

Fig. 2. Regression tree showing the important environmental variables explaining rock bass densities at the broad spatial scale in Purvis
Lake. Rock bass densities are highest when the abundance of tree trunks is greater than 74.5 and where there are more than 1.5 cottages on
a site. Rock bass densities are lowest in the presence of fewer tree trunks, intermediate substrate coverage of metric boulders, and the
presence of more than three walls on a site.

Tree trunks ≥ 74.5

Cottages  > 1.5Metric boulder ≥ 2.75% 

0.02 0.09

0.02Walls ≥ 3

0.015 0.005

0.04 Metric boulder ≥ 22.25% 

Table 4. Percent variation (Radjusted
2 ) explained solely by

redundancy analysis, multivariate regression trees, and shared
variation between redundancy analysis (RDA) and multivariate
regression trees (MRT) for fine and broad spatial scales in Purvis,
Rond, and Violon lakes.

% variation

Lake
Spatial
scale

Unique
RDA

Unique
MRT Shared Total

Purvis S1 1.9 8.6 1.3 11.8
Purvis S5 4.9 15.4 15.1 35.4
Rond S1 –0.8 7.4 18.5 25.1
Rond S5 –8 18.2 21.3 31.5
Violon S1 1.2 5 11.4 17.6
Violon S5 –3.4 22.2 26.4 45.2

Note: All Radjusted
2 � 0 indicate no explained variation. The values

resulting from variation partitioning are not R2, but adjusted R2, which are
unbiased estimates of the amount of variance of a response matrix Y
explained by explanatory variables X. Adjusted R2 can take negative values
when X explains less of the variation in Y than the same number of random
normally distributed predictors would. Hence, negative adjusted R2 are
interpreted as zeros.

Sharma et al. 2101

Published by NRC Research Press

C
an

. J
. F

is
h.

 A
qu

at
. S

ci
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.n
rc

re
se

ar
ch

pr
es

s.
co

m
 b

y 
U

ni
ve

rs
ity

 o
f 

T
or

on
to

 o
n 

12
/1

1/
12

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 



Spatial–environmental relationships
On average, across all lakes, the significant spatial de-

scriptors generated by the MEM analyses explained 90%
and 29% of the variation in lake morphology and riparian
development, respectively. The MEM variables explaining
the most variation in lake morphology and riparian devel-
opment represented spatial processes acting at between 0.14
and 1.14 km, depending upon the lake. This suggests that
variables describing lake morphology and riparian devel-
opment are acting at a very broad spatial scale in Laurentian
lakes (Table 5; Fig. 3).

On average, the significant spatial descriptors generated by
the MEM analyses explained 49% of the variation in substrate
composition. The MEM variables explaining the most varia-
tion in substrate composition represented an intermediate spa-
tial scale acting at the range of 260–400 m (Table 5; Fig. 2).
This suggests that substrate conditions tend to be spatially
structured at an intermediate spatial scale if habitat is hetero-
genous, although this scale is larger than the broad (100 m)
analytical unit used to model species–habitat relationships.

Finally, the significant spatial descriptors generated by the
MEM analyses explained 60.5% of the variation in habitat

Table 5. Adjusted percent variation (Radj
2 ) explained by Moran’s eigenvector maps (MEMs) on lake morphology, riparian development,

substrate composition, and habitat complexity in Purvis, Rond, and Violon lakes.

MEM Radj
2 First MEM (Radj

2 ) First MEM (m)

Variable Purvis Rond Violon Purvis Rond Violon Purvis Rond Violon

Lake morphology 88.6 90.3 92.3 3 (16.8) 3 (26) 7 (18.8) 1140 140 320
Riparian development 56.1 25.8 5 3 (16.1) 3 (14.7) 15 (2.6) 1140 140 140
Substrate composition 47.7 54.8 44.8 6 (10.7) 2 (8.5) 9 (4.1) 320 400 260
Habitat complexity 84.3 38.1 59 3 (33.1) 1 (4.8) 5 (11.3) 1140 100 420

Note: The first set of columns represents the total variation explained by MEMs on the set of environmental variables (Radj
2 ). The second set of columns

represents the Moran’s eigenfunction that explains the greatest amount of variation in the environmental variable, with the percent variation explained
expressed in parentheses. The third set of columns represents the spatial scale (m) at which the most important Moran’s eigenfunction is acting.

Fig. 3. Map of Lake Purvis (a), Lake Violon (b), and Lake Rond (c) depicting the spatial processes modelled by (a) Moran’s eigenvector
map (MEM) variable 3, (b) MEM variable 5, and (c) MEM variable 1. Each 20 m section is represented by a square. The black and white
squares represent positive and negative values, respectively. The size of the squares is proportional to the forecasted values. To determine
the finest spatial scale modelled by the MEM variables, one identifies the number of like-coloured squares in a patch multiplied by the size
of the analytical unit (20 m section), as depicted in Fig. 1.

(a) Purvis: MEM 3 (b) Violon: MEM 5

(c) Rond: MEM 1
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complexity features. In Purvis and Violon lakes, the MEM
variables describing spatial processes acting at 1.14 and
0.42 km, respectively, explained the most variation in habitat
complexity. In Rond Lake, MEM variable 1 explained the
most variation in habitat complexity, at least at the 100 m
scale, although there were only two spatially structured
patches of habitat in the lake (Table 5; Fig. 2). This suggests
that habitat complexity features act at a range of spatial scales
depending upon the features of each lake.

Discussion

Comparison of statistical approaches
The differential structural properties of a data set require the

use of statistical approaches that best capture the response in
the data set whilst providing information on the important
environmental determinants structuring species’ distributions
and communities. The comparison of linear versus tree-based
statistical approaches at the species and community levels
provided some valuable insights into the relationships between
species density and habitat. Linear methods are traditionally
the most popular approaches used (Sharma et al. 2008). How-
ever, we found that at both spatial scales, the tree-based
approaches had higher predictive power than their linear coun-
terparts as they explained more variation in species–habitat
relationships. Variation partitioning analyses showed that mul-
tivariate regression trees captured almost all of the linear
variation explained by redundancy analyses, in addition to
nonlinear relationships between environmental conditions and
fish density. Generally, we found that the environmental vari-
ables identified by the linear and tree-based approaches tended
to be similar, but not identical. We hypothesize that the inclu-
sion of a subset of environmental conditions in linear versus
tree-based methods could be as a result of (i) the inclusion of
only the environmental conditions exhibiting the strongest
relationship with fish densities, (ii) the higher explanatory
power of regression tree models, and (iii) the ability of tree-
based approaches to capture both linear and nonlinear rela-
tionships.

Tree-based approaches can have high predictive abilities for
data sets that exhibit linear and nonlinear relationships be-
tween predictor variables, high-order interactions, and multi-
collinearity (Breiman et al. 1984; De’ath and Fabricius 2000;
De’ath 2002). Tree-based models produce discontinuous
changes at certain points along the predictor variables and
identify high-order local interactions that the linear-based ap-
proaches used in this study do not appear to accommodate.
Regression trees provide clear graphical interpretations of the
predictor variables and the thresholds required to attain mean
densities of species and community assemblages, thereby pro-
viding insight into the interpretation of ecological patterns
(De’ath and Fabricius 2000). However, in some cases the
output from regression trees can be unstable. The regression
trees developed in our study certainly provided more ecolog-
ical information as to which environmental variables are ex-
plaining the variation in fish densities. A potential drawback of
tree-based approaches can be the possibility of over-fitting a
model (Sharma et al. 2008). However, selecting the most
parsimonious regression trees by pruning the trees to the level
where the complexity parameter minimized the cross-
validation error reduced that possibility in our study.

Effect of spatial scale on species–habitat relationships
For all statistical approaches, there was greater explained

variation in species–habitat relationships at the broad spatial
scale. Species appear to be selecting both local and riparian
habitat features at broader spatial scales and only local habitat
features at the finer spatial scale. This can be attributed to the
broad spatial processes structuring the environmental vari-
ables used to generate the models as revealed by MEMs.
Thus, a broader spatial scale may more accurately reflect
the ecological processes acting on the fish community (Coo-
per et al. 1998). Furthermore, it is difficult to ascertain com-
munity assemblage – environmental relationships at an
analytical unit of a 20 m section, as species may not be
forming community assemblages at such fine spatial scales. At
the broad spatial scale, however, it is possible to identify and
predict community assemblage – environmental relationships
with a higher degree of power. As such, we conclude that fish
in these Laurentian lakes are selecting habitat features and
forming community assemblages at the broad spatial scale.

Spatial processes can be easier to detect at a broader spatial
scale (larger analytical unit size) in part owing to statistical
artefacts. Data in larger analytical units exhibit lower variance
due to a reduction in the spread and skewness of data points
(Bellehumeur et al. 1997; Rossi and Nuutinen 2004) and
removal of fine-scale variation in the study (i.e., the beginning of
the variogram (Bellehumeur and Legendre 1997; Bellehumeur et
al. 1997; Plante et al. 2004)) illustrated by Rossi and Nuutinen
(2004). Further investigation of spatial–environmental rela-
tionships using MEM analyses in the study lakes revealed,
however, that the environmental features used to model fish
density were structured at spatial scales larger than a 100 m
section. Identifying the size of the spatial scale at which
environmental conditions are operating would not have been
quantifiable prior to the advent of spatial statistical methods
(Borcard and Legendre 2002; Dray et al. 2006). For example,
habitat features describing lake morphology and riparian de-
velopment tended to be predominately spatially structured at
very broad spatial scales (e.g., �1.1 km in Purvis Lake).
Conversely, substrate composition features tended to be spa-
tially structured at intermediate spatial scales, whereas habitat
complexity features were spatially structured at a range of
spatial scales depending upon habitat heterogeneity in the lake,
yet at a scale still greater than the largest analytical unit used
in the study. The analyses suggested that the spatial structure
of the environmental characteristics may be a strong con-
tributor to fish selecting habitat at broader spatial scales,
rather than purely due to a statistical artefact (Brind’Amour
et al. 2005).

It is most likely that spatial correlation (sensu stricto) is
present in the environmental variables, but not in the fish data
if the observers were careful not to count the same individual
fish in two adjacent sections. There may still be spatial struc-
ture (“spatial correlation”, not “spatial autocorrelation”) in the
fish data, but that will be due to environmental control over the
species distributions, an effect known as induced spatial de-
pendence. However, simulation studies have shown that when
spatial correlation is present in only one of the two variables
under study (response, explanatory), tests of significance have
correct levels of type I error (Legendre et al. 2002). Therefore,
if spatial correlation was present in both the response and
explanatory variable(s) using MEM as covariables, spatial
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correlation would be effectively corrected for in the results of
the significance test (Peres-Neto and Legendre 2010).

Littoral fish assemblages
The fish–habitat relationships ascertained in this study re-

veal the environmental conditions and the interactions be-
tween them that fish are selecting in Laurentian lakes. For
example, pumpkinseed was found in all the study lakes at high
densities. In Rond Lake, at the 20 m spatial scale, more
variation in pumpkinseed density was explained by the regres-
sion tree at the 100 m spatial scale (90%) than at the 20 m
spatial scale (51.6%). Generally, pumpkinseed was associated
with silt substrate, which is typically positively associated
with macrophyte and vegetation growth. Pumpkinseed are
known to inhabit regions with submerged vegetation and a
gradient of substrate types, often to accommodate their plank-
tivorous diet (Scott and Crossman 1973; Robinson et al. 1993).
The highest amount of variation explained by regression tree
models for rock bass densities was in Purvis Lake at the 100 m
spatial scale (95.3%) compared with 60.6% variation ex-
plained at the 20 m spatial scale. The highest densities of rock
bass were found in the littoral area characterized by a devel-
oped shoreline and in substrates consisting of boulder and silt
(Keast et al. 1978).

We found that yellow perch preferred shallow regions of the
littoral zone with a higher percent cover of fine substrate,
which is typically associated with aquatic vegetation. Our
findings correspond to the habitat preferences described by
Kitchell et al. (1977) and Keast et al. (1978), who found that
yellow perch preferred sandy regions in the presence of
aquatic vegetation in the littoral zone (Kitchell et al. 1977;
Keast et al. 1978). The highest densities of smallmouth bass
were found in shallow regions of the littoral zone with mod-
erate percent cover of metric boulder substrate, as they prefer
heterogenous habitats provided by rocks (Scott and Crossman
1973). Highest densities of goldfish were positively related to
the number of cottages, coverage of macrophytes, and abun-
dance of tree trunks. Goldfish are often found in water bodies
with high growth of aquatic plants (Scott and Crossman 1973),
are associated with human presence, and continue to be re-
leased into watersheds by human-mediated means through
direct stocking, fish hatcheries, aquariums, or ornamental
ponds (Mills et al. 1993). In Violon Lake, walleye densities
were positively related to abundance of tree trunks and nega-
tively related to high coverage of metric boulder. Adult wall-
eye prefer extensive littoral areas of gravel or rubble on which
to spawn (McMahon et al. 1984), thereby avoiding areas with
larger sized substrate. Furthermore, adult walleye are nega-
tively phototaxic and during the day prefer logs or submerged
vegetation (McMahon et al. 1984). Thus, the overall habitat
preferences exhibited by the fish in the littoral zones of the
study Laurentian lakes correspond to known habitat prefer-
ences from the literature.

In Purvis, Rond, and Violon lakes, fish densities were re-
lated to both local and riparian environmental features, similar
to the findings of Brind’Amour and Boisclair (2006), who also
found that both intrinsic (i.e., within lake) and extrinsic (i.e.,
outside of lake) environmental variables were significant con-
tributors to fish habitat models. However, we also found that at
the fine spatial scale, fish densities were primarily determined
by local habitat variables. Environmental variables describing

habitat structure and heterogeneity, such as woody debris,
substrate, and vegetation, have been found to be strong con-
tributors influencing fish community composition (Mayo and
Jackson 2006). At the broad spatial scale, local environmental
features such as percent cover of woody debris, silt and boulder
substrates, and riparian environmental features such as riparian
development were significant determinants of fish community
densities. This supports the inclusion of both local and riparian
environmental data in species–habitat models to improve our
understanding of the nature of species–environment relation-
ships. Although local and landscape environmental variables are
generally included in studies of habitat models, riparian environ-
mental variables, such as riparian vegetation and development,
are not as commonly included. In a study conducted in river
basins across the United States, Meador and Goldstein (2003)
found that as the integrity of the riparian zone decreased, the
condition of the fish community and water quality correspond-
ingly decreased. They further suggested that fish community
structure in streams may be better indicated by riparian con-
ditions than by land use (Meador and Goldstein 2003). There-
fore the inclusion of riparian conditions is integral to
identifying key determinants of habitat quality for species and
communities.

Management Implications
We observed several general trends across species, spatial

scales, and statistical approaches. First, tree-based approaches
exhibited higher predictive power than their linear counter-
parts in terms of predictive power, thereby improving our
understanding of fish–habitat associations. Tree-based ap-
proaches were particularly useful, as they incorporated both
linear and nonlinear relationships, in addition to interactions
between environmental variables, in their models (De’ath and
Fabricius 2000; De’ath 2002). As such, we advocate the com-
parison of statistical approaches to ultimately select the statis-
tical approach that is best suited to the properties of the data
set (e.g., Guisan and Zimmermann 2000; Sharma et al. 2008).

Second, the spatial scale at which ecological processes are
operating within communities ought to be considered when
developing science-based conservation and management strat-
egies, including adaptive management strategies to conserve
species over spatial and temporal scales (Cushman and Huett-
mann 2010). We found that fish–habitat associations vary
across spatial scale, suggesting that managers should focus
restoration efforts on both local and riparian habitat features to
conserve fish populations (Meador and Goldstein 2003;
Brind’Amour and Boisclair 2006). Further, the use of MEMs
allows for quantification and visual identification of the spatial
scale at which environmental conditions are acting within fish
communities (Borcard et al. 2004; Brind’Amour et al. 2005).
MEM analyses can improve our understanding of the scale and
role of spatial processes acting on fish–habitat associations.

Third, fish densities were highest in regions with natural
habitat heterogeneity. Habitat heterogeneity in the form of
coverage of heterogeneous substrate types, macrophytes, and
woody debris provide complex habitats that offer larger
amounts of refuge from predators (MacRae and Jackson 2001;
Pratt and Fox 2001). There is a higher likelihood of removal of
complex habitat structure, such as macrophytes and woody
debris, as lakes are developed for anthropogenic use, further
reducing refuge habitat available to fishes (MacRae and Jack-
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son 2001) and thus decreasing densities of fish (Sass et al.
2006; Roth et al. 2007). This finding underscores the impor-
tance of maintaining habitat integrity to sustain native fish
populations and communities and can help guide adaptive
management strategies to conserve native fish populations
(Cushman and Huettmann 2010).
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Appendix A

Fig. A1. Schematic description of distance-based Moran’s eigenvector maps (MEM, formally called principal coordinates of neighbour
matrices; PCNM).
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Appendix B

Table B1. Explained variation (R2) based on regression tree and multiple regression models
predicting fish density–habitat relationships in Purvis, Rond, and Violon lakes at fine and broad
spatial scales.

% variation

Lake Spatial scale Species Regression tree
Multiple
regression

Purvis S1 Yellow perch 21.56 11.25
Purvis S1 Smallmouth bass 21.14 4.64
Purvis S1 Pumpkinseed 20.68 3.38
Purvis S1 Rock bass 60.61 9.51
Purvis S5 Yellow perch 83.71 64.3
Purvis S5 Smallmouth bass 73.72 36.28
Purvis S5 Pumpkinseed 58.75 0
Purvis S5 Rock bass 95.31 46.41
Rond S1 Bluntnose minnow 53.62 19.59
Rond S1 Banded killifish 33.22 36.81
Rond S1 Smallmouth bass 12.84 4.97
Rond S1 Pumpkinseed 51.61 30.52
Rond S1 Goldfish 39.66 32.12
Rond S5 Bluntnose minnow 84.58 82.48
Rond S5 Banded killifish 51.92 70.81
Rond S5 Smallmouth bass 66.35 0
Rond S5 Pumpkinseed 89.95 67.06
Rond S5 Goldfish 53.16 83.95
Violon S1 Creek chub 30.21 0
Violon S1 Fathead minnow 0 0
Violon S1 Pearl dace 44.64 27.13
Violon S1 Golden shiner 12.32 10.43
Violon S1 White sucker 42.97 13.6
Violon S1 Pumpkinseed 70.96 20.98
Violon S1 Walleye 48.62 4.46
Violon S5 Creek chub 31 23.58
Violon S5 Fathead minnow 87.16 47.24
Violon S5 Pearl dace 80.51 45.08
Violon S5 Golden shiner 76.58 52.77
Violon S5 White sucker 83.1 33.42
Violon S5 Pumpkinseed 41.94 76.29
Violon S5 Walleye 33.64 65.72
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Appendix C

Table C1. Environmental variables selected for predicting fish densities in Purvis, Rond, and Violon lakes at fine (S1) and broad (S5)
spatial scales using multiple linear regression (MR) and regression trees (RT).

Lake Scale Approach Species Significant predictor variables

Purvis S1 MR P Cottages (�)
Purvis S1 RT P Cottages (�), Depth (�), Docks (�), Pebble (–), Sand (�), Shore of slope (�), Silt (�), Trees (�)
Purvis S5 MR P Cottages (�)
Purvis S5 RT P Depth (�), Docks (�), Silt (�), Trees (�)
Purvis S1 MR R Macrophytes (�), Trees (�)
Purvis S1 RT R Boulder (–), Depth (–), Macrophytes (�), Metric boulder (�), Platforms (�), Shore of slope (�),

Silt (�), Trees (�), Vegetation (–), Woody debris (�)
Purvis S5 MR R Cobble (–), Pebble (�), Trees (�)
Purvis S5 RT R Cottages (�), Metric boulder (–), Trees (�), Walls (�)
Purvis S1 MR S Metric boulder (�)
Purvis S1 RT S Bedrock (–), Cottages (�), Depth (–), Docks (–), Metric boulder (�), Trees (�), Vegetation (–), Woody

debris (–)
Purvis S5 MR S Metric boulder (�), Shore of slope (�)
Purvis S5 RT S Bedrock (�), Cobble (–), Depth (–), Macrophytes (–), Silt (–), Trees (�)
Purvis S1 MR Y Macrophytes (�)
Purvis S1 RT Y Depth (–), Macrophytes (�), Trees (�)
Purvis S5 MR Y Docks (–), Macrophytes (�), Metric boulder (�), Vegetation (–)
Purvis S5 RT Y Depth (–), Macrophytes (�), Metric boulder (�), Shore of slope (�), Vegetation (–), Woody debris (�)
Rond S1 MR K Bottom slope (�), Clay (�), Cobble (–), Metric boulder (�), Pebble (�), Trees (�), Walls (�)
Rond S1 RT K Bottom slope (�), Macrophytes (�), Sand (–), Silt (–), Trees (�)
Rond S5 MR K Clay (�), Pebble (�), Trees (�)
Rond S5 RT K Bottom slope (�), Boulder (�), Clay (�), Silt (�)
Rond S1 MR L Platforms (–), Walls (�)
Rond S1 RT L Bottom slope (–), Boulder (–), Docks (�), Gravel (�), Macrophytes (�), Metric boulder (–), Silt (�)
Rond S5 MR L Cottages (–), Gravel (–), Trees (�), Walls (�), Woody debris (�)
Rond S5 RT L Bottom slope (–), Cottages (�), Macrophytes (�), Trees (�)
Rond S1 MR M Bottom slope (�), Clay (�), Pebble (�), Metric boulder (�)
Rond S1 RT M Bottom slope (�), Boulder (�), Clay (�), Docks (�), Macrophyte (–), Metric boulder (�),

Sand (�), Silt (�)
Rond S5 MR M Bottom slope (�), Gravel (�), Sand (–), Silt (–), Walls (–)
Rond S5 RT M Bottom slope (�), Cottages (�), Metric boulder (�), Silt (�)
Rond S1 MR P Bottom slope (�), Docks (�), Metric boulder (�), Pebble (�)
Rond S1 RT P Bottom slope (�), Docks (�), Macrophytes (�), Metric boulder (�), Silt (�)
Rond S5 MR P Metric boulder (�), Trees (–)
Rond S5 RT P Docks (–), Gravel (–), Metric boulder (�)
Rond S1 MR S Gravel (–)
Rond S1 RT S Boulder (–), Cottages (�), Gravel (–), Macrophytes (�), Metric boulder (�), Silt (�)
Rond S5 MR S Gravel (–)
Rond S5 RT S Boulder (–), Sand (�), Silt (�)
Violon S1 MR C Bottom slope (–), Clay (–), Pebble (–), Metric boulder (–)
Violon S1 RT C Bottom slope (–), Boulder (�), Silt (�), Trees (–)
Violon S5 MR C Macrophyte (–), Silt (�)
Violon S5 RT C Silt (�)
Violon S1 MR F Bottom slope (–), Boulder (–), Gravel (–), Macrophytes (�)
Violon S1 RT F —
Violon S5 MR F Boulder (–), Docks (�), Macrophytes (–)
Violon S5 RT F Bedrock (�), Boulder (�), Sand (�), Silt (�)
Violon S1 MR G Bottom slope (–), Metric boulder (–)
Violon S1 RT G Bedrock (–), Bottom slope (�), Boulder (–)
Violon S5 MR G Docks (�), Metric boulder (�), Silt (�)
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Appendix D

Table C1 (concluded).

Lake Scale Approach Species Significant predictor variables

Violon S5 RT G Bedrock (–), Boulder (–), Silt (–), Woody debris (�)
Violon S1 MR P Boulder (–), Clay (�), Trees (�)
Violon S1 RT P Boulder (�), Macrophytes (�), Trees (�), Woody debris (–)
Violon S5 MR P Pebble (�), Trees (�)
Violon S5 RT P Bottom slope (–), Gravel (�), Silt (–), Trees (�), Woody debris (�)
Violon S1 MR PD —
Violon S1 RT PD Bottom slope (–), Boulder (–), Macrophyte (�), Metric boulder (�), Silt (�), Trees (�)
Violon S5 MR PD Boulder (–), Macrophytes (�)
Violon S5 RT PD Bedrock (�), Boulder (–), Cobble (–), Trees (–)
Violon S1 MR W Trees (�)
Violon S1 RT W Boulder (�), Trees (�), Woody debris (�)
Violon S5 MR W Pebble (�), Trees (�)
Violon S5 RT W Bedrock (–), Metric boulder (–), Trees (–)
Violon S1 MR WS Bottom slope (–), Gravel (�), Silt (�), Trees (�)
Violon S1 RT WS Macrophyte (�), Metric boulder (–), Trees (�), Woody debris (�)
Violon S5 MR WS Trees (�)
Violon S5 RT WS Bottom slope (�), Boulder (–), Sand (�), Trees (�)

Note: �, variable has a positive effect on species density; –, variable has a negative effect on species density; �, variable has both a positive and
negative effect on species density; C, creek chub (Semotilus atromaculatus); F, fathead minnow (Pimephales promelas); G, golden shiner (Notemigonus
crysoleucas); K, banded killifish (Fundulus diaphanus); L, goldfish (Carassius auratus); M, bluntnose minnow (Pimephales notatus); P, pumpkinseed
(Lepomis gibbosus); PD, pearl dace (Margariscus margarita); R, rock bass (Ambloplites rupestris); S, smallmouth bass (Micropterus dolomieu); W, walleye
(Sander vitreus); WS, white sucker (Catostomus commersonii); Y, yellow perch (Perca flavescens).

Table D1. Environmental variables selected for predicting densities of the fish community at
fine (S1) and broad (S5) spatial scales for Purvis, Rond, and Violon lakes using redundancy
analysis (RDA) and multivariate regression trees (MRT).

Lake Spatial scale Approach Significant predictor variables

Purvis S1 RDA Bedrock, Cottages, Pebble
Purvis S1 MRT Bedrock, Macrophytes, Trees
Purvis S5 RDA Macrophytes
Purvis S5 MRT Boulder, Docks, Macrophytes
Rond S1 RDA Bottom slope, Clay, Metric boulder, Walls
Rond S1 MRT Boulder, Bottom slope, Metric boulder, Macrophytes, Sand
Rond S5 RDA Bottom slope
Rond S5 MRT Bottom slope, Cottages, Silt
Violon S1 RDA Bottom slope, Metric boulder
Violon S1 MRT Boulder, Bottom slope, Macrophytes, Metric boulder, Silt
Violon S5 RDA Docks, Macrophytes, Silt
Violon S5 MRT Bedrock, Silt, Trees
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