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The methodology for mapping and for global and cutoff estimation of autocorrelated exploitable resources is
presented, based on stationary geostatistical methods. Use and performance of these methods in marine ecology
are illustrated with an application to northern shrimp (Pandalus borealis) abundance data, collected in 1989 at
137 stations in the western Gulf of 5t. Lawrence. Nonstationarity of the biomass data, a proportional increase of
the local variance with the local mean, and the presence of cutliers all violated the stationarity assumption and
strongly hindered the modeling of the spatial structure. Cross-validation tests showed that kriging estimates were
better when interpolating within very local neighborhoods using a small number of points. Kriging always per-
formed better than polygonal tessellation. A stratification scheme produced better estimations than the whole-
region approach using traditional or relative variograms. The spatial organization of the shrimp biomass was
composed of a trend superimposed onto mesoscale patches of 30-50 km in diameter. The area under study
contained about 22 000 tonnes of northern shrimp; 70% of this biomass was concentrated in less than 30% of
its surface. The spatial information is used to derive guidelines for optimizing future sampling programs.

La méthodologie pour la cartographie et I'estimation globale et par seuil d’abondance de ressources exploitables
autocorrelées est présentée, suivant des méthodes géostatistiques stationnaires. L’usage et la performance de ces
méthodes en écologie marine sont illustrés par une application a I'abondance de crevette nordigue (Pandalus
borealis), échantillonnée a 137 stations dans |'ouest du golfe du Saint-Laurent en 1989. La non-stationnarité de
la biomasse, un accroissement de la variance locale proportionnel a la moyenne locale et la présence de valeurs
extrémes violaient tous I’hypothése de stationnarité, et rendaient difficile la modélisation de la structure spatiale.
Des tests de validation croisée ont montré que les estimés de krigeage étaient meilleurs en restreignant I'inter-
polation & un voisinage trés local et en utilisant peu de points. Le krigeage a toujours montré une meilleure
performance que la méthode de tessellation polygonale. Les estimations suivant une stratification de la région
étaient meilleures que celles sans stratification utilisant un variogramme traditionnel ou relatif. L’organisation
spatiale de la crevette montrait une tendance superposée a des agrégations de 30-50 km de diametre. La région
3 I'étude contenait environ 22 000 tonnes de crevetie nordique; 70% de cette biomasse était concentrée dans
moins de 30 % de sa superficie. Les lignes directrices pour ['optimisation de programmes d’échantillonnage futurs
sont déduites de l'information structurale.
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environments often present well-defined structures in time

and space, such as gradients, recurrent patches, mosaics,
and other complex patterns. These structures, which can be
described statistically (Legendre and Fortin 1989), are intrinsic
characteristics of ecosystems. They are generated by complex
spatio-temporal processes acting over a continuum of scales
(Margalef 1979), like the various mechanisms controlling the
distribution of chemical compounds in soils (Yost et al. 1982;
Burgess and Webster 1980a, 1980b), the assemblages of plant
species in forests (Marbeau 1976; Legendre and Fortin 1989),

Physical, chemical, and biological variables in natural
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or the organization of herbivores and their predators. In aquatic
environments, currents, water masses, nutrients, plankton, fish,
and whales are also not distributed at random but well organized
in time and space (Haury et al. 1978; Steele 1978; Margalef
1979; Mackas et al. 1985; Legendre and Troussellier 1988).
In this situation, the realization of a variable at one location
is dependent on its realization at nearby locations. This spatial
autocorrelation requires special considerations in estimating
these variables. Commonly used classical estimation methods
assume the independent selection of the samples, which allows
the application of classical sampling designs dictating the
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(rather rigid) distribution of the samples through space (e.g.
Cochran 1977). Classical estimation methods cannot be used
when the data have not been obtained following these sampling
designs.

‘When the spatial structure is known and stable through time,
the space is often discretized into homogeneous strata, where
spatial structuring is assumed to be absent or negligible. Allo-
cation of the samples may then be optimized by stratification
in order to minimize the variance of the estimate and the struc-
ture-dependent bias. The precision of the mean is strongly
dependent on the effectiveness of the strata definition, the allo-
cation of samples to strata, and on the stability of the known
structure (Cochran 1977). When the spatial structure is
unknown or unstable through time, this method will not always
reduce the variance of the estimate. Such situations are com-
mon in aquatic environments.

A third and major problem lies in the fact that the formulas
of classical statistics used to compute the confidence interval
of the mean of the resource are based on estimates of the var-
iance which, in turn, assume that the error terms of the samples
are stochastically independent of one another. This condition
is not met by spatially autocorrelated data (Cliff and Ord 1981)
so that variances and confidence intervals calculated from these
classical formulas are unrealistic. Geostatistics (Matheron
1971) tells us that, besides the shape of the spatial autocorre-
lation and the density of samples, the variance of an estimate
also depends on (1) the geometry of the volume to be estimated,
(2) the spatial organization of the set of samples, through the
relative location of samples, and (3) the location of the samples
in the volume.

Geostatistics was developed to deal with estimation problems
in spatially autocorrelated phenomena. It makes use of the addi-
tional information provided by autocorrelation when computing
the estimates and their confidence intervals. It has proved use-
ful in various disciplines such as geology, forestry, hydrology,
oceanography, etc., and its application is presently extended to
the estimation of exploited marine resources, where classical
methods present difficulties (Conan 1985; Nicolajsen and
Conan 1987; Armstrong et al. 1989; Petitgas and Poulard
1989). The general applicability of geostatistics for this latter
task is, however, questionable. It assumes that the probability
law describing the spatial structure is known or can be ade-
quately modeled from a limited set of samples. This is not
obvious for standard data sets in marine ecology, where trends
and complex spatial structures are common, and where the
number of samples is generally low compared with the high
variability present. Besides, the theory of geostatistics is well
described but its practice is much less documented (Isaaks and
Srivastava 1989), and detailed applications for various tasks in
marine ecology are lacking. The present paper explores geo-
statistical methods to analyze the spatial structure and estimate
the biomass of the northern shrimp (Pandalus borealis) in the
western Gulf of St. Lawrence in the fall of 1989. The reason
for using geostatistics with the present data is twofold. First,
our data are autocorrelated, so that a correct estimation of the
confidence interval of the mean could not have been obtained
from classical statistics. This confidence interval will be nec-
essary to assess whether a significant temporal trend is present
in the evolution of the stock. Second, sampling has not been
carried out following one of the classical sampling plans (ran-
dom, regular, stratified, and so on) and comes from three dif-
ferent concurrent research projects.
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The exploited biomass of the northern shrimp in the Gulf of
St. Lawrence is found on muddy bottoms between depths of
150 and 350 m (Fig. 1). It is spatially autocorrelated. For the
present data, the value of the generalized Moran’s [ statistic
(Moran 1950; Cliff and Ord 1981) that can be computed for the
various distance classes is 0.32 for the distance class of 0-
30 m, which is significantly different from zero (p < 0.001).
The spatial organization presents aggregations in various areas
that are sought and exploited by the fishermen. In the western
Gulf of St. Lawrence, the northern fringe of the Laurentian
Channel, between depths of 150 and 250 m (Fig. 1), tends to
consistently support higher densities of shrimp. Except for this
general pattern and for the transient congregation of berried
females on the shallow bottoms around 150 m in winter and
spring in some ares (Savard 1989), the aggregations show high,
seasonal and interannual, unpredictable variations (Y. Simard,
unpubl. manuscr.). Despite their primary importance for the
industry and the fishermen, little is known on the spatial struc-
ture of the shrimp biomass in the Gulf or on the mechanisms
that control its variability.

Changing spatial structures profoundly hinder the direct esti-
mation of the global biomass on fishing grounds, for all sam-
pling plans. When using a stratified random plan (Cochran
1977, Mackett 1973), the determination of effective strata is
difficult because the location of the aggregations is unstable,
and unpredictable without a priori knowledge of the existing
structure. We therefore need a method of estimation that is tol-
erant to the geographic organization of the biomass, such as
tessellation methods of interpolation (like Delaunay’s or Diri-
chlet’s), spline approximation, or kriging (e.g. Conan 1985;
Stolyarenko 1986; Smith and Mohn 1987; Isaaks and Srivas-
tava 1989).

An additional advantage of geostatistics is its capacity of pro-
ducing not only global estimates of the total biomass in the
study area but also local and cutoff estimates, with their con-
fidence intervals, in presence of spatial autocorrelation. The
cutoff estimates correspond to the total biomass incorporated
in the delineated area where the biomass exceeds given thresh-
old values. This information is desirable in the estimation of
exploitable natural resources whose profitability of exploitation
not only depends on the total stock but also on its distribution.
The exploitable biomass is given by the cutoff estimate asso-
ciated with the locations where shrimp biomass is high enough
to be fished profitably. The area over which this biomass frac-
tion is distributed and the distribution pattern are also interest-
ing measurements because they directly influence the level of
financial profit. Other potentiality of geostatistics is the use of
the structure function to optimize sampling strategies (e.g. Bur-
gess et al. 1981) and to draw inferences on the process gen-
erating the aggregations (Sokal 1986).

This paper will address the basis of kriging methodology and
its application, point out its limitations, and use it to
(1) compute optimal estimates of the global biomass, with their
confidence intervals, (2) objectively map this biomass, describe
the spatial patterns and compute cutoff estimates of the exploit-
able proportion above given threshold densities, and (3) analyze
the structure and exploit its information to optimize sampling
strategies.

Methods

Sampling

From 31 August to 10 October 1989, northern shrimp
biomass was sampled at 137 stations in the western Guif of St.
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FiG. 1. Map of the western Gulf of St. Lawrence with sample locations and the contour of the studied
region at depths greater than 150 m. The isobath of 250 m on the north separates the two strata, north
and south. *, >1000 kg shrimp/km?;, +, <1000 kg shrimp/km?; O, imposed zeros at the nodes of the
interpolation grid outside the studied region for guiding contours (see text).

Lawrence (Fig. 1) by the trawlers M. V. Bradelle (26.5 m) and
F.R.V. Alfred Needler (50 m). The Bradelle visited most (120)
of the stations and 16 of them, located in the richest area, were
paired by the Alfred Needler which sampled simultaneously at
a nearby station. At each station, bottom shrimp trawls were
towed for 30 min at 2.5-3.0knots. The Bradelle used a Western
II-A trawl and the Alfred Needler used a URI 81/114 trawl. The
stretched mesh aperture was 38 mm and the codend was lined
with a 19-mm mesh. Since the Alfred Needler caught
significantly (Wilcoxon test, p < 0.05) more shrimp (17% on
average) than the Bradelle, because of her more efficient trawl,
her catches per square kilometre were converted to Bradelle
catches by means of a linear regression (©* = 0.82). All
sampling was carried out during daytime because vertical
migrations of the shrimp off the bottom at night (Barr 1970;
Apollonio et al. 1986} could change their availability to the
gear. Because of shrimp availability to the gear, avoidance of
the gear, and trawl sampling efficiency, the catch does not
represent 100% of the shrimp present. Since this is neglected
here, the computed estimates of shrimp biomass are
conservative. Although the samples covered an approximate
area of 14.5 m per about 2.5 km (=0.035 km?), they were
considered as point samples centered at the starting tow
coordinates.

Geostatistical Model

The local and global estimations computed here were
obtained using the usual ordinary punctual kriging technique of
stationary geostatistics, briefly outlined below; for complete

presentations, see Clark (1979) or Isaaks and Srivastava (1989).

Let the shrimp biomass, SHR, at n locations of the sampled
region be described by the series of random variables SHR(x,),
SHR(x,),. . .SHR(x,),. . .SHR(x,). Since the shrimp biomass
is spatially autocorrelated, the random variables are linked
together by a random function, Z(x), which describes the
dependence of the random variables SHR(x) on each other. The
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characteristics of this model can be estimated from the sample
data set, if we assume some stationarity conditions.

Stationarity

In the case of ordinary kriging (i.e. the global mean is
unknown), the following second-order stationarity conditions
are assumed:

(1) EZx +h - ZO0O] =0
(2) VAR[Z(x + h) — Z(x)] = 2v(h)

where £ is the distance separation between two locations (which
can have a directional component) and the function y(h) is the
semi-variogram (commonly called the variogram). These two
stationarity conditions are referred to as the ‘‘intrinsic hypoth-
esis.”’ In this situation, the difference in Z(x) does not depend
on the locations x but only on the geographic distance separa-
tion #, and the average of this difference over the studied region
must be zero. These stationarity conditions ask for a certain
degree of regional homogeneity of the shrimp biomass and for
absence of trend.

These conditions must be carefully checked for proper esti-
mation through stationary geostatistics. Spatial trends in data
sets must be removed prior to the analysis and special consid-
eration given to outliers in data sets and to highly skewed prob-
ability distributions (e.g. lognormal), which greatly affects the
estimation and interpretation of the variogram. Normal distri-
butions are also more prone to provide kriging estimates close
to conditional expectations and kriging errors that are normally
distributed. For lognormal distributions, normalization of the
data by transformation to logarithmic units and the use of the
lognormal kriging technique can help minimize problems
(Rendu 1979; Journel 1980). Results are, however, very sen-
sitive to slight departures from the strict lognormal distribution
and to the choice of the variogram model, and therefore this
method must be used with caution (Armstrong and Boufassa
1988). Another way to minimize the effect of increasing vari-
ance with the mean is to compute a relative semi-variogram,
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~v(h)/mean®, using the semi-variogram of the log-transformed
data, which is then back-transformed to the raw units according
to Journel and Huijbregts (1978).

An implicit assumption of geostatistics is that the structure
is stable in time, i.e. the spatial organization of the biomass is
fixed, at least for the duration of the sampling period. This
constraint might be important for highly mobile species but it
is not very restrictive for shrimp. Even though they are not
sessile animals, the displacement of their biomass is rather slow
compared with the survey speed. Another underlying assump-
tion is that the capturability by the sampling gear is not struc-
tured through space. This is likely to happen when the sampling
grid is visited around the clock and day and night stations are
mixed together, because of diel vertical migrations of the
shrimps. This was minimized here by sampling only during
daytime, when shrimp are more fully available to bottom trawls
than during the night.

Local estimation

Local estimation® of the biomass Z(x,) at a point x, is done
by interpolation according to the following equation using the
data points Z(x,) available in the surrounding neighborhood
chosen:

(3) Z¥xp) = 2 weZ(x)

i=1

where w, are weights, which sum to 1 to insure that the estimate
is unbiased (E[Z* (x,) — Z(x,)] = 0). The w;, are estimated in
such a way that they minimize the variance of error of the esti-

mate (0;%(x,)), called the kriging variance (VAR[Z*(xU) -
Z(x;)] = minimum). The solution to minimize o,7(x,) is
obtained by partial differentiation relative to the weights w,,
taking into account that they must sum to 1 (Isaaks and Sri-
vastava 1989). In matrix notation:

4 c - W = U
3 7 ] I~ 7
C*,, ...C*, 1 w, C*o
C*nl s C*nn 1 w, C*nO
L1 ... 1 0] Lp,_ L1

where the C*;; are the covariances between the random varia-
bles corresponding to the samples (C*; = E{[Z(x)) — E(Z(x)]

- [Zx) — E(Z(x, N1 that describe the spatial structure of the
probal énhenc model. The Lagrange parameter, ., is a mathe-
matical artifice introduced to constrain the weights to sum to
1. The C* ; are calculated by means of a function that expresses
the covariance in terms of the distance separatlon between sam-
ples C*(h) = vy*(>) — +vy*(h) where y*(h) is the estimated
variogram and y*(e) is its sill. This sill is equal to the variance
of the population (%) under the assumed stationarity condi-
tions, when the sampled field is larger than the spatial structure.
Since y*(%) is a constant, the covariance terms, C*, in equation
(4) are replaced by the variograms y* without changing the
equality. The weights are found by solving W = C~"-U, and
they are substituted in equation (3) to estimate Z*(x;). The cor-
responding minimized error variance of this estimate, o,%(x,),
is obtained from the following matrix equation:

(5) 6(xy) =a?* — WU
'The asterisk distinguishes estimates from true values.
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Fig. 2. Common variogram models. (A) Nugget model, y(h) Co
(B) linear model, y(h) = bh: (C) spherical model, y(h) = C, [3#/
2a — B2a)ith<aand y(h) = C,if h > a, where a is the range
of autocorrelation and C, is the plateau of semi-variance or the sill;
and exponential model, y(h) = C,[1 — exp(—//a)]; (D) nested nug-
get + spherical model, y(h) = C, + C, [3h2a — K2a'lifh<a
and y(h) = C, + C,if h > a.

where o2 is the variance of the samples. When W and U are
obtained from arelative semi-variogram, the co 2puted o, must
be multiplied by the kriged estimate squared, Z"*, to obtain the
absolute minimized error. Kriging is referred to as the best lin-
ear unbiased estimator (BLUE). It is also an exact interpolator:
at a sampled location, x,, the interpolation always passes
through the data point (i.e. w, = 1 and all other w; = 0). This
is true even if the variogram "does not pass through the origin
(nugget effect, see below); the interpolation surface is then dis-
continuous at the data point.

In practice, local estimates are computed using only the near-
est samples included in a confined neighborhood. The shape
and size of this neighborhood and the data points retained for
the estimation affect the value of the estimate. They are chosen
according to the model of spatial continuity and to the distri-
bution of samples in the area (Isaaks and Srivastava 1989).
Commonly used variogram functions are the nugget model,
which corresponds to the absence of a spatial structure (random
spatial organization) (Fig. 2), the linear modei, the spherical
model, and the exponential model, whose sill, C,, indicates the
maximum variability due to the structure and whose range of
autocorrelation, a, gives the distance at which the samples are
no longer autocorrelated. Combinations of these functions are
also used to model nested structures, which often include a
nugget model to represent the unresolved smali-scale variability
and sampling error (Cg). The ratio C/C, + C,, where C, is
the variability due to the structure in models with a sill, gives
the proportion of this latter unresolved random variability to the
total variability (C, + C,). Optimal choices of variogram and
kriging neighborhood are often developed using a jackknife
cross-validation method. In this procedure, the data points are
removed one by one and are estimated using the chosen var-
iogram mode} and kriging parameters. The best solution is the
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one which, among other properties, minimizes the mean square
residuals, produces the standardized residuals ([Z*(x,) — Z(x,)]
/ 0,%(x;)) the closest to the conditional expectations of a mean
of 0 and a standard deviation (SD) of 1.0, and maximizes the
correlation coefficient between the estimated and the observed
values, whose linear regression should have a slope close to
1.0 (Samper Calvete and Neuman 1989).

Global and cutoff estimations

Global estimation of the mean biomass density (Z*) is easily
obtained by averaging the m local estimates, computed at the
nodes of a regular grid covering the studied region. The total
biomass of shrimp (ZD*) is then estimated by multiplying this
mean density (grams per square metre) by the surface area S,
of region D:

(6) ZD* = Z Z*(x).

Three-dimensional numerical integration of the mapped bio-
mass of shrimp can also be used for this computation. Cutoff
estimates corresponding to the area where the biomass exceeds
a given threshold are obtained similarly, using only the local
estimates above the chosen biomass threshold.

The variance of these estimations is much more difficult to
estimate because we have only one realization of ZD. Two pos-
sibilities using the extension variance approach are formulated
below. The first procedure computes the variance of the global
estimation by summing the variance of strata forming a mosaic
over the whole region (Petitgas and Poulard 1989). The strata
variances are assumed to be independent of each other. The
size of the strata must be smaller than the range of reliability
of the computed experimental variogram, which is always less
than half the dimension of the studled reglon (Journel and
Huijbregts 1978). The variance O'D, of ZD is then

M o= Z o2 2

Slr-*

where
() of =2y, ) — ¥, 8) — v, x;)

where S, are the surface area of the stratum /, y(x;, S is the
average semi-variance between the particular sample locations
i in the stratum / and all the points of the stratum (which is an
averaged point-to-stratum seml—variance), and vy (S, S is the
equivalent for all possible pairs of points in the stratum and

(x,, x;) for all pairs of samples in the stratum. These average
semi-variances vy are computed from the experimental point-to-
point variogram. To estimate the point-to-stratumn and the stra-
tum average semi-variances, the strata are discretized in a grid
of points and the average semi-variance is estimated using the
point-to-point variogram. This variogram can be unigue for the
whole region when global stationarity holds, or it can be com-
puted for each set of homogeneous strata when it does not. This
computation of the confidence intervals of the global estimate
is time consuming and awkward when the number of strata and
samples is large.

The second procedure is the combination of the elementary
sampling errors, which computes the variance of the giobal esti-
mation by the summation of elementary independent errors
(Journel and Huijbregts 1978). Each sample x; is assigned a
surface of influence s,. The error made when the value of the
central point sample Z, is extended to represent the values of
all points in the surfaces x, is computed according to the formula

36

) Ol%:si = 2§(x,., 5) = ‘9(S,~, 5) — '-Y(xn x)

where ¥ (x;, x) = 0. The weighted sum of these elementary
errors is the variance of the global estimate of the total biomass:

(10) o} = 2, s?ol,

These calculations are cumbersome when the number of sam-
ples is large, since they require the computation of the surface
of influence of all samples and the estimation of each error
variance. An easier approximation of o, when the sampling
density is uniform, can be obtained by computing the extension
variance of a random point in the average elementary surface
s, whose dimensions must respect the length/width ratio of the
region D. This is given by the formula

(1) o} =5(s, 8) >N

whose solution is directly obtained from geostatistical charts
(Journel and Huijbregts 1978).

The variance of cutoff estimations is obtained similarly
except that the variogram used is the one computed using only
the samples where the shrimp density exceeds the given cutoff
(Froideveaux 1984).

In our example, we have used a grid spacing of 10 X 10 km,
which roughly corresponds to the average spacing between the
data points. The contour line of the stock was limited to depths
greater than 150 m, the grounds occupied by adults of Pandalus
borealis in the Gulf of St. Lawrence. Zeros were imposed at
the nodes of the grid in shallower bottoms outside this isobath
and on land (Fig. 1), and they were used only to force the con-
tours of biomass levels to follow the contour of the sampled
area. They were not used as information points during the inter-
polation process because we have found that the biomass con-
tours obtained in this way were constrained unrealistically.

The similarity between the interpolation grids obtained by
kriging was measured using the Pearson correlation coefficient.
Since all these maps were obtained from the same set of 137
observations, the kriged maps are not independent of one
another and thus correlation coefficients cannot be tested for
significance. They remain, however, a valid measure of resem-
blance. If they were coming from independent data sets, cor-
rections would still have to be introduced in the testing pro-
cedure to account for the lack of independence (spatial
autocorrelation) of the data points (Clifford et al. 1989).

Interpolation and mapping by polygonal tessellation was also
used. This method simply consists of attributing the value of
the nearest sample to the estimated location, which results in a
mosaic of tiles whose surfaces are the surface of influence of
each sample (Isaaks and Srivastava 1989). For estimating the
global mean and variance, the samples are then weighed by
their surface of influence.

Results

Stationarity Conditions

The biomass of shrimp per square kilometre was not
homogeneously distributed and did not show a monotonous
trend that could easily be modeled. Two areas of different
density were found. As expected, the northern side of the
Laurentian Channel was distinctly richer than the rest of the
surveyed region (Fig. 1 and 3). Because this large-scale
structure violated the stationarity conditions, the region was
divided into two strata, north and south, bounded by the
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FiG. 3. Histograms with box plots and statistics of the shrimp biomass
samples for the whole region and for the north and south stratum sep-
arately, for (A—C) raw and (D-F) log-transformed data.

150-m contour towards the coast and separated by the 250-m
contour on the northern side of the channel (Fig. 1).

In the whole region and in both strata, shrimp were
contageously distributed, and probability distributions were
significantly skewed (Fig. 3). The Box—Cox procedure (Box
and Cox 1964; Sokal and Rohlf 1981) to identify the best
normalizing transformation gave an estimated lambda of 0.30
(95% C.1. = [0.24, 0.37]), indicating that the shrimp biomass
was far from the lognormal distribution (lambda = 0), thus
precluding the use of lognormal kriging (Armstrong and
Boufassa 1988). Because kriging using Box—Cox
transformations is not yet described and because
transformations are delicate for resource estimation (David
1988), we have only used kriging on the original data. Back-
transformation in the original metric often leads to substantial
bias when the transformation used and/or the structure model
are improper, even only slightly.

Ogne outlier, one order of magnitude higher than the mean,
was encountered in the western end of the region. To minimize
the effect of nonstationarity, indicated by the increasing
variance with the mean, kriging was also performed using a
relative variogram computed for the whole region. A third
estimation using a normal variogram for the whole region was
computed for comparison.
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Variograms and Spatial Structure

The omnidirectional variogram of the shrimp biomass of the
north stratum was relatively erratic (Fig. 4A). Except for the
initial peint at an average distance of 3 km, all points were
dispersed along a line of constant semi-variance of 2 100 000,
indicating no spatial autocorrelation of the shrimp biomass at
distances larger than 10 or 15 km. A large part of the variability
in this stratum was therefore random, and the structure, if any,
existed only at small scales. The variogram was tentatively
modeled by a nugget effect, representing the unresolved small-
scale variability, over which can be superimposed either (1) a
weak monotone structure extending over the entire stratum area
(Table 1, linear model, not iltustrated in Fig. 4A) or (2) a fine
structure representing small patches with radius of 10-15 km
(Table 1, spherical model with a range of 15 km, Fig. 4A). In
this latter mixed model, the variability due to the structure (C,
= 1 600 000) was about three times higher than the unresolved
small-scale variability (C, = 500 000). The variogram in the
east—west direction (not shown) did not significantly differ from
the omnidirectional one. The distribution of the stations in this
stratum precluded the computation of significant variograms in
other directions. Isotropy was therefore assumed and the iso-
tropic nugget + spherical variogram (Table 1, underlined) was
used for the estimations.

The omnidirectional variogram of the south stratum (Fig. 4B,
circles) presented a maximum semi-variance much lower than
the richer north stratum (Fig. 3). The steady increase of semi-
variance with distance indicated that a trend was present. Sig-
nificant anisotropy was also observed, with the directional var-
iograms across (direction 60°) and along (direction 150°) the
Laurentian Channel being different. The low semi-variance at
the smallest distance classes on the omnidirectional variogram
indicated that small-scale structure could be nested within the
large-scale gradient. Various models reasonably fit the vario-
grams (Table 1) and, despite the apparent anisotropy, the two-
structure isotropic model consisting of a spherical model plus
a linear model plus a nugget effect performed as well as the
anisotropic models and was used for the kriging estimation
(Table 1, underlined). The unresolved small-scale variability
(C, = 60 000} represented a maximum of about 20% of the
larger-scale variability due to the structure.

The omnidirectional variogram computed for the whole
region (Fig. 4C) gave a rough average of the variograms of the
two strata. Its shape was dominated by a large-scale structure
with a radius of about 110 km. It was easily modeled by a
spherical model with a range of 110 km superimposed over a
high nugget effect (C, = 750 000), representing an unresolved
small-scale variability corresponding to 65% of the structural
variability (C; = 1 150 000).

The relative variogram was characterized by a plateau of
semi-variance from about 20 to 60 km, followed by an increase
of semi-variance at larger distances (Fig. 4D). Neglecting the
large-scale variability, a spherical mode! was added to a nugget
effect to model the smali-scale semi-variance (Table 1), and
this variogram was used for kriging.

Cross-validation

All the structures modeled performed poorly in estimating
the true value of the samples, especially when a large search
radius and a high number of points were used (Tabie 1). Most
solutions reasonably satisfied the global unbiasness condition
(mean of standardized residuals = 0) but the distributions of
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FiG. 4. Variograms computed for (A and B) the two strata separately and (C and D) the whole region.
Isotropic variograms (0° = 90°, circles) and directional variograms along and across the Laurentian
Channel (60° * 22.5°, triangles; 150° + 22.5°, squares). Fitted models are presented in Table 1
(underlined). Except for the relative variogram (Fig. 4D), all variograms exclude the outlier value of
11 373 kg/km?. All points include more than 100 pairs, except open symbols (20-100 pairs).

the errors of the estimates, as indicated by their sp’s, varied
notably from one another. This latter parameter, together with
the correlation coefficients of the true values against the esti-
mates, was used to select locally optimal solutions. The best
estimations of the samples were obtained using either the two
or the four nearest samples, for all the variogram models
explored (Table 1, underlined). The goodness of fit was, how-
ever, weak with less than 50% of the variance being explained
by the chosen spatial models.

The slopes of the regressions of the true values against the
estimates were very different when computed with raw or log-
transformed data. This resulted from the fact that the variance
of the raw data increased with the value of the estimates. The
logarithmic transformation maximized the homoscedasticity
condition for the regression by giving less weight to the high
values (for which the error is high) which more greatly affected
the slopes. For all models, the slopes of the log-transformed
data converged towards the value of 1 when the correlation
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coefficients were maximum,; these trials were thus chosen as
the optimal ones. The corresponding slopes for the raw data
were smaller than 1, indicating that, on the average, the kriging
estimates underestimated the low values and overestimated the
high values (‘‘conditional bias’’: Isaaks and Srivastava 1989).
Examination of the residuals of the regressions showed that this
conditional bias of the optimal models chosen was small, and
mainly resulted from large errors associated with a few high
values.

Interpolation by polygonal tessellation did not perform well
in the cross-validation tests (Table 1). The slope parameters
were always far from | and the SD’s of the errors of the esti-
mates were larger than the kriging alternatives.

In the north stratum, the cross-validation clearly showed that
the linear model with high nugget effect was unsuitable. The
estimates were uncorrelated with the true values, except when
only two points were used. Lowering the nugget parameter by
fitting a small-scale structure using a spherical model with a

Can. J. Fish. Aquat. Sci., Vol. 49, 1992
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TaBLE 1. Cross-validation of the variograms models and search methods. sp of the errors of the estimates (sD,) from the true value (Z¥(x) —
Z(x)) obtained using the given variogram and the search method at the sample points (x,}; Pearson correlation coefficients (r, and r,) and slopes
(b, and b,) of the linear regressions In (Z + 1) = a, + b, (InZ*+ 1) and Z = a, + b, Z*; mean, sD, and maximum values of standardized
residuals (Z*(x) — Z(x)/o,(x)). For the relative variogram, these residuals are [Z* (x,.z) — Z{x)Vlo(x)-Z*(x)]. Underlined are the chosen
combinations for computing the kriging estimates of Table 3.

Search  Max. Standardized residuals
radius no.

Variogram (km) of points sp, 1, b, r, b, Mean sD Max.
North stratum® Isotropic, nugget + linear 200 20 1484 0.26 2.26 0.00 0.02 0.02 1.14 -3.7
v (h) = 1500 000 + 5500 (h) 100 20 1486 0.27 195 0.02 0.09 0.01 1.14 3.7
50 20 1482 0.29 1.64 0.08 0.25 0.01 1.13 3.7
50 8 1489 0.29 1.46 0.10 0.28 0.04 1.12 -34
50 4 1515 021 1.00 0.13 0.27 0.14 1.09 -32
50 2 1350 0.67 1.55 0.45 062 (.06 0.89 -2.8
25 8 1533 0.15 0.33 0.11 0.24 0.05 1.13 -33
25 4 1537 0.17 0.36 0.16 0.29 0.11 1.10 -3.2
25 2 1356 0.55 0.99 046 061 0.05 0.8 -—-2.8
Isotropic, nugget + spherical 200 20 1334 0.53 297 039 096 0.08 106 —3.7
v (h) = 500 000 + 1 600 000 Sph,, (h) 100 20 1315 0.65 3.00 0.42 0.94 0.02 1.05 -3.7
50 20 1301 0.66 2.60 0.44 090 0.03 1.04 -3.7
50 8 1314 0.65 2.51 0.43 0.8 005 1.03 -3.6
50 4 1398 0.49 1.88 (.34 0.61 0.08 1.07 -35
50 2 1313 0.69 1.51 0.49 0.66 0.04 096 -—3.2
25 8 1357 0.35 0.74 0.39 0.68 0.04 105 -3.6
25 4 1434 .32 0.66 0.33 052 0.06 1.08 -3.5
25 2 1319 0.58 1.00 049 065 003 0.96 —3.2

Polygonal method 200 1 1553 0.57 0.46 0.35 033 — — —

(estimate = nearest sample)

South stratum  Isotropic, nugget + linear 200 20 531 0.73 1.33 0.41 0.77 0.01 1.23 -6.1
vy (h) = 130 006 + 2200 (h) 100 20 531 0.73 1.33 0.41 077 001 1.23 -6.1
50 20 544 0.71 1.29 0.37 069 0.01 125 -6.2
50 8 536 0.73 1.23 041 070 0.02 122 -6.2
50 4 507 0.70 096 0.50 0.76 0.03 1.12 —6.1
50 2 56 0.70 0.88 0.52 0.66 -0.00 1.06 -5.5
Isotropic, nugget + linear + spherical 200 20 496 0.76 1.67 0.51 090 0.01 1.09 -54
¥ (1) = 60 000 + 1500 (h) + 100 20 496 06.76 1.67 0.51 0.89 0.01 1.16 -54
120 000 Sph,, (h) 50 20 518 0.72 1.32 046 077 0.01 1.13 -56
50 8 517 0.73 1.23 0.47 0.74 0.02 1.11 -5.6
50 4 498 0.70_0.97 052 077 0.02 105 -55
50 2 512 0.70 0.88 0.53 0.67 -0.02 1.03 -5.0
Anisotropic, nugget + linear 200 20 539 0.7t 1.82 0.38 0.74 0.04 126 -6.0
vy (h) = 130 000 + 800 (k) + 100 20 539 0.71 1.82 0.38 0.74 004 1.26 -6.0
3500 (hyg) 50 20 550 0.69 129 0.35 0.65 0.04 128 -6.2
50 8 539 0.72 1.21 040 0.68 0.05 1.23 -6.2
50 4 514 0.70 098 0.49 0.73 0.05 1.14 -6.2
50 2 514 0.7t 0.89 0.52 0.67 -0.01 1.05 -5.6
Anisotropic, nugget + linear + 200 20 504 0.60 1.24 0.49 0.85 0.03 1.11 -5.1
spherical” y (h) = 60 000 + 850 () + 100 20 505 0.60 1.24 0.49 0.85 0.03 1.11 —5.1
70 000 Sph,s(h,se-) + 2000 (he) + 50 20 526 0.69 1.27 044 072 0.03 1.13 -5.3
150 000 Sph (o) 50 8 524 0.72 1.16 046 0.70 0.04 1.12 —53
50 4 508 0.76 0.97 0.51 0.73 004 1.06 —53
50 2 514 0.71 0.88 0.52 0.66 —0.01 1.02 —49

Polygonal method 200 1 605 0.61 0.60 0.47 045 — — —

(estimate = nearest sample)

Whole region  Isotropic, nugget + spherical® 200 20 957 0.76 1.43 0.66 1.05 -0.00 097 -4.7
vy (hy = 750 600 + 160 20 958 0.76 142 0.65 1.05 —-0.00 097 -4.7
1 150 600 Sph, (k) 50 20 958 0.76 1.39 0.65 1.05 —0.00 097 -—4.5
50 8 982 0.75 1.27 0.63 095 001 099 —45
50 4 974 0.74 1.04 0.65 0.86 0.05 094 -44
50 2 914 0.74 093 0.71_0.81 005 082 -—3.38
Relative variogram: 200 20 1272 0.75 1.85 0.56 1.00 0.07 074 -—4.8
isotropic, nugget + spherical 100 20 1272 0.75 1.85 0.56 1.00 0.07 0.74 —4.8
v (h)/mean® = 0.934 + 50 20 1282 0.74 1.42 0.54 097 0.03 0.79 -4.8
0.782 Sphy, (k) 50 8 1321 0.73 1.18 0.52 0.82 -0.02 0.92 -53
50 4 1117 0.72 1.01 0.53 0.73 -0.07 1.21 -11.3
50 2 1361 0.73 091 0.56 0.64 -0.31 245 —-258

Polygonal method 200 1 1646 0.67 0.65 0.44 0.43 — — —_—

(estimate = nearest sample)

“Excluding the outlier value of 11 373 kg/km?.
"Corresponds to a zonal anisotropy for the spherical model.

Can. J. Fish. Aquat. Sci., Vol. 49, 1992 39



Can. J. Fish. Aquat. Sci. Downloaded from www.nrcresearchpress.com by Université de Montréal on 07/04/19
For personal use only.

range of autocorrelation of 15 km resulted in much better esti-
mations. The sD’s of the errors of estimates were reduced by
9% on average. Compared with the polygonal method, the krig-
ing model chosen improved by 15% the sp of the error of the
estimates.

The results of the cross-validation of the four kriging solu-
tions explored for the south stratum were less variable than for
the north stratum. The best solution chosen had a SD of the
errors of the estimates 18% lower than the corresponding sD
for the polygonal method.

For the whole region, the relative variogram model did not
perform as well as the traditional variogram, the sD’s of the
residuals being 33% larger on average. Both models were,
however, much better than the polygonal method, which had
sD’s of residuals 47 and 77% greater, respectively.

Estimation and Mapping

Point kriging at the nodes of the 10 X 10 km gid was per-
formed for each of the four optimal combinations of variogram
and kriging parameters retained by the cross-validation
(Table 1). For the two-strata estimation, the estimates were
computed in each stratum by ordinary point kriging using, as
information points, not only the samples of the given stratum
but all the samples of both strata. This was done to prevent the
establishment of an artificial discontinuity at the boundary
between the two strata. All the maps of the kriged estimates
(e.g. Fig. 5) were very similar, the Pearson statistics computed
between them being greater than 0.90; the map obtained by the
polygonal estimation method differed from the kriged maps,
however, as shown by the lower values of the correlation coef-
ficient (Table 2). The differences between the maps mainly

resulted from the different smoothing effect caused by kriging
with either two or four points.

By contrast, the maps of the kriging SD’s were very different
(Fig. 6). Because the computation of the kriging spD’s involves
the variance of the samples per stratum or for the whole region
(equation (5)), the two-strata scheme (Fig. 6A) was clearly dis-
cernible compared with the whole-region approach (Fig. 6B).
The two-strata scheme produced a lower average error but a
larger range of variation compared with the whole-region
model. For the relative variogram case, the weighing of the
relative kriging SD’s by the estimates resulted in a much larger
range of errors and in a pattern mirroring the map of the esti-
mates (Fig. 5).

Except for a few square kilometres in its eastern end, all parts
of the survey region contained some shrimp according to the
kriging performed (Fig. 5). The shrimp stock contour (Fig. 5A)
was therefore not determined by the samples but by the external
zeros imposed a priori to force the contours to follow the bound-
aries of the study region. The deepest parts of the Laurentian
Channel (Fig. 1) were generally poor, especially easterly (Fig.
5B-5C). The shrimp were concentrated in a long and wide
northern patch (Fig. 5B), which exhibited three rich areas
(Fig. 5D), and in an isolated 40-km patch in the western end
of the survey region (Fig. 5B-5D). The exploitable areas, with
densities higher than 1000 kg/km? (Fig. 5C), covered 27-30%
of the surface of the whole region and they contained slightly
more than 70% of the total biomass (Fig. 5C and 5D; Table 3).
Areas richer than 1500 kg/km? represented about 60% of the
total biomass, concentrated in 20-22% of the total surface. A
global biomass of about 22 kt was present in the region during
the sampling period (Table 3), according to the kriging esti-
mations. The polygonal method gave a global estimate 14%
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FiG. 5. Maps of the shrimp biomass contours of 5, 500, 1000, and 1500 kg/km’ obtained from ordinary point kriging using the two-strata model

presented in Table 1. Hatched contours are holes. Symbols as in Fig. 1.
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TaBLE 2. Comparisons of the maps of the shrimp biomass computed
using the combinations of kriging parameters chosen in Table 1.
Resemblance from the Pearson correlation coefficients computed
between the kriged estimates of the maps. These coefficients cannot
be tested (see text).

MEAN = 742 11117 A
SD = 493 "ﬁ&k
MIN = 333 - -
MAX = 1932

Whole region

Two Traditional Relative
Method strata variogram variogram

Polygonal

tessellation 0.86 0.83 0.78
Whole-region

relative variogram 0.95 0.90
Whole-region

traditional variogram 0.92

fower. The estimated relative standard errors (SE = o/total
biomass, o, computed from equation (11)) of the kriging global
estimates were one third to one half lower than the SE’s of the
polygonal estimate, and the two-strata model produced the low-
est error. The SE’s of the cutoff estimates were relatively low.

Discussion

Biomass Structure

Inferences on the spatial structure from the variograms must
be done with caution because stationarity conditions were not
satisfied. Since the variance tended to increase with the mean
and the variograms differed in the range and shapes of the
autocorrelation function depending on the area considered, the
direction of the variogram, and the type of data transformation,
one should concentrate on the local level and on each stratum
separately.

At the smallest scale of the observation window, the
unresolved variability was not negligible and it increased with
the mean biomass of the strata, meaning that either the sampling
error or the amplitude of small spatial patterns of biomass, or
both, increased with shrimp density. Sampling errors are likely
to increase with shrimp density because of the. proportional
errors associated with the effective area sampled, the avoidance
of the trawl by shrimp and the sampling efficiency. Horizontal
microstructures and the variability of the vertical distribution
of shrimp in the vicinity of the bottom layer sampled by the
trawl may also be density dependent. The relative importance
of these factors that all contribute to the high nugget variability
is, however, unknown. This question deserves more research
efforts.

At small distances of about 15 km, the slopes of the
variograms of each straturn changed markedly. This may
indicate that the shrimp tended to aggregate in mesoscale
patches, having a diameter which was twice this distance, but
the sampling grid used was too coarse to confirm it through the
structure function. The kriged maps showed, however, four
rich areas of 700-2000 km®. Increasing the local density of
samples is therefore recommended to more precisely define the
intercept of the spatial structure model and to verify the
existence of this mesoscale pattern.

The chief macrostructures evidenced on the kriged maps was
the rarity of the shrimp along the southern shelf of the
Laurentian Channel and a tendency of being richer in the
northwest. The reason for this is unclear, since the sediment
type (Loring and Nota 1973) and bottom temperatures (2-6°C)
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Fi1G. 6. Maps of the kriging sD’s corresponding to the three kriging
schemes presented in Table 1: (A) two-strata variograms; (B) whole
region traditional variogram; (C) relative variogram. Point kriging o,
(o, - Z*, in Fig. 6C) estimated at the nodes of the 10 x 10 km grid
cells.

are favorable throughout the sampled region. This structure is
the source of the trend we observed. It is an important regional
feature of the shrimp spatial organization, which has a high
degree of persistence, from unpublished shrimp fishery catch
and research data. Many mechanisms can be invoked to
generate and maintain this structure. We suggest the following
circulation hypothesis. The location of the region at an elbow
of the Laurentian Channel and the presence of a basin in the
northeast surely affect the deepwater circulation and might favor
the ‘“‘retention’’ of the shrimp and/or their food in the rich areas
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FiG. 7. Standard error of the global estimate (SE = a,/total biomass)
as a function of the number of samples in the north stratum for the
two-strata model for a fixed total number of 137 samples.

larger than the error of the global estimate, but slightly smaller,
indicates that the samples were adequately distributed relative
to the density of shrimp.

These geostatistical errors of the global and cutoff estimates
must be interpreted with caution. They are representing the error
of the estimate according to the chosen structure model. If this
model adequately describes the spatial structure, then the
computed errors of the estimates are appropriate. The cross-
validation of our optimal kriging models showed that they
reproduced the true sample values with a correlation of about
0.70. This is the minimum correlation we may therefore expect
from the kriging estimates because they were computed with
closer information points (always smaller than the distance
between samples) than the cross-validation estimates, where
the information points were more distant (on average equal to
distance between samples). An increase of the sample density
would increase this correlation of the spatial model and reduce
the errors of the global and cutoff estimates computed from
equation (11) by reducing the surface of influence of the sam-
ples. At these small scales, the presence of a structural varia-
bility and its consideration in computing the errors of the
estimates in equation (11) would result in a higher error reduc-
tion than it would in the random case, which is assumed in
classical statistics. This advantage of taking into account the
spatial structure was also clearly depicted here; kriging always
produced much better estimations (with smaller errors) than the
alternative polygonal method, which did not involve a structure
function.

Sampling Optimization

Stationary geostatistics tells us that the variance of the esti-
mates of a spatially structured variable will be minimized by
sampling over a regular grid (Hughes and Lettenmaier 1981;
Munoz-Prado et al. 1989). This can be seen from equations (9)
and (10) where the size and geometry of the area of influence
of the samples are involved in the computation of the variance
of the global estimate. The precision of this estimate will there-
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FiG. 8. Standard error of the global estimate (SE = o ,/total biomass)
as a function of the total number of samples for the two-strata geo-
statistical (solid line) and classical (broken line; ¢ = variance of sam-
ples) models, for a fixed optimal allocation of 53% of samples in the
north stratum from Fig. 7. The arrow indicates the present total num-
ber of samples.

fore be partly determined by the spacing between samples.
When geometric anisotropy is present, the grid should be
stretched in the direction of the smallest variability by the ratio
of the slopes of the directional variograms computed for the
directions of minimum and maximum variances. This distri-
bution of samples also ensures obtaining the optimal map of
the variable over the whole studied region.

These theoretical guidelines are true only if the structure
function is adequate and perfectly known. This is not the case
in practice, since the variograms are unknown and they must
be computed from the samples. Unless the grid is very tight,
the definition of the structure function at small scales will not
be precise enough to separate the structural from the random
variability. It seems therefore worthwhile to direct a proportion
of the samples to increase the local density of the grid (Warrick
and Myers 1987; Fortin et al. 1989). This would enhance our
knowledge of the small-scale variability and better define the
variogram at small distance classes, in order to obtain a more
precise estimate of the giobal variance. When the proportion
of the structural variability at the scale corresponding to the
separation between samples is small compared with the unre-
solved variability, the use of a regular grid instead of random
sampling will not significantly improve the precision of the
global estimate. It will, however, offer the advantage that the
map will have a uniform level of uncertainty. Drawbacks of a
regular grid are the risks of aliasing, when cyclic variations are
interfering with the sampling frequency, and of having an
improper sampling step relative to the variability of the samples.

Results showed that stratification minimized the error of the
global estimate. Could we reduce again this error by changing
the aliocation of the 137 samples between the two strata? Using
equation (11), the SE of the global estimate was computed for
different allocations of the samples between the two strata
(Fig. 7). The minimum SE is obtained when 72 samples (53%
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of total) are placed in the north stratum and 65 in the south
stratum. This changes the allocation of 21 samples in favor of
the north stratum compared with the present case. The SE of
the global estimate associated with this reallocation is 6.1%,
which is a slight reduction compared with the present value of
6.5%.

The effect of increasing or reducing the total number of sam-
ples of this optimal allocation is depicted in Fig. 8. Under the
classical hypothesis of random distribution (pure nugget var-
iogram), the SE of the global estimate decreases as a function
of n~%5_ Tt can be shown that SE decreases as n~°7" for a linear
variogram and, provided n is sufficiently large, as n~ ' for a
Gaussian variogram. For mixed models, this decreasing func-
tion will depend on the relative importance of each variogram
component. Here, because of the high proportion of the unre-
solved nugget variability, the SE of the global estimate decreases
with a rate close to the classical case. It was, however, always
significantly lower than the SE computed under the hypothesis
of randomness. Doubling the sampling effort would result in a
reduction, by one third, of the SE of the estimate, which would
become 4.1%. Decreasing the number of samples by one half
would give a SE of 9.0%, which is a relative increase of about
50%.

Sampling in areas of high uncertainty could be reinforced
using the error maps computed. Figures 6A and 6B reflect the
sampling density in the stratum or region considered and point
out areas where the sampling could be increased to get a better
local estimate considering the local variability, independent of
the value of this estimate. As expected from equation (5), the
stratified scheme resulted in lower errors in the south stratum
in response to its lower variance. In general, both maps point
out the same areas of high errors in this stratum. The error
depicted in Fig. 6C takes into account not only the sample den-
sity and local variability but also the values of the local esti-
mates. It thus indicates the areas where it is worth increasing
the sample density for estimation of the global biomass because
they are sufficiently rich and they have a high variance or, con-
versely, decreasing the sampling density because of a uniform
low abundance. For example, more samples should be col-
lected in the south, at the junction of the gulf and the estuary,
to delineate more accurately the extent of the local rich patch
(Fig. 5D and 6C). Similarly, the sampling effort in the south-
east could be relaxed because of its low variance.

To conclude on the geostatistical estimation of the biomass
of the northern shrimp in the Gulf of St. Lawrence, the non-
stationarity and the high unresolved small-scale variability are
two questions that need further research in order to more pre-
cisely define the spatial model. The use of more exhaustive data
sets and data from repeated surveys would surely bring more
information on the shape of the probabilistic model driving the
spatial organization of the shrimp. Despite this limitation the
present results show that geostatistics can easily provide var-
ious precise estimates for spatially autocorrelated biological
resources. Besides, it provides extra information on their spa-
tial organization, which can hardly be obtained otherwise, and
which is most helpful for understanding the ecology of the stud-
ied species and, hence, for improving their management.
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