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The methodology for mapping and for global and cutoff estimation of autocorrelated exploitable resources is 
presented, based on stationary geostatistical methods. Use and performance of these methods in marine ecology 
are illustrated with an application to northern shrimp (Fandalus borealis) abundance data, collected in 1989 at 
I37 stations in the western Gulf of St. Lawrence. Nonstationarity of the biomass data, a proportional increase of 
the locat variance with the local mean, and the presence of outliers all violated the stationarity assumption and 
strongly hindered the modeling of the spatial structure. Cross-validation tests showed that kriging estimates were 
better when interpolating within very local neighborhoods using a small number of points. Kriging always per- 
formed better than polygonal tessellation, A stratification scheme produced better estimations than the whole- 
region approach using traditional or relative variograms. The spatial organization of the shrimp biomass was 
composed of a trend superimposed onto mesoscale patches of 30-50 km in diameter. The area under study 
contained about 22 000 tonnes of northern shrimp; 70% of this biomass was concentrated in less than 30% of 
its surface. The spatial information is used to derive guidelines for optirnizing future sampling programs. 

La mkthodologie pour la cartographie et l'estimation globale et par seaail d'abondance de ressources exploitabtes 
autocorrelt?.es est prksentke, suivant des mkthodes g6ostatistiqktes stationnaires. L'usage et la performance de ces 
mkthodes en ecologie marine sont illustrks par m e  application j. I'abondance de crevette nordique (Pandabus 
borealis), kcharatillonnee 2 137 stations dans I'ouest du golfe du Saint-Laurent en 1989. La won-stationnaritk de 
la biomasse, un accroissement de la variance locale proportionnel 2 la moyenne locale et la pr6sence de valeurs 
extremes violaient tous I'hypothGse de stationwarit6, et rendaient difficile la mod6lisation de la structure spatiale. 
Des tests de validation croiske ont montrk que les estim6s de krigeage ktaient meilleurs en restreignant l'inter- 
polatisn 3 un voisinage tres bcal et en utilisant peu de points. Le krigeage a toujours msntr6 une meitleure 
performance que la methode de tessellation polygonale. Les estimations suivant une stratification de la region 
ktaient meilleures que celles sans stratification utilisant un variogramme traditionnel ou relatif. L'srgawisation 
spatiale de la crevette montrait une tendance superposke 2 des agregations de 30-50 km de diamPtre. La rkgion 
2 I'etude contenait envirsn 22 000 tonnes de crevette nordique; 70% de cette biomasse etait concentrke dans 
moins de 30 % de sa superficie. Les lignes directrices pour I'optimisation de programmes d'6chantiIlonnage futurs 
sont d6duites de l'information structurale. 
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hy sical, chemical, and biological variables in natural 
environments often present well-defined structures in time 
and space, such as gradients, recurrent patches, mosaics, 

and other complex patterns. These structures, which can be 
described statistically (Legendre and Fortin 1989), are intrinsic 
chaacteristics of ecosystems. They are generated by complex 
spatis-temporal processes acting over a continuum of scales 
(Magalef 19791, like the various mechanisms controlling the 
distribution of chemical compounds in soils (Yost et al. 1982: 
Burgess and Webster 1980a, 1980b), the assemblages of plant 
species in forests (Mabeau 1976; Legendre and Fortin 1989), 

or the organization of herbivores and their predators. In aquatic 
environments, currents, water masses, nutrients, plankton, fish, 
and whales are also not distributed at random but well organized 
in time and space (Maury et al. 1978; Steele 1978; Magalef 
1979; Mackas et d. 1985; Legendre and Trorassellier 1988). 

In this situation, the realization of a variable at one location 
is dependent on its realization at nearby locations. This spatial 
autocomelation requires special considerations in estimating 
these variables. Commonly used classical estimation methods 
assume the independent selection of the samples, which allows 
the applicati~n of classical sampling designs dictating the 
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(rather figid) distribution of the samples through space 4e.g. 
Cochran 1977). Classical estimation methods cannot be used 
when the data have not been obtained following these sampling 
designs. 

When the spatial structure is known and stable through time, 
the space is often discretized into homogeneous strata, where 
spatial structuring is assumed to be absent or negligible. Allo- 
cation of the samples may then be optimized by stratification 
in order to minimize the variance of the estimate and the struc- 
ture-dependent bias. The precision of the mean is strongly 
dependent on the effectiveness of the strata definition, the allo- 
cation of samples to strata, and on the stability of the known 
stmcture (Cochran 1977). When the spatial structure is 
unknown or unstable through time, this method will not always 
reduce the variance of the estimate. Such situations are com- 
mon in aquatic environments. 

A third and major problem lies in the fact that the formulas 
of classical statistics used to compute the confidence interval 
of the mean of the resource are based on estimates of the var- 
iance which, in turn, assume that the error t e r n  of the samples 
are stochastically independent of one another. This condition 
is not met by spatially autocorrelated data (Cliff and Ord 198 1) 
so that variances and confidence intervals calculated from these 
classical formulas are unrealistic. Geostatistics (Matheron 
1971) tells us that, besides the shape of the spatial autocorre- 
lation and the density of samples, the variance of an estimate 
also depends on (1 )  the geometry of the volume to be estimated, 
(2) the spatial organization of the set sf samples, through the 
relative location of samples, and (3) the location of the samples 
in the volume. 

Geostatistics was developed to deal with estimation problems 
in spatially autocorrelated phenomena. It makes use of the addi- 
tional information provided by autocorrelation when computing 
the estimates and their confidence intervals. It has proved use- 
ful in various disciplines such as geology, forestry, hydrology, 
oceanography, etc., and its application is presently extended to 
the estimation of exploited marine resources, where classical 
methods present difficulties (Conan 1985; Nicolajsen and 
Conan 1987; Armstrong et al. 1989; Petitgas and Poulxd 
1989). The general applicability of geostatistics for this latter 
task is, however, questionable. It assumes that the probability 
law describing the spatial stmcture is known or can be ade- 
quately modeled from a limited set of samples. This is not 
obvious for standard data sets in marine ecology, where trends 
and complex spatial structures are common, and where the 
number of samples is generally low compared with the high 
variability present. Besides, the theory of geostatistics is well 
described but its practice is much less documented (Isaaks and 
Srivastava 1989), and detailed applications for various tasks in 
marine ecology are lacking. The present paper explores geo- 
statistical methods to analyze the spatial structure and estimate 
the biomass of the northern shrimp (Pandalus borealis) in the 
western Gulf of St. Lawrence in the fall of 1989. The reason 
for using geostatistics with the present data is twofold. First, 
our data are autocornelated, so that a correct estimation of the 
confidence interval of the mean could not have been obtained 
from classical statistics. This confidence interval will be nec- 
essay to assess whether a significant temporal trend is present 
in the evolution of the stock. Second, sampling has not been 
carried out following one of the classical sampling plans (ran- 
dom, regular, stratified, and so on) and comes from three dif- 
ferent concurrent research projects. 

The exploited biomass of the northern shrimp in the Gulf of 
St. Lawrence is found on muddy bottoms between depths of 
150 and 350 m (Fig. 1). It is spatially autocsrrelated. For the 
present data, the value of the generalized Moran's I statistic 
(Moran 1950; Cliff and Ord 198 1) that can be computed for the 
various distance classes is 0.32 for the distance class of O- 
30 m, which is significantly different from zero (g < 0.001). 
The spatial organization presents aggregations in various areas 
that are sought and exploited by the fishermen. In the western 
Gulf of St. Lawrence, the northern fringe of the Lawentian 
Channel, between depths of 150 and 250 an (Fig. I), tends to 
consistently support higher densities of shrimp. Except for this 
general pattern and for the transient congregation of berried 
females on the shallow bottoms around 150 m in winter and 
spring in some ares (Savxd 1989), the aggregations show high, 
seasonal and interannual, unpredictable variations (Y. Simard, 
unpubl. manuscr.). Despite their primary hportmce for the 
industry and the fishermen, little is known on the spatial stmc- 
ture of the shrimp biomass in the Gulf or on the mechanisms 
that control its variability. 

Changing spatial structures profoundly hinder the direct esti- 
mation of the global biomass on fishing grounds, for all sam- 
pling plans. When using a stratified random plan (Cm 
1977; Mackett 1973), the determination of effective strata is 
difficult because the location of the aggregations is unstable, 
and unpredictable without a priori knowledge of the existing 
structure. We therefore need a method of estimation that is tol- 
erant to the geographic organization of the biomass, such as 
tessellation methods of interpolation (Bike Delaunay's or Diri- 
chlet's), spline approximation, or k g i n g  4e.g. Conm 1985; 
Stolyarenko 1986; Smith and Mohn 1987; Hsa&s and Sfivas- 
tatva 1989). 

An additional advantage of geostatistics is its capacity of pro- 
ducing not only global estimates of the total biomass in the 
study area but also local and cutoff estimates, with their con- 
fidence intervals, in presence of spatial autocorrelation. The 
cutoff estimates correspond to the total biomass incorporated 
in the delineated area where the biomass exceeds given thresh- 
old values. This information is desirable in the estimation of 
exploitable natural resources whose profitability of exploitation 
not only depends on the total stock but also on its distribution. 
The exploitable biomass is given by the cutoff estimate asso- 
ciated with the locations where shrimp biomass is high enough 
to be fished profitably. The area over which this biomass frac- 
tion is distributed and the distribution pattern are also interest- 
ing measurements because they directly influence the level of 
financial profit. Other potentiality of geostatistics is the use of 
the stmcture function to optimize sampling strategies (e.g. Bur- 
gess et al. 1981) and to draw inferences on the process gen- 
erating the aggregations (Sokal 1986). 

This paper will address the basis of higing methodology and 
its application, point out its limitations, and use it to 
(1) compute optimal estimates of the global biomass, with their 
confidence intervals, (2) objectively map this biomass, describe 
the spatial patterns and compute cutoff estimates of the exploit- 
able proportion above given threshold densities, and (3) analyze 
the stmcture and exploit its information to optimize sampling 
strategies. 

Methods 

Sampling 

From 31 August to 10 October 1989, northern shrimp 
biomass was sampled at 137 stations in the western Gulf of St. 
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FIG. 1. Map of the western Gulf of St. Lawrence with sample locations and the contour of the studied 
region at depths greater than 150 m. The isobath of 258 m on the worth separates the two strata, north 
and south. *, > 1000 kg shrimp/km2; + , < 1008 kg shrimp/km2; 0, imposed zeros at the nodes of the 
interpolation grid outside the studied region for guiding contours (see text). 

Lawrence (Fig. 1 ) by the trawlers M. V. Bmdelle (26.5 m) and 
F.R.V. Avred Needler (50 m). The Bradelle visited most (129) 
of the stations and 16 of them, 1mated in the richest area, were 
paired by the Ayred Needler which sampled simultaneously at 
a nearby station. At each station, bottom shrimp trawls were 
towed for 30 min at 2.5-3 .O knots. The Bradde  used a Western 
II-A trawl and the AHfied Needjer used a URI 8 11 1 14 trawl. The 
stretched mesh aperture was 38 mm and the codend was lined 
with a 19-mm mesh. Since the Aured Needier caught 
significantly (Wilcoxon test, p < 0.05) more shrimp (17% on 
average) than the Bradelk, because of her more efficient trawl, 
her catches per square kilometre were converted to BradelHe 
catches by means of a linear regression (r2 = 0.82). All 
sampling was carried out during daytime because vertical 
migrations of the shrimp off the bottom at night ( B m  1970; 
Apollonio et al. 1986) could change their availability to the 
gear. Because sf shrimp availability to the gear, avoidance of 
the gear, and trawl sampling efficiency, the catch does not 
represent 100% of the shrimp present. Since this is neglected 
here, the computed estimates of shrimp biomass are 
conservative. Although the samples covered an approximate 
area of 14.5 rn per about 2.5 km ( ~ 0 . 0 3 5  h2), they were 
considered as point samples centered at the starting tow 
coordinates. 

Geostatistical Model 

The local and global estimations computed here were 
obtained using the usual ordinary punctual higing technique of 
stationary geostatistics, briefly outlined below; for complete 
presentations, see Clark (1 979) or Isaaks and Srivastava ( 1989). 

Let the shrimp biomass, SHR, at n locations of the sampled 
region be described by the series of random variables SHR(xl), 
SHR(,x,), . . .SHR(x,), . . .SHW(x,). Since the shrimp biomass 
is spatially autoconelated, the random variables are linked 
together by a random function, Z(.x), which describes the 
dependence of the random variables SHR(x) on each other. The 

characteristics of this model can be estimated from the sample 
data set, if we assume some stationarity conditions. 

Stat ic~nari~ 
In the case of ordinary k g i n g  (i.e. the global mean is 

unknown), the following second-order stationarity conditions 
are assumed: 

where h is the distance separation between two locations (which 
can have a directional component) and the function y(h) is the 
semi-variogram (commonly called the variogram) . These two 
stationarity conditions are referred to as the '6intrinsic hypoth- 
esis." In this situation, the digerence in Z(x) does not depend 
on the locations x but only on the geographic distance separa- 
tion h, and the average of this difference over the studied region 
must be zero. These stationarity conditions ask for a certain 
degree of regional homogeneity of the shrimp biomass and for 
absence of trend. 

These conditions must be carefully checked for proper esti- 
mation through stationary geostatistics. Spatial trends in data 
sets must be removed prior to the analysis and special consid- 
eration given to outliers in data sets and to highly skewed prob- 
ability distributions (e.g. lognomal), which greatly affects the 
estimation and interpretation of the variograrn. Normal distk- 
butions are also more prone to provide k g i n g  estimates close 
to conditional expectations and kriging errors that are normally 
distributed. For lognormal distributions, normalization of the 
data by transfornation to logarithmic units and the use of the 
lognormal h g i n g  technique can help minimize problems 
(Rendu 1979; Joumel 1980). Results we, however, very sen- 
sitive to slight departures from the strict lognomal distribution 
and to the choice of the variogram model, and therefore this 
method must be used with caution ( h s t r o n g  and Boufassa 
1988). Another way to minimize the effect sf increasing vari- 
ance with the mean is to compute a relative semi-vxiogram, 
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y(h)lmean2, using the semi-variograrn of the log-transformed 
data, which is then back-transformed to the raw units according 
to Joumel and Huijbregts (1 978). 

An implicit assumption of geostatistics is that the structure 
is stable in time, i.e. the spatial organization of the biomass is 
fixed, at least for the duration of the sampling period. This 
constraint might be important for highly mobile species but it 
is not very restrictive for shrimp. Even though they are not 
sessile animals, the displacement of their biomass is rather slow 
compared with the survey speed. Another underlying assump- 
tion is that the capturability by the sampling gear is not struc- 
tured though space. This is likely to happen when the sampling 
grid is visited around the clock and day and night stations are 
mixed together, because of die1 vertical migrations of the 
shrimps. This was minimized here by sampling cmly during 
daytime, when shrimp are more fully available to bottom trawls 
than during the night. 

Local estimation 
Local estimation1 of the biomass Z(x,) at a point x, is done 

by interpolation according to the following equation using the 
data p in t s  Z(xi) available in the surrounding neighborhood 
chosen: 

n 

(3) Z*(x,? = C wiez(x,) 
i =  I 

where w, are weights, which sum to 1 to insure that the estimate 
is unbiased (E[Z* (x,) - Z(x,)] = 0). The wi are estimated in 
such a way that they minimize the variance of error of the esti- 
mate (aF(x,)), called the higing variance (VAR[Z*(x,) - 
Z(x,)] = minimum). The solution to minimize a12(x,) is 
obtained by partial differentiation relative to the weights w,, 
taking into account that they must sum to 1 (Isaaks and Sri- 
vastava 1989). In matrix notation: 

where the C*,i are the covarimces between the random varia- 
bles corresponding to the samples (C*, = q[Z(x,) - E(Z(x,))] 

[Z(x.) - E(Z(xj))])) that describe the spatial structure of the 
probabilistic model. The Lagrange parameter, p, is a mathe- 
matical artifice introduced to constrain the weights to sum to 
1. The C*, are calculated by means of a function that expresses 
the covariance in tems of the distance separation between sam- 
ples C*(h) = y*(x) - y*(h) where y*(h) is the estimated 
vkogram and y*(m) is its sill. This sill is equal to the variance 
of the population (a2) under the assumed stationarity condi- 
tions, when the sampled field is larger than the spatial structure. 
Since y*(m) is a constant, the covariance tems, C*, in equation 
(4) are replaced by the variogrms y* without changing the 
quality. The weights are found by solving W = C- .U, and 
they are substituted in equation (3) to estimate Z*(x,). The cor- 
responding minimized error variance of this estimate, oy(x,), 
is obtained from the following matrix equation: 

'The asterisk distinguishes estimates f o m  true values. 

Cm. J .  Fish. Aquab. Sci., Voi. 49, 8992 

I I SPHERICAL 
I 

DISTANCE BETWEEN SAMPLES (h) 

FIG. 2.  Cotmmon variograrn models. (A) Nugget model, y(h) = C,,; 
(B) linear model, y(h) = bh: (C) spherical model, y(kB = C, [3hl 
2a - h3/2a'] if h =S a and y(h) = C, if 12 > a. where u is the range 
of autocorrelation and C, is the plateau of semi-variance or the sill; 
and exponential model, y(h) = C, [ I  - exp( - kla)]; (D) nested nug- 
get + spherical model, y(h) = C, + C, [3h/2a - km"2w3] if k a a 
and y(h) = C,, + C, if h > a. 

where G * ~  is the variance of the samples. When W and ei are 
obtained from a relative semi-variograrn, the com uted cr;bust 4 be multiplied by the kriged estimate squared, 2? . to obtain the 
absolute minimized error. Kriging is referred to as the best lin- 
ear unbiased estimator (BLUE). fi is also an exact interpolator: 
at a sampled location, x,, the interpolation always passes 
through the data point (i.e. w, = I and all other w, = 0). This 
is true even if the variogram does not pass through the origin 
(nugget effect, see below); the interpolation surface is then dis- 
continuous at the data p in t .  

In practice, local estimates are computed using only the near- 
est samples included in a confined neighborhood. The shape 
and size of this neighborhood and the data points retained for 
the estimation affect the value of the estimate. They are chosen 
according to the model of spatial continuity and to the distri- 
bution of samples in the area (Hsaaks and Srivastava 1989). 
Commonly used variogram functions are the nugget model, 
which corresponds to the absence of a spatial structure (random 
spatial organization) (Fig. 2), the linear model", the spherical 
model, and the exponential model, whose sill, C, , indicates the 
maximum variability due to the structure and whose range of 
autocorrelation, a, gives the distance at which the samples are 
no longer autocornelated. Combinations of these functions are 
also used to model nested structures, which often include a 
nugget model to represent the unresolved small-scale variability 
and sampling error (C,). The ratio &;$C, + C,, where C, is 
the variability due to the structure in models with a sill, gives 
the proportion sf this latter unresolved random variability to the 
total variability (C, + C,). Optimal choices of variogram and 
k g i n g  neighborhood are often developed using a jackknife 
cross-validation method. In this procedure, the data points are 
removed one by one and are estimated using the chosen var- 
iogaam model and kiging parameters. The best solution is the 
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one which, among other properties, minimizes the mean square 
residuals, produces the standardized residuals ([Z*(xi) - .Z(xi)] 
B v?(xi)) the closest to the conditional expectations of a mean 
of 0 and a standard deviation ( s s )  sf 1.0, and maximizes the 
correlation coefficient between the estimated a d  the observed 
values, whose linear regression should have a slope close to 
1.0 (Samper Calvete and Neuman 1989). 

Global and cut08 estimations 
Global estimation of the mean biomass density (Z*) is easily 

obtained by averaging the m local estimates, computed at the 
nodes of a regular grid covering the studied region. The total 
biomass of shrimp (ZB*) is then estimated by multiplying this 
mean density (grams per square metre) by the surface area SD 
of region D: 

L 
(6) ZD* = S, - - - 2 .Z*(x,) . 

rn , = I  

Three-dimensional numerical integration of the mapped bio- 
mass of shrimp can also be used for this computation. Cutoff 
estimates corresponding to the area where the biomass exceeds 
a given threshold me obtained similarly, using only the local 
estimates above the chosen biomass threshold. 

The variance of these estimations is much more difficult to 
estimate because we have only one realization of ZD. Two pss- 
sibilities using the extension variance approach are fomulated 
below. The first procedure computes the variance of the global 
estimation by summing the variance of strata forming a mosaic 
over the whole region (Petitgas and Poulard 1989). The strata 
variances are assumed to be independent of each other. The 
size of the strata must be smaller than the range of reliability 
of the computed experimental variogram, which is always less 
than half the dimension of the Fudied region (lournel and 
Huijbregts 1978). The variance CT,, of ZD is then 

where 

where Sf are the surface area of the stratum [, j (xi, Sl) is the 
average semi-variance between the particular sample locations 
i in the stratum & and all the points of the stratum (which is an 
averaged point-to-stratum semi-variance), and $ (St, S,) is the 
~quivalent for all possible pairs of points in the stratum and 
y (xi, xj) for all pairs of samples in the stratum. These average 
semi-variances are computed from the experimental point-to- 
point vaiogrm. To estimate the point-to-stratum and the stra- 
tum average semi-variances, the strata are discretized in a grid 
sf points and the average semi-variance is estimated using the 
point-to-point varisgram. This variogrm can be unique for the 
whole region when global stationarity holds, or it can be com- 
puted for each set of homogeneous strata when it does not. This 
computation of the confidence intervals of the global estimate 
is time consuming md awkward when the number of strata and 
samples is large. 

The second procedure is the combination of the elementary 
sampling errors, which computes the variance of the global esti- 
mation by the summation of elementary independent emrs  
(Jsumel and Huijbregts 1978). Each sample xi is assigned a 
surface of influence si.  The enor made when the value of the 
central point sample .Zxi is extended to represent the values of 
dl points in the surfaces xi is computed according to the fomula 

where j (xi. xi) = 0. The weighted sum of these elementary 
errors is the variance of the global estimate of the total biomass: 

These calculations are cumbersome when the number of sam- 
ples is large, since they require the computation of the surface 
of influence of all samples and the estipation of each error 
variance. An easier approximation of CT,, when the sampling 
density is uniform, can be obtained by computing the extension 
variance of a random point in the average elementary surface 
s, whose dimensions must respect the lengtuwidth ratio of the 
region D. This is given by the fomula 

whose solution is directly obtained from gesstatistical charts 
(Joumel and Huijbregts 1978). 

The variance of cutoff estimations is obtained similarly 
except that the vxiogram used is the one computed using only 
the samples where the shrimp density exceeds the given cutoff 
(Froideveaux 1984). 

In our example, we have used a grid spacing of 10 x 10 km, 
which roughly corresponds to the average spacing between the 
data pints.  The contour line of the stock was limited to depths 
greater than 150 m, the grounds occupied by adults of Pandalus 
borealis in the Gulf of St. Lawrence. Zeros were imposed at 
the nodes of the grid in shallower bottoms outside this issbath 
and on land (Fig. I ) ,  and they were used only to force the con- 
tours of biomass levels to follow the contour of the sampled 
area. They were not used as information points during the inter- 
plation process because we have found that the biomass con- 
tours obtained in this way were constrained unrealistically. 

The similarity between the interpolation grids obtained by 
laiging was measured using the Beason correlation coefficient. 
Since all these maps were obtained from the same set of I37 
observations, the kriged maps are not independent of one 
another and thus correlation coefficients cannot be tested for 
significance. They remain, however, a valid measure of resem- 
blance. If they were coming faom independent data sets, cor- 
rections would still have to be introduced in the testing pro- 
cedure to account for the lack of independence (spatial 
autocomlatisn) of the data points (Clifford et al. 1989). 

Interpolation and mapping by poiygonal tessellation was also 
used. This method simply consists of attributing the value of 
the nearest sample to the estimated location, which results in a 
mosaic of tiles whose surfaces are the surface of influence of 
each sample (Isaaks and Srivastava 1989). For estimating the 
global mean and variance, the samples are then weighed by 
their surface of influence. 

Results 

Stationxity Conditions 

The biomass sf shrimp per square kilometre was not 
homogeneously distributed and did not show a monotonous 
trend that could easily be modeled. Two areas of different 
density were found. As expected, the northern side of the 
Eaurentim Channel was distinctly richer than the rest sf the 
surveyed region (Fig. 1 and 3). Because this large-scale 
structure violated the stationarity conditions, the region was 
divided into two strata, north and south, bounded by the 

Can. 9. Fish. Aqmt. Sci., bl. 49, I992 

C
an

. J
. F

is
h.

 A
qu

at
. S

ci
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.n
rc

re
se

ar
ch

pr
es

s.
co

m
 b

y 
U

ni
ve

rs
ité

 d
e 

M
on

tr
éa

l o
n 

07
/0

4/
19

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 



FIG. 3.  Histograms with box plots and statistics of the shrimp biomass 
samples for the whole region and for the north and south stratum sep- 
arately, for ( A X )  raw and (BF) log-transformed data. 

150-m contour towards the coast and separated by the 258-m 
contour on the northern side of the channel (Fig. 1). - 

In the whole region and in both strata, shrimp were 
contageously distributed, and probability distributions were 
significantly skewed (Fig. 3). The Box-Cox procedure (Box 
and Cox 1964; Sokal and Rohlf 198 1) to identify the best 
normalizing transformation gave an estimated lambda of 0.30 
(95% C.I. = [0.24,0.3'7]), indicating that the shrimp biomass 
was far from the Isgnomal distribution (lambda = O), thus 
precluding the use of lognormal biging (Amstrong md 
Bgbufassa 1988). Because kriging using Box-Cox 
transformations is not yet described and because 
transformations are delicate for resource estimation (David 
1988), we have only used k g i n g  on the original data. Back- 
transformation in the original metric often leads to substantial 
bias when the transformation used and/or the structure model 
are improper, even only slightly. 

One outlier, one order of magnitude higher than the mean, 
was encountered in the western end of the region. To minimize 
the effect of nonstationaity, indicated by the increasing 
variance with the mean, k g i n g  was also performed using a 
relative vwiogram computed for the whole region. A third 
estimation using a normal variogram for the whole region was 
computed for comparison. 

Variograms md Spatial Structure 

The omnidirectional variogram of the shrimp biomass of the 
north stratum was relatively erratic (Fig. 4A). Except for the 
initial point at an average distance sf 3 km, all polnts were 
dispersed along a line of constant semi-variance of 2 108 000, 
indicating no spatial autocorrelation of the shrimp biomass at 
distances larger than 10 s r  15 km. A large part of the variability 
in this stratum was therefore random, and the stmcture, if any, 
existed only at small scales. The variograrn was tentatively 
modeled by a nugget effect, representing the unresolved small- 
scale variability, over which can be suprimposed either (1) a 
weak monotone stmcture extending over the entire stratum area 
(Table 1, linear model, not illustrated in Fig. 4A) or (2) a fine 
stmcture representing small patches with radius of 10-15 km 
(Table 1, spherical model with a range of 15 km, Fig. 4A). In 
this latter mixed model, the variability due to the stmcture (C,  
= 1 680 008) was about three times higher than the unresolved 
small-scale variability (Co = 500 000). The vxiograrn in the 
east-west direction (not shown) did not significantly differ from 
the omnidirectional one. The distribution sf the stations in this 
stratum precluded the computation sf significant vmiograms in 
other directions. Isotropy was therefore assumed and the iss- 
tropic nugget f spherical vmiogram (Table I ,  underlined) was 
used for the estimations. 

The omnidirectional variogam of the south stratum (Fig. 4B, 
circles) presented a maximum semi-variance much lower than 
the richer north stratum (Fig. 3). The steady increase of semi- 
variance with distance indicated that a trend was present. Sig- 
nificant anisotropy was also observed, with the directional var- 
iograms across (direction 60") and along (direction 150") the 
hurentian Channel being different. The low semi-variance at 
the smallest distance classes on the omnidirectional variogram 
indicated that small-scale stmcture could be nested within the 
large-scale gradient. Various models reasonably fit the vario- 
grams (Table 1 )  and. despite the apparent anisotropy, the two- 
stmcture isotropic model consisting of a spherical model plus 
a linear model plus a nugget effect performed as well as the 
anisotropic models and was used for the k g i n g  estimation 
(Table 1 , underlined). The unresolved small-scale variability 
(Co = 60 000) represented a maximum of about 20% of the 
lai-ger-scale variability due to the structure. 

The omnidirectional variogram computed for the whole 
region (Fig. 4C) gave a rough average of the variograms of the 
two strata. Its shape was dominated by a large-scale stmcture 
with a radius of about 110 km. It was easily modeled by a 
spherical model with a range of 110 km superimposed over a 
high nugget effect (Co = 758 OW), representing an unresolved 
small-scale variability corresponding to 65% of the structural 
variability (C, = 1 150 800). 

The relative variogram was characterized by a plateau of 
semi-variance from about 20 to 60 km, followed by an increase 
of semi-variance at larger distances (Fig. 4D). Neglecting the 
large-scale variability, a spherical model was added to a nugget 
effect to model the small-scale semi-variance (Table I),  and 
this variogram was used for kriging. 

All the structures modeled performed poorly in estimating 
the true value of the samples, especially when a large seach 
radius and a high number of points were used (Table 1). Most 
solutions reasonably satisfied the global unbiasness condition 
(mean of standardized residuals = 0) but the distributions of 
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WHOLE REGION 
307 

A NORTH STRATUM 

B SOUTH STRATUM D WHOLE REGION 
2.54 @ @ 

DISTANCE BETWEEN SAMPLES kmls 

FIG. 4. Vaiograms computed for (A and B) the two strata separately and (C and D) the whole region. 
Isotropic variograrns (0" 90°, circles) and directioraal variogmrns along and across the Laurentian 
Channel (60" 9 22.5", triangles; 150" + 22.5", squares). Fitted models are presented in Table 1 
(underlined). Except for the relative variograrn (Fig. 4D), all variograms exclude the outlier value of 
11 373 k g / h 2 .  All points include more than 100 pairs, except open symbols (20-100 pairs). 

the errors of the estimates, as indicated by their SD'S, varied 
notably from one another. This latter parameter, together with 
the correlation coefficients of the true values against the esti- 
mates, was used to select locally optimal solutions. The best 
estimations of the samples were obtained using either the two 
OF the four nearest samples, for all the variograrn models 
explored (Table I ,  underlined). The goodness of fit was, how- 
ever, we& with less than 50% of the variance being explained 
by the chosen spatial models. 

The slopes of the regressions of the true values against the 
estimates were very different when computed with raw or Isg- 
transformed data. This resulted from the fact that the variance 
sf the raw data increased with the value of the estimates. The 
logarithmic transformation maximized the hsmoscedasticity 
condition for the regression by giving less weight to the high 
values (for which the error is high) which more greatly affected 
the slops. For all models, the slopes of the log-transformed 
data converged towards the value of 1 when the correlation 

coefficients were maximum; these trials were thus chosen as 
the optimal ones. The comesponding slopes for the saw data 
were smaller than 1, indicating that, on the average, the kriging 
estimates underestimated the low values and overestimated the 
high values (' 'conditional bias ' ' : Isaaks and Srivastava 1989). 
Exmination of the residuals of the regressions showed that this 
conditional bias of the optimal models chosen was small, and 
mainly resulted from large errors associated with a few high 
values. 

Interpolation by polygonal tessellation did not perform well 
in the cross-validation tests (Table I). The slope parameters 
were always far from I and the SD'S of the errors of the esti- 
mates were larger than the higing alternatives. 

In the wol-th stratum, the cross-validation clearly showed that 
the linear model with high nugget effect was unsuitable. The 
estimates were uncorrelated with the true values, except when 
only two points were used. Lowering the nugget parameter by 
fitting a small-scale structure using a spherical model with a 
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TABLE 1. Cross-validation of the vaiogrms models and search methods. so of the errors of the estimates (sD,) from the true value (Z*(q) - 
Z(x,)) obtained using the given vario ram and the search method at the sam le points (x,); Pearson cornlation coefficients ( r ,  and p.,) md slops 
(b ,  and b2) of the linear regressions fn (Z + 1) = a, + b,  (In Z* + 1) ?nfZ = a + 6 Z*; mean, so, and maximum values of standardized 
residuals (Z*(x,) - Z(x,)/ui(x,)). For the relative vanogram, these residuals are $* ( x j  - Z(x,)]/[o;(x,)-~*(x~. Underlined are the chosen 
combinations for computing the kiging estimates of Table 3. 

Search Max. Standardized residuals 
radius no. 

Vrariograrn (km) ofpoints SD, r ,  &, r, b, Mean SD Max. 

North stratum" Isotropic, nugget + linear 200 20 1 4 8 4 0 . 2 6 2 . 2 6 0 . Q O 0 . 0 2  0.02 1.14 -3.7 
Y (h) = 1 500 000 + 5500 Ch) 100 20 1486 0.27 1.95 0.02 0.09 0.01 1.14 -3.7 

50 8 1489 0,29 1.46 0 .100.28 0.04 1.12 -3.4 
50 4 1515 0.21 1.00 0.13 0.27 0.14 1.09 -3.2 
50 2 1350 0.67 1.55 0.45 0.62 0.06 0.89 -2.8 
25 8 1533 0.15 0.33 0.11 0.24 0.05 1.13 -3.3 
25 4 1537 0.17 0 . 3 6 0 . 2 6 0 . 2 9  0.11 1.10 -3.2 
25 2 1356 0.55 0.99 0.46 0.61 0.05 0.89 -2.8 

Isotro ic, nugget + spherical 200 20 1334 0.53 2.97 0.39 0.96 0.08 1.06 -3.7 
y (l) = 500 000 + 1 600 000 Sph,, (h) LOO 20 1315 0.65 3.00 0.42 0.94 0.02 1.05 -3.7 

50 20 1301 0 . 6 6 2 . 6 0 0 . 4 4 0 . 9 0  0.03 1.04 -3.7 
50 8 1314 0.65 2.51 0.43 0.83 0.05 1.03 -3.6 
50 4 1398 0.49 1 . 8 8 0 . 3 4 0 . 6 1  8.08 1.07 -3.5 
50 2 1313 0.69 1.51 0.49 0.66 0.04 0.96 -3.2 
25 8 1357 0.35 0.74 0.39 0.68 0.04 1.05 -3.6 
25 4 1434 0.32 0.66 0.33 0.52 0.06 1.08 -3.5 
25 2 1319 0.58 1.00 0.49 0.65 0.03 0.96 -3.2 

200 1 1553 0.57 0.46 0.35 0.33 - - - Polygonal method 
(estimate = nearest sample) 

South stratum Isotro is nu get + linear (5 - 180 ooo + 2200 (h) 
200 
100 
50 
50 
50 
50 

Isotropic, nugget + linear + spherical 200 
'P, (h) = 60 000 + 1500 ( h )  + 100 
120 000 Sph,, (h)  5Q 

50 
50 
50 

Anisotropic, nugget + Binear 200 
'P, (h )  = 130 000 + 800 (hlsoC) + 100 
3500 (h,-) 50 

50 
50 
50 

Anisotropic, nugget + linear + 208 
sphericalb y (h) = 60 000 + 850 (&,,,o) + 100 
70 000 Sph ,(h 500) + 2000 (h60") 4 50 
1 50 000 ~ph,,d,,~) 50 

50 
50 

Polygonal method 200 
(estimate = nearest sample) 

Whole region Isotropic, nugget + sphericala 
y ( h )  = 750 000 + 
1 150 000 Sph, ,,,(It) 

Relative variogram: 
isotropic, nugget + spherical 
y (h)/mean2 = 0.934 + 
0.782 s ~ h 2 ? . 4 ? ( i a )  

Polygonal method 
(estimate = nearest sample) 

"Excluding the outlier value of 11 373 kg/km2. 
hCowesponds to a zonal anisotropy for the spherical model. 

Can. J .  Fish. Aquaa. Sci. ,  Vol. 49, 1992 39 

C
an

. J
. F

is
h.

 A
qu

at
. S

ci
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.n
rc

re
se

ar
ch

pr
es

s.
co

m
 b

y 
U

ni
ve

rs
ité

 d
e 

M
on

tr
éa

l o
n 

07
/0

4/
19

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 



range of autwowelatisn of 15 h resulted in much better esti- 
mations. The SD'S of the errors of estimates were reduced by 
9% on average. Compared with the polygonal method, the krig- 
ing model chosen improved by 15% the SD of the error of the 
estimates. 

The results of the cross-validation of the four higing solu- 
tions explored for the south stratum were less variable than for 
the north stratum. The best solution chosen had a SD of the 
enors of the estimates 18% lower than the corresponding SD 
for the polygonal method. 

For the whole region, the relative variograrn model did not 
perfom as well as the traditional variogram, the SD'S of the 
residuals being 33% lager on average. Both models were, 
however, much better than the polygonal method, which had 
SD'S of residuals 47 md 77% greater, respectively. 

Estimation and Mapping 

Point higing at the nodes of the 10 x 10 km gid was per- 
formed for each of the four optimal combinations of vas-isgram 
and kriging parameters retained by the cross-validation 
(Table I). For the two-strata estimation, the estimates were 
computed in each stratum by ordinary point higing using, as 
information points, not only the samples of the given stratum 
but all the samples of both strata. This was done to prevent the 
establishment of an artificial discontinuity at the b o u n d q  
between the two strata. AH1 the maps of the k g e d  estimates 
(e.g . Fig. 5) were very similar, the Bearson statistics computed 
between them being greater than 0.90; the map obtained by the 
polygonal estimation method differed from the k g e d  maps, 
however, as shown by the lower values of the correlation coef- 
ficient (Table 2). The differences between the maps mainly 

resulted from the different smoothing effect caused by k g i n g  
with either two or four points. 

By contrast, the maps of the kriging SD'S were very different 
(Fig. 6). Because the computation of the kndging SD'S involves 
the variance of the samples per stratum or for the whole region 
(equation (5)>, the two-strata scheme (Fig. $A) was clearly dis- 
cernible compared with the whole-region approach (Fig. 6B). 
The two-strata scheme produced a lower average error but a 
larger range of variation compared with the whole-region 
model. For the relative variogram case, the weighing of the 
relative b g i n g  SD'S by the estimates resulted in a much lager 
range sf enors and in a pattern minoring the map of the esti- 
mates (Fig. 5 ) .  

Except for a few square kilometres in its eastern end, all parts 
of the survey region contained some shrimp according to the 
b g i n g  p e ~ o m e d  (Pig. 5). The shrimp stock contour (Fig. 5A) 
was therefore not determined by the samples but by the external 
zeros imposed a priori to force the contours to foilow the bound- 
aries of the study region. The deepest parts of the Laurentian 
Channel (Fig. 1) were generally poor, especially easterly (Pig. 
5B-5G). The shrimp were concentrated in a long and wide 
northern patch (Fig. 5B), which exhibited three kch areas 
(Fig. 5D), and in an isolated 40-km patch in the western end 
of the survey region (Fig. 5B-5D). The exploitable areas, with 
densities higher than 1000 kg/km2 (Fig. 5C), covered 27-3096 
of the sudace of the whole region and they contained slightly 
more than 70% sf the total biomass (Fig. 5C and 5D; Table 3). 
Areas richer than 1500 kg/km2 represented a b u t  60% of the 
total biomass, concentrated in 2G22% of the total surface. A 
global biomass of about 22 kt was present in the region during 
the sampling period (Table 31, according to the b g i n g  esti- 
mations. The polygonal method gave a global estimate 14% 

FIG. 5. Maps of the shrimp biomass contoun of 5, 500, 1060, and 1500 kg/km2 obtained from ordinary point kg ing  using the two-strata model 
presented in Table 1. Hatched contours are holes. Symbols as in Fig. 1. 
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TABLE 2. Comp~sons  of the maps of the shrimp biomass computed 
using the combinations of kriging parameters chosen in Table 1. 
Resemblance from the Pearson correlation coefficients computed 
between the kriged estimates of the mags. These coefficients cannot 
be tested (see text). 

Whole region 

Two Traditional Relative 
Method strata varicsgrarn variogram 

Polygonal 
tessellation 0.86 0.83 0.78 

Whole-region 
relative varisgram 0.95 0.90 

Mole-region 
traditional variogram 0.92 

lower. The estimated relative standad errors (SE = %/total 
biomass, a, computed from equation ( 1  1)) of the k g i n g  global 
estimates were one third to one half lower than the SE'S of the 
polygonal estimate, and the two-strata model produced the low- 
est error. The SE'S of the cutoff estimates were relatively low. 

Discussion 

Biomass Structure 

Inferences on the spatial structure from the vxiograms must 
be done with caution because stationaritv conditions were not 
satisfied. Since the variance tended to increase with the mean 
and the variograms differed in the range and shapes of the 
autocomelation function depending on the area considered, the 
direction of the variogram, and the type of data transfornation, 
one should concentrate on the local level and on each stratum 
separately. 

At the smallest scale of the observation window, the 
unresolved variability was not negligible and it increased with 
the mean biomass of the strata, meaning that either the sampling 
e m r  or the amplitude of small spatial patterns of biomass, or 
both, increased with shrimp density. Sampling errors a e  likely 
to increase with shrimp density because of the proportional 
errors associated with the effective area sampled, the avoidance 
of the trawl by shrimp and the sampling efficiency. Horizontal 
microstructures md  the variability of the vertical distribution 
of shrimp in the vicinity of the bottom layer sampled by the 
trawl may also be density dependent. The relative importance 
of these factors that all contribute to the hlgh nugget variability 
is, however, unknown. This question deserves more research 
efforts. 

At small distances of about 15 km, the slopes of the 
variograms of each stratum changed markedly. This may 
indicate that the shrimp tended to aggregate in mesoscale 
patches, having a diameter which was twice this distance, but 
the sampling grid used was too coarse to confirm it through the 
structure function. The k g e d  maps showed, however, four 
rich areas of 70C2000 h2. Increasing the local density of 
samples is therefore recommended to more precisely define the 
intercept of the spatial structure model and to verify the 
existence of this mesoscale pattern. 

The chief macrostructures evidenced on the kriged maps was 
the rarity of the shrimp along the southern shelf of the 
Laurentian Channel and a tendency of being richer in the 
northwest. The reason for this is unclear, since the sediment 
type (Loring and Nota 1973) and bottom temperatures (2-6°C) 

FIG. 6 .  Maps of the kriging SD'S corresponding to the three figing 
schemes presented in Table 1: (A) two-strata vxiograms; (B) whole 
re4ion traditional vnriogram; (C)  relative variogram. Point kriging 
(a, Z*, in Fig. 6C) estimated at the nodes of the 10 x 10 km grid 
cells. 

are favorable throughout the sampled region. This structure is 
the source of the trend we observed. It is an important regional 
feature of the shrimp spatial organization, which has a high 
degree of persistence, from unpublished shrimp fishery catch 
and research data. Many mechanisms can be invoked to 
generate and maintain this structure. We suggest the following 
circulation hypothesis. The location of the region at an elbow 
of the Lawentian Channel and the presence of a basin in the 
northeast surely affect the deepwater circulation and might favor 
the "retention9' of the shrimp andlor their food in the rich areas 
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6.0 

30 50 70 90 118 

SAMPLES IN NORTH STRATUM 

FIG. 7.  Standard emor of the global estimate (SE = o,/total biomass) 
as a function sf  the number of samples in the north stratum for the 
two-strata model for a fixed total number of 137 samples. 

larger than the error of the global estimate, but slightly smaller, 
indicates that the samples were adequately distributed relative 
to the density of shrimp. 

These geostatistical errors of the global and cutoff estimates 
must be interpreted with caution. They are representing the error 
of the estimate according to the chosen structure model. If this 
model adequately describes the spatial structure? then the 
computed errors of the estimates are appropriate. The cross- 
validation of our optimal kriging models showed that they 
reproduced the true sample values wlth a correlation of about 
0.90. This is the minimum correlation we may therefore expect 
from the kriging estimates because they were computed with 
closer infomation points (always smaller than the distance 
between samples) than the cross-validation estimates, where 
the information points were more distant (on average equal to 
distance between samples). An increase of the sample density 
would increase this correlation of the spatial model and reduce 
the errors of the global and cutoff estimates computed from 
equation (1 1) by reducing the surface of influence of the sam- 
ples. At these small scales, the presence of a structural varia- 
bility and its consideration in computing the errors of the 
estimates in equation (1 1) would result in a higher e m r  reduc- 
tion than It would in the random case, which is assumed in 
classical statistics. This advantage of taking into account the 
spatial structure was also clearly depicted here; kriging always 
produced much better estimations (with smaller errors) than the 
alternative polygonal method, which did not involve a stmcture 
function. 

Sampling Optimization 

Staticsnv geostatistics tells us that the variance of the esti- 
mates of a spatially structured variable will be minimized by 
s ap l i ng  over a regular grid (Hughes and Lettenmaier 1981; 
Munoz-Prado et al. 1989). This can be seen from equations (9) 
and (10) where the size and geometry of the area of influence 
of the samples are involved in the computation of the variance 
of the global estimate. The precision of this estimate will there- 

2.5 --I 

25 75 425 4 75 225 275 

TOTAL NO OF SAMPLES 

Fro. 8. Standard error of the global estimate (SE = u,/tcptal biornass) 
as a function of the total number of samples for the two-strata geo- 
statistical (solid line) and classical (broken line; cp' = variance csf sam- 
ples) models. for a fixed optimal allocation of 53% of samples in the 
north stratum from Fig. 7. The arrow indicates the present total num- 
ber of samples. 

fore be partly determined by the spacing between samples. 
When geometric anisotropy is present, the grid should be 
stretched in the direction of the smallest variability by the ratio 
of the slopes of the directional variograms computed for the 
directions of minimum and maximum variances. This distri- 
bution of samples also ensures obtaining the optlmal map of 
the variable over the whole studied region. 

These theoretical guidelines are true only if the structure 
function is adequate and perfectly known. This is not the case 
in practice, since the variograms are unknown and they must 
be computed from the samples. Unless the grid is very tight. 
the definition of the structure function at small scales will not 
be precise enough to separate the structural from the random 
variability. It seems therefore worthwhile to direct a proportion 
of the samples to increase the local density of the grid (Warrick 
and Myers 1989; Fortin et al. 1989). This would enhance our 
knowledge of the small-scale variability and better define the 
variogram at small distance classes, in order to obtain a more 
precise estimate of the global variance. When the proportion 
of the structural variability at the scale corresponding to the 
separation between samples is small compared with the unre- 
solved variability, the use of a regular grid instead of random 
sampling will not significantly improve the precision of the 
global estimate. It will, however, offer the advantage that the 
map will have a uniform level of uncertainty. Drawbacks of a 
regular grid are the risks of aliasing, when cyclic variations are 
interfering with the sampling frequency, and of having an 
improper sampling step relative to the variability of the samples. 

Results showed that stratification minimized the emor of the 
global estimate. Could we reduce again thls emor by changing 
the allocation of the 137 samples between the two strata? Using 
equation (1 11, the SE of the global estimate was computed for 
different allocations of the samples between the two strata 
(Fig. 9).  The minimum se is obtained when 72 samples (53% 
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of total) are placed in the worth stratum and 65 in the south 
stratum. This changes the allocation of 21 samples in favor of 
the north stratum compared with the present case. The SE of 
the global estimate associated with this reallocation is 6.196, 
which is a slight reduction compared with the present value of 
6.5%. 

The effect of increasing or reducing the total number of sam- 
ples of this optimal allocation is depicted in Fig. 8. Under the 
classical hypothesis of random distribution (pure nugget var- 
iogram), the SE of the global estimate decreases as a function 
of n It can be shown that se decreases as n - ".'"or a linear 
vaiogram and, provided n is sufficiently large, as El'.' for a 
Gaussian variogram. For mixed models, this decreasing func- 
tion will depend on the relative importance of each variogram 
component. Here7 because of the high proportion of the unre- 
solved nugget variability, the SE of the global estimate decreases 
with a rate close to the classical case. It WE& however, always 
significantly lower than the SE computed under the hypothesis 
sf randomness. Doubling the sampling effort would result in a 
reduction, by one third, of the SE of the estimate, which would 
become 4.1 % . Decreasing the number of samples by one half 
would give a SE of 9.096, which is a relative increase of about 
50%. 

Sampling in areas of high uncertainty could be reinforced 
using the emor rnaps computed. Figures $A and 6B reflect the 
sampling density in the stratum or region considered and point 
oat areas where the sampling could be increased to get a better 
local estimate considering the local variability, independent of 
the value of this estimate. As expected from equation (51, the 
stratified scheme resulted in lower errors in the south stratum 
in response to its lower variance. In general, both maps point 
out the same areas of high errors in this stratum. The error 
depicted in Fig. 6C takes into account not only the sample den- 
sity and local variability but also the values of the locd esti- 
mates. It thus indicates the areas where it is worth increasing 
the sample density for estimation of the global biomass because 
they are sufficiently rich and they have a high variance or, con- 
versely, decreasing the sampling density because of a uniform 
low abundance. For example, more samples should be col- 
lected in the south, at the junction of the gulf and the estuary, 
to delineate more accurately the extent of the local rich patch 
(Fig. 5D and 6C).  Similarly, the sampling effort in the south- 
east could be relaxed because of its low variance. 

To conclude on the geostatistical estimation of the biomass 
of the northern shrimp in the Gulf of St. Lawrence, the non- 
stationarity and the high unresolved small-scale variability are 
two questions that need farther research in order to more pre- 
cisely define the spatial model. The use of more exhaustive data 
sets and data from repeated surveys would surely bring more 
infomation on the shape of the probabilistic model driving the 
spatial organization of the shrimp. Despite this limitation the 
present results show that geostatistics can easily provide var- 
ious precise estimates for spatially autocomlated biological 
resources. Besides, it provides extra information on their spa- 
tial organization, which can hardly be obtained otherwise, and 
which is most helpful for understanding the ecology of the stud- 
ied species and, hence, for improving heir management. 

Acknowledgments 

We are grateful to Louise Savard for the planning and realization 
of sampling and to Dorninique Gascon, Sylvain Hurtubise, Louis Gos- 

selin, md Benoit MerciBle for the collection of samples. We also thank 
anonymous referees for helpful comments. 

References 

APOLLONIO, S., B. K. STE%:NSON, AND E. E. DUNTON. 1986.Effects of tern- 
perature on the biology of the northern shrimp, Fal~dakus borealis in the 
Gulf of Maine. U.S. Bep. Commer. NOAA Tech. Rep. N W S  NO. 42: 
22 p. 

ARMSTRONG, M . ,  AND A. BOUFASSA. 1988. Comparing the robustness of ordi- 
nary kg ing  and Bognormal kriging: outlier resistance. Math. Gml. 20: 
447457. 

ARMSTRONG, M., D. WENARD, AND P. BERTHOU. 1989. Applying geostatistics 
to the estimation of a population of bivalves. ICES C.M. 1989lK33: 22 p. 

BARR, L. 1970. Die1 vertical migration of Pandalus borealis in Kachemak bay, 
Alaska. J .  Fish. Res. Board Can. 27: 669476.  

Box, G. E. P., AND D. R. COX. 1964. An analysis of transformations. J. 8. 
Stat. Soc. Ser. B 26: 211-243. 

BL~RGESS, T. M., AND W. WEBSTER. I980a. Optimd interpolation and is=- 
ithmic mapping of soil properties. I. The serni-variograrn and punctual 
kriging. J. Soil Sci. 31: 315-331. 

1980b. Optimal interpolation and isarithmic mapping sf  soil prop- 
erties. II. Block kg ing .  J. Soil Sci. 3 1 : 333-341. 

BURGESS, T. M., R. WEBSTER, AND A. B. MCBRATNEY. 1981. Optimal inter- 
polation and isorithmic mapping of soil properties. IV. Sampling strategy. 
J. Soil Sci. 32: 643459. 

CLARK, I. 1979. Practical geostatistics. Elsevier, New York, NY. 129 p. 
CLIFF, A. D., AND J. K. ORD. 1981. Spatial processes: rndels and applications. 

Pion Ltd., London, U.K. 266 p. 
CLIFFORD, P.,  S. RICHARDSON, AND D. HEMON. 1989. Assessing the signifi- 

cance of the correlation between two spatial processes. Biometries 45: 
123-134. 

CWMRAN, W. 197'9. SampIing techniques. John Wiley and Sons, New York, 
NY. 413 p. 

CONAN, 6. 1985. Assessment of shellfish stocks by geostatistical techniques. 
NAFQ SCR Doc. 891188: 19 p. 

DAVID, M. 1988. Handbook of applied advanced geostatistical ore reserve esti- 
mation. Elsevier, Amsterdam, The Netherlands. 2 16 p. 

FORTIN, M.-J., P. DRAPEAU, AND P. LEGENDRE. 1989. Spatial autocorrelatisn 
and sampling design in plant ecology. Vegetatio 83: 209-222. 

FRO~DEVEACX, R. 1984. Precision of estimation of recoverable reserves: the 
notion of conditional estimation variance, p. 141-164. I n  G. Verly et al. 
[ed.] Geostatistics for natural resources characterization. NATO AS1 
Series C, Vol. 122. Reidel, Dordrecth, The Netherlands. 

HAURY, L. R., J. A. M&OWAN, AND P. H. WEBE. 1978. Patterns and pro- 
cesses in the time-space scales of plankton distributions, p. 277-327. In 
J. H. Steele [ed.] Spatial pattern in plankton communities. Plenum Press, 
New York, NY. 

HUGHES, J. P., AND D. P. LETTENMAIER. 198 1. Data requirements for kiging: 
estimation and network design. Water Resour. Res. 17: 1641-1650. 

ISAAKS, E. H., AND R. M. SRIVASTAVA. 1989. Applied geostatistics. Oxford 
University Press, New York, NY. 561 p. 

JOURNEL, A. 6. 1986). The logmmal approach to predicting local distributions 
of selective mining unit grades. Math. Geol. 12: 285-303. 

JOLTRNEL, A. G . ,  AND CH. J .  HUUBREGTS. 1978. Mining geostatistics. Aea- 
deemic Press, New York, NY. 600 p. 

LEGENDRE, P., AND M.4.  FORTIN. 1989. Spatial pattern and ecological anal- 
ysis. Vegetatio 80: 107-138. 

LEGENDRE, P., AND M. TRQUSSELLIER. 1988. Aquatic heterotrophic bacteria: 
Modeling in the presence of autocorrelation. Lirnnol. Bceanogr. 33: 105%- 
1067. 

LORING, D. H., AND B. J. 6. NOTA. 1973. Morphology and sediments of the 
Gulf of St. Lawerence. Bull. Fish. Res. Board Cano 182: 1-147. 

MACKAS, D. L., K. L. DENMAN, AND M. K. ABBOTT. 1985. Plankton patch- 
iness: biology in the physical vernacular. Bull. Mar. Sci. 37: 652-674. 

M A C K E ~ ,  D. J. 1973. Manual of methods for fisheries resource survey and 
app.xaisal. F.A.O. Fish. Tech. Rep. No. 124: 29 p. 

MARBEAU, J .  P. 1976. GCostatisbique foresti&re: Ctat actuel et dCvelo~pements 
nouveaux pour l'mknagement en for& tropicale. Ph.B. thesis, Ecole Nat. 
Sup. Mines Paris: Fontainebleau. 21 1 p. 

MARGALEF, R.  1979. The organization of space. Bikos 33: 152-159. 
MATHERON, G. 197 1. The theow sf  regionalized variables and its applications. 

bas cahiers du CMM, faes. 5,  Ecole Nat. Sup. Mines Paris, Fomtaine- 
bleau. 21 1 p. 

MORAN, P. A. P. 1950. Notes on continuous stschastic phenomena. Biome- 
trika 37: 17-23. 

Capo. 9. Fish. Aquat. Sci., V06. 48, 1892 

C
an

. J
. F

is
h.

 A
qu

at
. S

ci
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.n
rc

re
se

ar
ch

pr
es

s.
co

m
 b

y 
U

ni
ve

rs
ité

 d
e 

M
on

tr
éa

l o
n 

07
/0

4/
19

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 



MUNOZ- PAR^, J., J. F. Bomrw, AND M. VAUCLIN. 1989. ktude de 1'Cchan- 
tillonnage d 'm @Cnomkne bidimrasionrael par simulation d'ume fonctisn 
alkatoire, p. 837-850. Bm M. Amstrong [&.I Geostatistics. Vol. 2. KBu- 
wer Academic Publishers, The Netherlands. 

NICOLASSEN, A., AND G .  CONAN. 198'7. Assessment by geostatistical tech- 
niques of populations of Iceland scallop (Chlamis islundica) in the Bxent 
sea. I.C.E.S. CM 187/#:14: 18 p. 

PETITGAS, P., AND J.-C. POULAKD. 1989. Applying stationary geostatistics to 
fisheries: a study on hake in the bay of Biscay. ICES Demersal Fish. 
Comm. C.M.iG.62: 21 p. 

RENBU, J.-M. 1979. Nomal and lognormal estimation. Math. Geol. 1 1: 407- 
422. 

SAMPEW CALVEE, P. J . ,  AND S. P. NEUMAN. 1989. Geostatistical analysis of 
groundwater quality data from the Madrid basin using adjoint state max- 
imum likelihood cross-validdon, p. 725-736. In M. Amstrong Led.] 
Gesstatistics, Vol. 2. Kluwer Academic Publishers. The Netherlands. 

SAVARD, L. 1989. Evaluation des stocks de aevette (Pundalus borealis) du 
GsTfe du Saint-Latirent. CsmitC Sci. Consul. PCches Can. Atl. (CSCKA) 
Doc. Rech. 89/87: '70 p. 

SIMARD, Y., P. BRUNEL, AND J. LACELLE. 1990. Distribution and growth of 
pre-recruit cohorts of the northern shrimp (Pandabus borealis) in the west- 
ern Gulf sf  St. Lawrence as related to hydrographic conditions. Can. 
J. Fish. Aquat. Sci. 47: 15261533. 

SMITH, S. J., AND R. K. M o m .  1987. Considerations on the representation 
and analysis of a spatially aggregated resource: Gesrges Bank scallops. 
H.C.E.S. C.M. 1989/K: 26: 19 p. 

SOKAL, R. R. 1986. Spatial data analysis and historical processes, p. 29-43. 
Ha E. Diday et al. [ed.] Data analysis and informatics. IV. Proceedings 
of the Fourth International Symposium on Data Analysis and Infomatics, 
Versailles France, 1985. North-Holland, Amsterhm, The Netherlands. 

%#AL, R. R., AND P. J .  WOHLP. 1981. Biometry the principles and practice 
of statistics in biological research. W. H. Freeman and Co., San Fran- 
cisco, CA. 859 p. 

STEELE, J. H. 1978. Spatial pattern in plankton communities. Plenum Press, 
New York, NY. 476) p. 

STQLYARENKO, D.A. 1986. Data analysis sf  trawl shrimp survey with splim 
approximation of stock density. ICES C.M. 19861K:25: 15 p. 

TRITES, R. W., AND A. WALTON. 1975. A Canadian coastal sea - the Gulf 
of St. Lawrence. Bedford Inst. Oceanogr. Rep. Ser. Bf-R-75- 15: 1-29. 

WARRICK, A. W., AND D. E. MYERS. 1987. Optimization of sampling locations 
for variogram caIculations. Water Resour. Res. 23: 496-500. 

YOST, a. S., G. L~NAWA,  AND R. L. FOX. 1982. Geostatistical analysis of soil 
chemical properties sf  large land areas. II. Kriging. Soil Sci. Soc. Am. 
J .  46: 16633-1837. 

Can. J .  Fish. Aqsrar. Sc'ci., VoE. 49, 6992 

C
an

. J
. F

is
h.

 A
qu

at
. S

ci
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.n
rc

re
se

ar
ch

pr
es

s.
co

m
 b

y 
U

ni
ve

rs
ité

 d
e 

M
on

tr
éa

l o
n 

07
/0

4/
19

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 




