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A STATISTICAL FRAMEWORK TO TEST THE CONSENSUS AMONG
ADDITIVE TREES (CLADOGRAMS)

FRANCOIS-JOSEPH LAPOINTE AND PIERRE LEGENDRE

Département de Sciences biologiques, Université de Montréal, C.P. 6128, Succursale A,
Montréal, Québec H3C 3]7, Canada

Abstract.—A statistical framework to test the consensus of dendrograms (=phenograms of some
authors) is extended to the comparison of cladograms (additive trees). Additive trees can be
compared through their associated path-length matrices. The procedure calls for a decomposition
of additive trees into ultrametric and star components that are independently permuted and
summed together to obtain randomized path-length matrices. This triple permutation test eval-
uates the null hypothesis that the trees under comparison are no more similar than random
additive trees with a random topology, random labels, and randomized branch lengths. Along
with the global test, the integrated approach rationalizes the simultaneous use of tests involving
each component separately. The method is applied to kangaroo phylogenies to measure the
congruence among trees derived from different character sets. [Additive trees; cladograms; con-
sensus; dendrograms; kangaroo; Macropodidae; permutation test; statistical test; star trees.]

In a recent paper (Lapointe and Legen-
dre, 1990), we introduced a statistical ap-
proach to test the consensus of two inde-
pendent dendrograms (=phenograms of
some authors) based on the comparison of
their cophenetic matrices. We tested the
null hypothesis that the two dendrograms
under comparison are no more similar than
randomly selected ultrametric trees, using
a double permutation procedure involving
the fusion levels as well as the positions
of the labels on the leaves. Some workers
have advocated, however, that dendro-
grams be used only when a molecular clock
hypothesis is assumed (Blanken et al., 1982).
In dendrograms, we consider all present-
day taxa to be the same distance from the
root representing the ancestor. On the oth-
er hand, additive trees (which we call
cladograms) are more appropriate in evo-
lutionary studies where one assumes that
the branches of the trees might have
evolved at different rates (Tateno et al.,
1982). The tests available so far to compare
cladograms are designed to take only the
topology into account (Shao and Sokal,
1986; Page, 1988), with no consideration
for the lengths of the branches. In this pa-
per, we propose an extension of our earlier
test that will allow the comparison of
path-length matrices associated with the
corresponding additive trees, taking into

consideration the topology, the label po-
sitions, and the branch lengths.

The problem of comparing cladograms
can be treated as a randomization test. The
statistical procedure consists of evaluating
whether the trees under comparison are
more similar than would be expected by
chance alone. Such a randomization frame-
work therefore requires an algorithm ca-
pable of generating random trees or their
corresponding path-length matrices in an
equiprobable manner (Furnas, 1984).

Another possibility would be to use the
double permutation test (initially designed
for the comparison of dendrograms) to
compare cladograms. To do so, a prior
transformation of the path-length matrices
is required to obtain ultrametric approxi-
mations of the additive trees under com=
parison. An easy way to perform this task
is to apply a clustering algorithm on the
path-length matrices and to use the re-
sulting cophenetic matrices in the com-
parison test. Another way would be to cor-
rect the actual cladograms for unequal rates
of evolution (Klotz et al., 1979). The result
of such a transformation is a dendrogram
with a topology identical to that of the ini-
tial additive tree but with branch lengths
satisfying the ultrametric property. Both of
these methods to transform cladograms into
dendrograms have drawbacks, however,
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FIGURE 1. An additive tree and its associated path-length matrix A is decomposed into a dendrogram and

its corresponding ultrametric matrix U plus a star tree along with its corresponding star distance matrix C.

because they do nothing more than com-
pare degenerate additive trees. We prefer
a procedure that directly generates random
path-length matrices. Such matrices would
be the basis for a simple test for cladogram
comparison. This randomization is possi-
ble and straightforward when using the
decomposition property for additive dis-
tances. An extension of the double per-
mutation algorithm will then allow the
generation and comparison of random
path-length matrices representing random
cladograms.

THE DECOMPOSITION PROPERTY FOR
ADDITIVE DISTANCES

A given path-length matrix A (see def-
initions in Appendix) representing an
additive tree (Fig. 1) can always be decom-
posed into ultrametric and star compo-
nents U and C (Carroll, 1976; Sattah and
Tversky, 1977; Carroll et al., 1984; Brossier,
1985; Furnas, 1989):

A;=U;+C; 1)
for all pairs i and j, where
U; = max(U,, Uy) (2)
for all triplets i, j, and k, and
C;=d,+d,; (3)
for all pairs i and j, where c is the root of

the tree. The decomposition is not unique,
however, because it depends on the posi-
tion of the root or decomposition center ¢
(Klotz and Blanken, 1981). The root can be
placed at any node of the tree or even be-
tween any two nodes; thus there are an
infinite number of ways to decompose an
additive tree, but with the following con-
sequence (Carroll et al., 1984):

It may be the case, however, that for some path-
length or additive trees there is no placement of
the root that will result in a decomposition such
that both the ultrametric and star component are
nonnegative. In such cases there is a fundamental
“tradeoff”’—one may choose to make the ultra-
metric component positive but allow some nega-
tive star distances [see Equation 5 below], or make
the star component positive but allow some neg-
ative values in the ultrametric component [Equa-
tion 6].

Yet, one can always find a positive constant
to add to all branches of the additive tree,
which will be sufficiently large to guar-
antee full positivity of both the ultrametric
and star components. Therefore a matrix
D* containing negative values is defined
to be a relative distance matrix (Brossier,
1985) if and only if there exists a positive
constant k such that

D*, + k=0 (4)

for all pairs i and j. Similarly, one can de-
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FIGURE 2. An unrooted additive tree (a) with its corresponding path-length matrix. The same additive tree
is rooted at node X, (b) and at node X, (c) and represented with the matrices A, C, and U. The constants
added to the matrices U* in (b) and (c) are the smallest values that make all values of the resulting U matrices

positive. Values C, are then computed as A, — U*,

fine the relative matrices A*, U*, and C*
up to an additive constant k.

The decomposition property holds in
cases of relative distances if and only if
either one of the following equations is
verified:

Aij = Uij + C*ij (5)
for all pairs i and j, or
A, =U*+C; (6)

for all pairs i and j.

This property can be translated into an
algorithm to decompose additive trees giv-
en a decomposition center selected among
the nodes of the tree.

The Decomposition Algorithm

The decomposition of additive distances
has been used in several algorithms to fit
additive trees to distance matrices D (Car-
roll et al., 1984; Brossier, 1985; De Soete et
al., 1985). In cases where D is actually sat-
isfying the four-point metric (Equation 17,
Appendix), the end purpose of the decom-
position is to produce an additive tree rep-
resentation of the given path-length ma-
trix A. The “root and trim” procedure is
performed in three steps (Furnas, 1989): (1)

=A,-U, +k

selection of a decomposition center to root
the tree, (2) pruning the branches of the
additive tree at a fixed radius from the root
to obtain a spherical tree satisfying the ul-
trametric inequality, and (3) rooting the
pendant branches on a common center to
form a star tree. After this decomposition,
the topology is derived from the ultra-
metric fraction, following which the star
part is added onto the branches. The result
is an additive tree perfectly fitting the cor-
responding path-length matrix (Fig. 1).

Selecting the Decomposition Center

The decomposition property relies on a
rooting operation performed on additive
trees. Carroll et al. (1984) have shown that
the position of the root will not affect the
decomposition because the distances are
correctly recovered in every case. Al-
though there is no mathematical problem
in the choice of any root, some useful cri-
teria have been suggested to select the cen-
ter of a path-length matrix.

The simplest case concerns rooted trees
(i.e., cladograms) where the “real root” is
actually known; the decomposition is per-
formed from that root (Klotz et al., 1979).
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Indeed, most studies in systematics are not
dealing with undirected trees but rather
with rooted phylogenetic trees. This root
must be taken into account not only for
decomposition purposes but also as a part
of the tree topology. It is possible for a pair
of rooted trees to have identical path-length
matrices A but different directed topolo-
gies induced by the root position (Figs. 2b,
2¢). This extra information does not ex-
plicitly appear in a standard patristic ma-
trix (Fig. 2a). To allow the decomposition
of directed additive trees, a supplementary
object must be added to the path-length
matrix to represent the root. The place-
ment of this root induces a direction to the
edges of an otherwise undirected tree but
does not affect the other additive distances
in the path-length (=patristic) matrix. Ma-
trix A therefore contains an additional line
representing the distances to the center
from which the decomposition is per-
formed (Figs. 2b, 2c).

All other situations concern unrooted
trees; the center may therefore be selected
among the actual nodes (terminal or in-
ternal) for decomposition purposes. In such
cases, the root must be chosen so as to op-
timize the decomposition of a path-length
matrix. One choice is based on selecting
one of the objects as the “present-day an-
cestor” (Klotz and Blanken, 1981), or in-
cluding an outgroup in the analysis that
will allow rooting the tree at the junction
between the outgroup vertex and the re-
mainder of the tree. The alternative is to
root the tree using some objective function.
Brossier (1985) proposed such a mathe-
matical criterion, which consists of rooting
the tree at the node that minimizes the sum
of distances to all other vertices. The center
selected in this way represents the node
closest to all the others. One may choose
the opposite but more biologically relevant
criterion that roots the tree at the node
farthest from all others; that node is more
likely to correspond to an “outgroup” de-
composition center.

A TEST OF STATISTICAL SIGNIFICANCE

We suggest a statistical framework based
on the decomposition described above to

test the consensus of cladograms displayed
as path-length matrices. Any distance ma-
trix (D, A, U, or C) can be treated the same
way in a comparison test. The null hy-
pothesis to be evaluated is that the matrices
under comparison are no more similar to
each other than randomly selected matri-
ces would be. The test, therefore, evaluates
whether the trees under comparison are
more similar than expected by chance
alone. The statistical evaluation proceeds
as follows:

1. Compute a reference statistic (see be-
low) between the actual input matrices.

2. Run the randomization procedure to
generate a pair of random matrices rep-
resenting the corresponding type of tree.

3. Compute the reference statistic between
the random matrices.

4. Add one to a counter variable (origi-
nally set at zero) if the value of the sta-
tistic for the random trees is as high as
or higher than the actual reference sta-
tistic between the trees under compar-
ison.

5. Repeat steps 2-4 a large number of times
(e.g., 999).

6. Add one to the counter variable to in-
clude the actual value of the statistic
among those that could have been ob-
tained under H,. Likewise, add one to
the number of repetitions (Hope, 1968;
Edgington, 1987).

7. Divide the counter variable by the num-
ber of repetitions (1,000 in this example)
to obtain the probability that the null
hypothesis is true.

This test must be one-tailed because we
are only interested in knowing whether
the true statistic is more extreme than for
most of the trees generated at random (H,).
This is why we count only the values of
the statistic that are larger than or equal to
the reference value. The similarity of the
initial pair of trees is declared statistically
significant when most of the random trees
are less similar than the pair under study.

NISI, THE COMPARISON CRITERION

We recommended in our double per-
mutation test use of the NISI statistic (Nor-
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malized Intermediate Similarity Index) to
measure the association between two ul-
trametric matrices (Lapointe and Legen-
dre, 1990). Here, the use of this composite
index is extended to the comparison of ad-
ditive distance matrices. Notice, however,
that any other comparison statistic de-
signed to take the metric values into con-
sideration could be used in this test. For
instance, the matrix correlation advocated
by Rohlf (1982), which is also known as
the standardized Mantel (1967) statistic,
could have been computed directly on the
distance matrices without any transfor-
mation. Another adequate consensus index
would be the sum of squared differences.

The NISI coefficient (Equation 7.1) is de-
rived from the Intermediate Dissimilarity
Index of Faith and Belbin (1986) for which
we have proposed a standardization form
that produces values ranging from 0 to 1.
In the following equations, A and B rep-
resent cophenetic matrices containing sim-
ilarity values.

1 + [Z2(Cu — Co)/MAX]

NISI = > , (7.1)
where
Cu = minimum (A;; B;) (7.2)
for all i and j,
Co = [A; — Bl (7.3)
for all i and j, and
MAX = maximum(Cu; Co). (7.4)

This index is highly informative because
it combines an unorganized complexity
part (Cu) that reflects the common aspect
of the matrices under comparison (Equa-
tion 7.2) with an organized complexity
component (Co) measuring the differences
of the two matrices (Equation 7.3). The NISI
statistic was used in the case of dendro-
grams to compare cophenetic matrices con-
taining similarity values. In the case of
cladograms, it is conceptually easier to con-
sider distances because the path-length
matrices generally represent the number
of mutations (character-state changes)
along the branches connecting two objects.
Notice however that the NISI coefficient is

designed to compare proximity matrices
bounded between 0 and 1. The distance
matrices under comparison must therefore
be standardized a priori to provide mean-
ingful NISI values.

Another modification of NISI is required
to deal with distance matrices representing
trees. The unorganized complexity part
(Equation 7.2) of the index must be in-
verted to allow the comparison of distance
matrices. The modified unorganized com-
plexity measure therefore becomes

(8)

for all i and j. The organized complexity
component of the coefficient (Equation 7.3)
remains unchanged. If we assemble all parts
of NISI, we obtain a modified index NISI*
designed to compare distance matrices. Its
simplest form is

1 + [Z2(Cu* — Co)/MAX*]
2

Cu* =1 — maximum(A,; B;)

NISI* =

, 9.1

where
MAX* = maximum(Cu*; Co). (9.2)

The properties of NISI* computed over the
standardized matrices A and B are not
modified in this form adapted for distanc-
es. In particular, NISI* is still a similarity
coefficient, so that identical trees will al-
ways have an NISI* value of 1.

SEPARATE TESTS FOR THE ULTRAMETRIC
AND STAR COMPONENTS

One interesting aspect of the decompo-
sition method resides in its capacity to sep-
arate additive distances in two components
that can be tested individually, if the prob-
lem calls for that. The evolutionary biol-
ogist may wish to compute the test over
one component only or over both sepa-
rately. This dual approach is quite appeal-
ing because it can provide more infor-
mation than comparisons involving the
path-length matrices alone and may thus
allow a better evaluation of the aspects that
the evolutionary trees under comparison
have in common.

Comparing the Ultrametric Components

Whereas the star distances do not pro-
vide information about the hierarchical
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subsets of objects, the ultrametric compo-
nent illustrates the bifurcation sequence of
the evolutionary tree; it portrays the to-
pology of the relationships among the taxa,
but it also represents something else. There
is a relationship between the ultrametric
component and Farris’s (1977, 1979) special
similarity,

Tij = (Cij - Azj)/z (10)

for all pairs i and j, which in our case is
simply half the value of —U* . For a rooted
tree, T, is the path length from the root to
the most recent common ancestor of i and
j(MRCA,). Testing the ultrametric fraction
of two cladograms requires comparison of
the tree topologies (branching patterns)
and the relationships between MRCAs in-
dependently from the rate of evolution of
the terminal branches. The null hypothesis
in that situation is that the two dendro-
grams under comparison (each represent-
ed by its ultrametric U or special similarity
T matrix) are no more similar to each other
than are random dendrograms sampled
equiprobably from a uniform distribution
of trees. Such random dendrograms can be
generated equiprobably (Lapointe and Le-
gendre, 1991) using vectors of random dis-
tances (complete randomization), or they
can result from a permutation of the actual
vectors of branch lengths read from the
input trees (constrained randomization).
The comparison in the constrained situa-
tion is performed through the double per-
mutation test proposed by Lapointe and
Legendre (1990), which simply permutes
the ultrametric fraction and the labels of
the tree without any consideration for the
star component; the reference statistic is
computed over the ultrametric component
matrices only. The probability for accep-
tance of the null hypothesis is calculated
by counting the number of random den-
drogram pairs with a value of the statistic
as high as or higher than the actual trees
and dividing by the total number of per-
mutations.

Comparing the Star Components

The star distances, on the other hand,
represent the different rates of evolution
of the present-day taxa (including the rates

of evolution of both the terminal and the
internal taxa) without information regard-
ing the topological relations among them
(Klotz et al., 1979). Testing the consensus
between two star distance matrices evalu-
ates whether the two cladograms have
present-day taxa that have evolved at the
same rate under different character sets,
subject to random statistical error in the
evaluation of these rates. The null hypoth-
esis is that the two star components are no
more similar than random star distance
matrices would be if sampled uniformly
throughout their distribution. Here again,
one could call for a complete or a con-
strained randomization approach for the
star trees. In the constrained situation, the
test is reduced to its most simple expres-
sion because only one procedure is re-
quired to perform this “single permutation
test.” One can perform a permutation of
vector S containing the distances from the
root to every taxa; the permuted star dis-
tances are used thereafter to rebuild a ran-
dom matrix C. This procedure is sufficient
to randomize and generate any star-dis-
tance matrix corresponding to a given vec-
tor S. The test is computed in the usual
way, using any given consensus index (e.g.,
NISI) and calculating the probability of H,
by dividing the counter variable by the
number of permutations. Notice that a
Mantel test (1967) based on the star matri-
ces C evaluates exactly the same null hy-
pothesis. The Mantel procedure compares
two distance matrices by permuting at ran-
dom the rows and columns of these ma-
trices. In our situation involving a star tree,
such a randomization of the matrix is iden-
tical to relabeling the leaves of the tree at
random, except the statistic that we use
may differ.

THE COMBINATION PROPERTY AND THE
COMPARISON OF PATRISTIC
MATRICES

We have proposed so far a pair of tests
to evaluate the consensus of components
extracted from additive trees by decom-
position. We now use the reciprocal of the
decomposition property (Equation 1) to in-
troduce a test to compare path-length ma-
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trices globally. The combination property
states that the sum of any ultrametric and
star distance matrices represents an addi-
tive distance matrix (Brossier, 1985):

U, +C,=A, (11)

for all pairs i and j. That means that the
generation of random patristic matrices can
be accomplished by generating random ul-
trametric and star matrices, followed by a
recombination into a path-length matrix or
by the construction of an equivalent ad-
ditive tree from the permuted U and C
components, as described above. It is there-
fore possible, now that we know how to
generate random additive trees, to design
a randomization test to compare clado-
grams. This global consensus test evaluates
the same general null hypothesis as the
component tests: the pair of cladograms
under comparison are no more similar than
randomly selected pairs of additive trees
would be.

The Combination Algorithm

The complete randomization design
proceeds in (1) generating a random den-
drogram, (2) generating a random star tree,
(3) summing the two matrices computed in
steps 1 and 2 to obtain an additive distance
matrix A, and (4) assigning the objects ran-
domly onto the terminal nodes of the tree,
which simply corresponds to labeling the
rows and columns of the matrix at random.
This procedure produces random path-
length matrices, each representing a unique
cladogram with a random topology, ran-
dom length of the branches, and random
position of the labels on the leaves. In sta-
tistical testing, the patristic distances gen-
erated should not take any possible value;
instead, they should be comparable to the
actual matrices under study: Constraints,
therefore, must be added to the random-
ization algorithm. To insure that the ran-
dom matrices remain comparable with the
actual matrices, the random trees are con-
strained to have the same number of ob-
jects n as the real problem and the random
matrices to have a fixed sum of distances.
Actually, we are trying to distribute the
character-state changes (mutation events)

at random onto the branches of the tree
under the constraints that the total number
of changes is constant over all random trees
and is the same as that of the input trees
and that branch lengths are nonnegative:

S3A, =4, (12)

where 4 is a constant and A; = 0, for all
pairs i and j in the matrix. The constrained
randomization results from merging the
decomposition and combination proce-
dures. First, the additive matrices to be
compared are read in, from which the ul-
trametric and star distances are extracted
using the decomposition algorithm. The
two distance components (U and C) are
then permuted at random and recombined,
followed by random relabeling, to gener-
ate random additive matrices comparable
to the actual ones. The resulting assem-
blage is a triple permutation procedure, as
compared with the double permutation
process (Lapointe and Legendre, 1990), be-
cause three randomizations are necessary
here. The complete algorithm, which is ap-
plied in turn to each tree, can be summa-
rized as follows:

1. Input the path-length matrix A.

2. Choose the decomposition center c.

3. Read the #n star distances from c to the
n terminal nodes and store the values
in vector S.

4. Compute the star matrix C from vec-
tor S.

5. Remove the star component C from the
additive distance A to obtain U.

6. Read the (n — 1) fusion level values from
the resulting ultrametric fraction U of
matrix A.

7. Execute the double permutation pro-
cedure on the vector of fusion values
(see Lapointe and Legendre [1990, 1991]
for details):

a. Permute at random the vector of fu-
sion levels from U.

b. Rebuild the matrix corresponding to
the permutation order using the ul-
trametric property.

c. Permute at random the rows and col-
umns of the random matrix or, alter-
natively, relabel the leaves at ran-
dom.
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8. Permute the star distance vector S at
random; recompute the star matrix C.

9. Add the star C and ultrametric U com-
ponents to obtain the randomized ma-
trix A'.

The triple permutation algorithm does
not necessarily guarantee that all branch
lengths will be positive in sign. The con-
straints imposed can lead to negative path
lengths that violate the conditions char-
acterizing distance matrices. Even positive
matrices may fail to satisfy the triangle in-
equality implied by the four-point metric
(Furnas, 1989:45). Three options are thus
open to deal with such matrices:

1. Negative branch lengths are allowed in
the generation process.

2. Matrices bearing negative values, or not
satisfying the triangle inequality for
some other reason, are deleted from the
generation process (R. D. M. Page, pers.
comm.). This can be done by testing for
positivity (or the triangle inequality) af-
ter each permutation or by doing re-
stricted permutations and combinations
only among branches of U and C that
will produce satisfying path-length ma-
trices.

3. A positive constant k is added to the
initial distances so that all permutations
and combinations lead to matrices that
satisfy the triangle inequality; k is cho-
sen to be larger than or equal to the
absolute value of the largest negative
value in U* or C*, thus making all
branch lengths positive.

By definition, the four-point metric that
characterizes additive trees is only fixed up
to an additive constant, so that negativity
need not be taken as a contradiction of the
four-point metric broadly defined (Carroll
et al., 1984). Such additive trees bearing
negative branch lengths can be interpreted
as relative path-length matrices with dis-
tances measured on a scale where k, which
is the origin of the distance scale, will have
a negative value instead of zero (Brossier,
1985). The triple permutation test remains
invariant over any value of k when relative
path-length matrices are compared be-

cause the input matrices must be standard-
ized between 0 and 1 before computing the
NISI statistic, so that options 1 and 3 lead
to exactly the same results. Restricting the
generation process to positive trees only
(option 2) may lead to a statistically differ-
ent outcome, however, because that test is
based on a different reference population.
All three options lead to the same result if
and only if U; < C; for every i and j.

A compiled computer program for per-
forming the triple permutation procedure
(for Macintosh) and a detailed PASCAL
source code listing are available upon re-
quest from the first author. The algorithm
produces random patristic matrices from
which the test is computed.

THE INTEGRATED APPROACH

Different hypotheses can be assessed us-
ing either the global test or each of the
simple component tests. A complete statis-
tical comparison of the phylogenetic trees
is obtained by computing all of these. The
integrated approach therefore consists of
simultaneously computing the global test
and both component tests. The rationale
for such an integrated comparison scheme
becomes obvious when all the statistically
possible outcomes are examined. Three tests
are applied; for each of them, two alter-
natives are possible (H, is rejected or H, is
accepted). The number of possible com-
binations of results is 2° = 8. Even though
all eight situations are theoretically pos-
sible, it is impossible in practice for the
global test to accept H, when both com-
ponent tests have previously rejected their
null hypotheses. All the other situations
can occur in actual problems. The follow-
ing examples illustrate these seven cases.

Consider a vector V = {1, 3, 4, 7}, rep-
resenting the fusion levels of a dendro-
gram, and a vector S = {0, 1, 4, 6, 8}, rep-
resenting the branch lengths of a star tree;
also consider a set of matrices A that result
from the combinations of the randomized
component vectors V (used to construct U)
and S (used to construct C). Each random
additive tree (Fig. 3) is obtained by sum-
ming the randomized component matri-
ces. To compare these additive trees using
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FIGURE 3. Seven pairs of additive trees compared using the integrated approach (see text for details and

Table 1 for results).

the integrated approach, the path-length
matrices are decomposed, then the ultra-
metric and star fractions are tested indi-
vidually along with a global test of the
additive trees. Table 1 presents the results
of the seven integrated tests comparing the
pairs of trees depicted in Figure 3, showing
that all seven situations can actually occur.

As illustrated by this example, the “com-
bined” results provide more information
than does the global test alone. The results
of the simultaneous tests become impor-
tant when attempting a biological inter-
pretation of the results. One can conclude
for instance that two phylogenetic trees are

TABLE 1.

different although they contain species that
have evolved at the same rate (Fig. 3c) or
that a pair of trees should be considered
similar even though they possess different
branching patterns (Fig. 3e). In any case,
we recommend using the integrated ap-
proach in real problems to bring more
depth to the comparison of additive trees.

APPLICATION TO KANGAROO
EVOLUTIONARY TREES

The following example is a typical ap-
plication of the triple permutation test to
compare additive trees. Following the ex-
ample developed by Lapointe and Legen-

Results (Pearson product-moment correlations, 7, and associated probabilities, P) of the tests

comparing the trees presented in Figure 3 (a-g). In the summary of the three tests, a significant result is

represented by a 1.

Component tests

Global test, path-

Ultrametric matrix U Star matrix C

length matrix A Significance summary

Trees r P r P r P U (o) A
a 1.000* 0.000 1.000* 0.000 1.000* 0.000 1 1 1
b 1.000* 0.000 0.007 0.992 0.167 0.920 1 0 0
c 0.264 0.998 1.000* 0.000 0.804 0.080 0 1 0
d 0.264 0.998 0.007 0.992 0.051 0.992 0 0 0
e 0.264 0.998 1.000* 0.000 0.952* 0.010 0 1 1
f 1.000* 0.000 0.810 0.134 0.910* 0.022 1 0 1
g 0.821 0.084 0.810 0.134 0.854* 0.036 0 0 1

* Significant values of the Pearson correlation coefficient tested by randomization at the alpha significance level of 0.05;

499 permutations were performed for each test.
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dre (1990), we want to verify whetl}er kan- (a) Aspyprimnus
garoo phylogenies based on different M. giganteus

isti N\ Petrogale
characte.r sets are statistically congruent.  p, e“ge""\etoni)hg/De" drolagus
Three different trees are compared in this ;e
example; two of them are additive trees, Wallabia Petrogale oS ous
and the last one is a dendrogram. Dorcopsulus
Comparing a Pair of Cladograms
Baverstock et al. (1989) recently pub- (b) M. ’”’fepypﬂmnus
lished a reanalysis of the kangaroo phy- M. giganteus De"dfo’agusj
logeny based on albumin immunological
relationships. Their paper provides an ad- _ Polorous
ditive tree representing the evolutionary Wallabia
distances among 14 species of the family M. eugeni, mngompsu/us
eloni.

Macropodidae (Fig. 4a). We want to test the
resemblance between this immunology-
based tree and another one based on elec-
trophoretic characters. This second tree
(Fig. 4b) was derived from the results pub-
lished by Richardson et al. (1973) concern-
ing kangaroo electrophoresis patterns for
seven proteins; to obtain that additive tree,
we applied the Fitch and Margoliash (1967)
method to a distance matrix computed over
the authors’ data set (1 — Jaccard similar-
ity). The path-length matrices were com-
puted for the 10 species that both trees
have in common and were compared using
the integrated approach of the triple per-
mutation test. The decomposition center of
each matrix was selected to represent the
terminal taxon farthest from all other spe-
cies: the “Baverstock tree” was thus rooted
on Aepyprimnus and the “Richardson tree”
on Petrogale. Five thousand permutations
were calculated for the tests. The results
presented in Table 2 show that the global
test is significant (P < 0.001) even though
both component tests accepted the null hy-
pothesis (P > 0.05). Similar results were
obtained using NISI*, the cross-product-

FIGURE4. Additive tree representations of the evo-
lutionary relationships among 10 species of the Mac-
ropodidae. (a) From Baverstock et al. (1989). (b) De-
rived from the Richardson et al. (1973) data set.

moment correlation, and the sum of
squared differences.

This statistical conclusion might have
been the result of the different decompo-
sition centers of the matrices, which re-
sulted in different component residuals. To
assess whether an identical decomposition
modifies the outcome of the tests, we ran
another set of tests after selecting the same
root (i.e., Aepyprimnus) for both trees. The
new results (Table 2) show significance for
all tests. This apparent contradiction be-
tween the two sets of tests illustrates the
importance of the selection of an appro-
priate root in the triple permutation test
(sée Fig. 2). Different roots modify the com-
ponent matrices and, consequently, also the
results of the component tests. However,
the global test will give the same results
in all cases because the path-length matrix
is invariant under different decomposition
centers.

TABLE 2. Results of the tests comparing the trees presented in Figure 4 (a, b).

Component tests

Global test, path-

Ultrametric matrix U

Star matrix C length matrix A

Roots NISI* P NISI* P NISIT* P
Aepyprimnus (a) and Petrogale (b) 0.313 0.112 0.206 0.955 0.871 0.001
Aepyprimnus (both)® 0.301 0.002 0.364 0.039 0.871 0.001

a Trees (a) and (b) were decomposed based on the Aepyprimnus and Petrogale root, respectively.

b Both trees were decomposed using Aepyprimnus as the root.
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FIGURE 5. Dendrograms depicting evolutionary
distances among seven species of Macropodidae. (a)
The ultrametric component extracted from the Baver-
stock et al. (1989) additive tree, rooted on the farthest
species (Potorous). (b) Modified from Kirsch (1977). (c)
The ultrametric component extracted from the Baver-
stock et al. (1989) additive tree, rooted on the most
central species (Setonix).

Comparing a Cladogram to a Dendrogram

In this second example, we compare the
Baverstock et al. (1989) additive tree to the
serology-based dendrogram proposed by
Kirsch (1977). That specific problem calls
for a special test designed to compare only
the ultrametric fraction of the Baverstock
et al. (1989) path-length matrix (Fig. 5a),
after correction for unequal rates of evo-
lution (Klotz et al., 1979), to the cophenetic
matrix associated with the Kirsch tree (Fig.
5b). After pruning the trees to keep only
the species in common, we compared the
pair of matrices representing the evolu-
tionary relationships among eight species
of kangaroos. Because ultrametric matrices
were to be compared, the double permu-
tation test (Lapointe and Legendre, 1990)
was used instead of the triple permutation

procedure. The reference statistic was com-
puted over 5,000 pairs of randomized den-
drograms to obtain a distribution of the
comparison index. The comparison test was
significant (NISI* = 0.590; P = 0.016) when
Potorous was selected (Fig. 5a) to decom-
pose the additive tree of Baverstock et al.
(1989); other rootings lead to the opposite
results. When Setonix was chosen (the most
central species) as the root (Fig. 5¢) instead
of Potorous (the farthest species), the null
hypothesis was accepted (NISI* = 0.096; P
= (.188), implying that the “Baverstock ul-
trametric component” is not more related
to the “Kirsch ultrametric tree”” than ran-
dom pairs of dendrograms would be.

These contradictory results illustrate
once again the influence of the decompo-
sition center on the outcome of the test. In
the case of additive tree comparisons, root
selection is less important because the
global tests are not affected by the decom-
position. However, ultrametric compo-
nents may exhibit very different topolo-
gies, depending on selection of a “central”
or an “outgroup” root. One possible way
to deal with this situation may be to select
each species in turn to decompose the tree;
if at least one of the n tests rejects the null
hypothesis, then the test may be declared
significant. The alternative is to compute
the test using a reference distribution based
on random comparisons of dendrograms
against cladograms (Lapointe and Legen-
dre, 1992).
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APPENDIX

CLADOGRAMS, DENDROGRAMS,
AND BUSHES

Consider a matrix D containing values d,, for every
pair of objects i and j. This matrix is defined as a
dissimilarity matrix when the following properties
are satisfied: symmetry,

d,=d, (13)
for all i and j; positiveness,

d, >0 (14)
for i # j; and definiteness,

d;,=0 (15)

for i = j. Furthermore, we consider the dissimilarity
matrix D to represent a distance matrix M when it
meets the triangle inequality:

d,=d, +d, (16)

for all triplets i, j, and k. Because the triangle inequal-
ity property defines metric dissimilarities, D can then
also be said to be metric (see, for example, Sneath and
Sokal, 1973). When the fourth condition is not sat-
isfied, the distance is said to be a semimetric.

Any matrix D meeting those four properties always
allows an Euclidean representation of \/D in a space
of dimension n — 1 (Gower and Legendre, 1986), rep-
resented here by an Euclidean matrix E, where 7 is
the number of points (objects, OTUs, . . .) under study.
A nonspatial alternative representation of matrix D
(Pruzansky et al., 1982) is a tree, which is a connected
graph without cycle. Not all distance matrices can be
exactly represented by trees, however. Additional
properties should be respected depending on which
tree representation is sought. Three types of trees will
be considered here: additive trees, dendrograms, and
star trees. For a complete description of these trees
(definitions, properties, and relationships), see Bar-
thélemy and Guénoche (1988).

Additive Trees

A distance matrix D can be represented in the form
of an additive tree (Fig. 1) if the four-point condition
(Equation 17) is satisfied in addition to properties 13-
16 mentioned above (Buneman, 1971):

d,+d,=d,+d,=d, +d, (17.1)

for all 4-tuples i, j, k, and [, or
du + d,; = max[(d, + d]l)/ d, + dik)] (17.2)

for all 4-tuples i, j, k, and I. Statement 17.1 implies
that any quadruplet of objects can be labeled so as to
satisfy that condition for the three possible sums of
two distances (there are six distances among four ob-
jects); 17.2 implies that the three sums of the opposite
edges of the tetrahedron {j, j, k, I} define an isosceles
triangle (Patrinos and Hakimi, 1972; Buneman, 1974;
Dobson, 1974). The four-point condition or quadru-
plet inequality also implies the triangle inequality
(condition 16) and can thus be called the four-point
metric.

If the branches of an additive tree are weighted
(i.e., have values attached to the branches), the dis-
tance between two terminal nodes may be defined as
the sum of the lengths of the branches connecting
these two nodes. The resulting additive matrix A (Fig.
1) containing all such distances is the path-length
matrix. When the branches of the tree are not weight-
ed, the additive distance between two objects is sim-
ply the topological distance counting the number of
edges (=branches) between two terminal nodes
(Phipps, 1971; Farris, 1973). The distance matrix B in
that simpler case is the branch-distance matrix.

Rooted trees have a node defined as the root, which
is the ancestor to all other terminal nodes. Roots are
selected among internal nodes but can also be asso-
ciated with terminal nodes in specific cases. Clado-
grams used in cladistics, as well as other forms of
phylogenetic trees, are usually represented in the form
of rooted additive trees where the distance between
two objects corresponds to the sum of the character-
state changes along the path of branches connecting
these two objects (“patristic” distances). Path-length
matrices associated with cladograms are often called
patristic matrices.

Dendrograms

A matrix D can be represented in the form of a
dendrogram (Fig. 1) if the following ultrametric in-
equality is met (Hartigan, 1967; Johnson, 1967):

d, < max(d,, d)

y (18)
for all triplets i, j, and k. This condition implies that
for every triplet of points, the two largest distances
are equal (i.e., every triangle {i, j, k} is isosceles). The
distances meeting this condition are said to represent
spherical trees, because every terminal node of the
tree is equidistant from the root of the dendrogram.
We use here the term dendrogram in a graph theoretic
sense (Barthélemy and Guénoche, 1988:24) and not
in a biological sense, where the term phenogram has
been used to define these kinds of trees (Sneath and
Sokal, 1973:58). A distance matrix (Fig. 1) meeting
condition 18 is called an ultrametric U or a cophenetic
matrix (Sokal and Rohlf, 1962). Notice that matrices
meeting the ultrametric inequality (Equation 18) also
satisfy the four-point condition (Equation 17) as well
as the triangle inequality (Equation 16). Therefore,
from all the matrices defined so far, we can charac-
terize an inclusion order that encompasses all types
of representations (Le Calvé, 1985):

DOMDEDADU. (19)

It follows from that order that dendrograms meeting
the ultrametric inequality (U, Equation 18) are special
cases of additive trees satisfying the four-point metric
(A, Equation 17) and that patristic matrices A are less
restrictive than ultrametric matrices U (Sibson, 1972).

Previous workers have shown that every dendro-
gram is associated with a unique ultrametric (=co-
phenetic) matrix (Jardine et al., 1967) and that addi-
tive trees also are in one-to-one correspondence with
path-length matrices (Waterman et al., 1977) or branch-
distance matrices (Zaretskii, 1965; Smolenskii, 1969).
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From the latter considerations, any ultrametric dis-
tance can be uniquely defined by (n — 1) values only,
whereas (2n — 3) distances are required for additive
trees. Generating dendrograms therefore represents
a simpler problem (fewer parameters to adjust) than
generating additive trees (Barthélemy and Luong,
1986).

Star Trees

We also consider the star tree (Fig. 1) or singular
tree (Sattah and Tversky, 1977). This representation
corresponds to a tree with only one interior node (Le
Calvé, 1985). This unique node is the center c of the
tree. In star trees, the path between any two objects
i and j must pass through the center c. A matrix D is
a star distance matrix, symbolized by C (Fig. 1), when
the following equation holds:

d,=d,+d (20)

y a cj
for all i and j. Likewise, any star tree can be repre-
sented by a star distance vector S containing the dis-
tances between the center c and every terminal node.
Star distances therefore are uniquely defined by n
values associated with the branches of the corre-
sponding tree. Any matrix C that satisfies the star
condition also satisfies the four-point condition. Thus,
another inclusion order characterizing the position

of star distances can be established (Le Calvé, 1985):
DOMDEDADC. (21)

That order shows that star trees are no more than
degenerate additive trees. Also, no inclusion relation
exists between star distances and ultrametric distanc-
es.



