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Ultrametric trees or dendrograms
(=phenograms of some authors; Sneath and
Sokal, 1973) have received much attention
in phylogenetics and are used to portray
the relationships among members of a giv-
en taxonomic group in the presence of con-
stant evolutionary rates, corresponding to
a molecular clock hypothesis (Blanken et
al., 1982). However, additive trees or clado-
grams provide a better representation of
phylogenetic distances in the presence of
unequal evolutionary rates among lin-
eages (Tateno et al., 1982). Numerous al-
gorithms permit derivation of ultrametric
or additive trees from distance matrices or
directly from character matrices (Felsen-
stein, 1982; Gordon, 1987; Swofford and
Olsen, 1990; Penny et al., 1992). With these
methods arose the problems of efficiency
(Milligan, 1981). Which algorithm is the
best? What is a good phylogenetic tree?
How should the efficiency of a particular
method be measured?

The next logical step after characteriza-
tion of the various methods is to compare
the stability of the constructed phyloge-
netic trees under different reconstruction
techniques (Sokal et al., 1992). Consensus

tree methods (Day, 1986, and references
therein) and consensus indices (Rohlf,
1982) were derived to measure the simi-
larity between phylogenies or to produce
a compromise solution reflecting the com-
mon agreement of several trees. More re-
cently, procedures have been proposed to
compare trees statistically (Page, 1988; La-
pointe and Legendre, 1990, 1992), and sig-
nificance tables have been published for
many consensus indices (Shao and Rohlf,
1983; Shao and Sokal, 1986). The present
paper proposes tables of critical values of
the cross-product matrix correlation coef-
ficient (Rohlf, 1982), designed to allow sta-
tistical comparison of trees while taking
into account the metric information em-
bedded in the branches of a phylogeny.

TREE PROPERTIES

The relationships among the objects of
aset W= {1, 2, ..., n} that represents a
given taxonomic group can be portrayed
in a matrix D of pairwise distances. Such
a matrix of metric distances must satisfy
four minimal conditions (cf. Sneath and
Sokal, 1973):
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d,=0 (1)
fori=j,

d, =0 (2)
fori#j,

d, =d; (3)
fori # j, and

dyi =d; + d; (4)

for every i, j, and k. Furthermore, patristic
matrices A that represent additive distanc-
es must also satisfy the four-point condi-
tion (Buneman, 1971):

di/‘ +du = max[(dik + djl ) (d.z + djk)] (5)

for every i, j, k, and I, whereas ultrametric
matrices U containing ultrametric distanc-
es should meet an additional property,
called the ultrametric condition (Hartigan,
1967; Johnson, 1967):

d; = max|d,, d,] (6)

for every i, j, and k. Any matrix A or U that
uniquely defines a tree can be represented
(Fig. 1) in the form of either a cladogram
(=additive tree) or a dendrogram (=ultra-
metric tree). For each pair of objects i and
jin a tree, a; or u; is defined as the sum of
branch lengths along the path connecting
these two objects. Given a distance matrix
D, one can represent the relations among
the n elements of D in the form of a phy-
logenetic tree. This reduces to obtaining
an additive or ultrametric representation
of D. A phylogenetic tree reconstruction
operation thus acts as a transformation from
metric to path-length distances; even
though most cladograms are directly de-
rived from a character matrix, the resulting
tree remains additive. :

MATRIX CORRELATION

The efficiency of a particular method is
reflected in its ability to uncover the phy-
logenetic structure of a distance matrix.
Numerous indices have been suggested to
measure the fit of a tree to the original
distance matrix (Gordon, 1987). The matrix
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FIGURE 1. A pair of cladograms, (a) and (b), and a
pair of dendrograms, (c) and (d), with their corre-
sponding path-length matrices. The cardinality ma-
trix (e) is the same for all four trees.

correlation coefficient, which is simply the
Pearson cross-product correlation coeffi-
cient computed over the pairs of values in
the patristic or ultrametric and the original
distance matrices, has been suggested by
Sokal and Rohlf (1962) to evaluate cluster-
ing results:

2 @, — )@ — 9

VE (d; = dr X 6, — oy

fori+ j, where the d, are the input distance
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values and the §; are the path-length dis-
tances. This measure is equivalent to the
standardized form of the Mantel (1967) sta-
tistic.

This widely used coefficient has often
been suggested as a means of selecting the
optimal tree for the distances in D. In this
type of situation, the correlation coefficient
cannot be tested for statistical significance
because matrix A or matrix U is not inde-
pendent from distance matrix D, from
which it is derived. However, the same
correlation coefficient can also be used to
measure the agreement between matrices
derived from different tree reconstruction
methods to reflect the consensus of the cor-
responding solutions (Rohlf, 1982). Like
any standard correlation coefficient, one
could be interested in assessing the statis-
tical significance of the correlation value,
either as a recovery or as a stability index.
For the stability index, the correlation com-
pares distinct path-length matrices (A or
U) derived from the same matrix D using
different methods. Again, the significance
of the matrix correlation coefficient cannot
be assessed because the matrices under
comparison are not independent, thus in-
validating the test (Hubert and Baker, 1977).
The test is correct only when comparing
trees independently derived from differ-
ent distance matrices; it is not appropriate
to evaluate the ability of distinct methods
to produce similar phylogenies given the
same initial matrix D.

Besides the independence of the matri-
ces, the usual test of the Pearson correla-
tion also requires independence of the ob-
servations to satisfy its application
conditions. The original (in D), the patris-
tic (in A), or the ultrametric (in U) dis-
tances are not independent-from one an-
other, however, because the triangular
inequality (Equation 4), the four-point
condition (Equation 5), or the ultrametric
inequality (Equation 6) imposes con-
straints on the distance values of these ma-
trices. The usual test of significance in-
volving independent matrices always
overestimates the correct degrees of free-
dom when comparing trees. Therefore, we
need corrected tables of significance of the

matrix correlation coefficient to measure
the consensus of independent patristic or
ultrametric matrices representing clado-
grams or dendrograms.

CORRELATION OF PATH-LENGTH MATRICES

When comparing a pair of actual phy-
logenetic trees uniquely represented by a
pair of path-length matrices, one evaluates
whether these trees are more similar than
those that could be obtained by chance
alone. This is a one-tailed test. The null
hypothesis is that the two matrices under
comparison are not more correlated than
matrices associated with random trees
would be (Lapointe and Legendre, 1990,
1992). The best way to evaluate the signif-
icance of the actual correlation value is to
use a reference distribution of the statistic
constructed using all possible tree com-
parisons. The exact distribution cannot be
constructed, however, because the number
of trees increases in a nonlinear way as a
function of the number of taxa n (Phipps,
1975; Felsenstein, 1978; Murtagh, 1984) and
quickly becomes intractable. The test must
be formulated, therefore, by reference to a
randomized null distribution based on the
comparison of trees sampled equiprobably
from the population of cladograms or den-
drograms bearing n taxa.

Lapointe and Legendre (1991) proposed
a uniform algorithm to generate ultramet-
ric matrices that represent random den-
drograms. The method proceeds by gen-
erating a random topology followed by
random labeling and random allocation of
cluster heights sampled from a uniform [0,
1] distribution. An extension of this meth-
od has been used to generate random
cladograms by adding a random ultrame-
tric tree and a random star tree (Lapointe
and Legendre, 1992). The method used in
the present paper involves generation of a
random ultrametric tree followed by ad-
ditional randomization of the branch
lengths to obtain an additive tree by add-
ing (or subtracting) a random length to (or
from) each terminal branch of the tree un-
der the constraint that all branches of the
cladogram must have a positive length.
Here, we use these two procedures to gen-
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erate tables of statistical significance for
the matrix correlation coefficient involv-
ing cladogram and dendrogram compari-
sons.

CORRELATION OF TOPOLOGICAL MATRICES

When comparing trees with the Pearson
correlation coefficient, one evaluates
whether the path-length matrices under
consideration are linearly correlated.
However, a pair of trees with similar to-
pologies can have different path-length
distances; identical topologies may even be
declared statistically different when con-
sidering branch lengths (Fig. 1). Compar-
ing topological relationships among taxa
is a problem distinct from the comparison
of path-length distances, however. To
compare topologies, one should consider
topological distance matrices (Phipps, 1971)
instead of path-length matrices, replacing
the sum of branch lengths by the number
of branches along the path connecting two
objects. Ultrametric topological distances
(=cardinality matrices) and additive to-
pological distances uniquely correspond to
the trees they represent (Smolenskii, 1969),
although cladogram and dendrogram to-
pologies have an identical distribution un-
der a strictly dichotomous Markovian
model (Page, 1991). Generation of topo-
logical distance matrices thus proceeds by
generation of random ultrametric matrices
that are transformed into cardinality ma-
trices (Fig. le), in which every d, repre-
sents the cardinality of the smallest set of
objects that includes both i and j. The to-
pological comparison of cladograms and
dendrograms is based on the same null hy-
pothesis, that their topologies are not more
similar than random cardinality matrices
would be. Tables of significance could be
generated by comparing such random ma-
trices.

GENERATING TABLES OF SIGNIFICANCE

To produce tables of critical correlation
values, cladograms and dendrograms were
generated at random, using the Lapointe
and Legendre (1990, 1991, 1992) algo-
rithms, for increasing numbers of taxa
ranging from 4 to 100. The null distribu-

TABLE 1. Critical values of the matrix correlation
coefficient used to compare independent cladograms.

Level of significance («)

n 0.50 0.25 0.10 0.05 0.01
4 —0.056 0374 0.684 0.808 0.955
5 —0.005 0.306 0541 0.651 0.838
6 —0.045 0.240 0.429 0.548 0.718
7 0.074 0.211 0.389 0.483 0.691
8 0.045 0.209 0.358 0.456 0.605
9 —0.018 0.186 0.346 0.422 0.580

10 —0.016 0.173 0.334 0.404 0.551

11 0.048 0.156 0.290 0373 0.512

12 0.034 0.150 0.279 0.352 0.500

13 —0.022 0.131 0271 0.347 0.465

14 —0.067 0.120 0.242 0318 0.453

15 —0.016 0.118 0.238 0.307 0.420

20 0.011 0.115 0224 0.276 0.375

25 —0.077 0.103 0.186 0.250 0.343

30 —0.017 0.092 0.178 0.225 0.321

35 —0.053 0.089 0.169 0.213 0.285

40 0.003 0.088 0.168 0.209 0.274

45 0.005 0.085 0.152 0.203 0.269

50 —0.035 0.081 0.141 0.177 0.246

75 —0.008 0.060 0.123 0.160 0.237

100 —0.002 0.055 0.108 0.136 0.213

tion of the matrix correlation coefficient
was then constructed by pairing phylo-
genetic trees to compute the correlation
values. Empirical simulations (Lapointe,
1990) have shown that 500 correlation val-
ues were more than enough to construct a
satisfactory reference distribution. In the
present work, we compared 1,000 pairs of
cladograms or dendrograms for each row
of the tables. For each number of taxa, 2,000
random patristic or ultrametric matrices
were thus generated, paired at random, and
correlated. Table 1 provides information
about the critical values of the matrix cor-
relation coefficient at different levels of
significance for the comparison of pairs of
cladograms, and Table 2 contains the same
information for dendrogram comparisons.
Table 3 was computed to give critical val-
ues of the matrix correlation coefficient
when comparing a dendrogram to a clado-
gram, and Table 4 was obtained by com-
paring cardinality matrices representing
random phylogenetic trees. One can inter-
polate the correlation values linearly to ob-
tain an approximate critical value for any
particular number of objects not presented
in these tables. The 0.001 level was not
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TaBLE 2. Critical values of the matrix correlation
coefficient used to compare independent dendro-
grams.

TaBLE 3. Critical values of the matrix correlation
coefficient used to compare a cladogram to a dendro-
gram.

Level of significance («)

Level of significance («)

n 0.50 0.25 0.10 0.05 0.01 n 0.50 0.25 0.10 0.05 0.01
4 —-0.189 0.216 0.671 0.882 0.992 4 —0.031 0398 0715 0.824 0.943
5 —0.089 0.185 0.506 0.689 0.949 5 —0.035 0218 0.490 0.670 0.841
6 —0.034 0.157 0.381 0547 0.791 6 —0.051 0.169 0.376 0.502 0.708
7 —0.058 0.131 0.321 0.465 0.745 7 —0.032 0.128 0315 0.400 0.654
8 —-0.037 0.113 0.262 0371 0.572 8 —0.014 0.121 0.260 0.363 0.571
9 —-0.031 0.111 0.238 0.351 0.530 9 —0.093 0.120 0.259 0.330 0.500

10 —0.013 0102 0.206 0.282 0.445 10 —0.011 0.099 0.212 0.284 0.443

11 —0.020 0.083 0.190 0.245 0.432 11 0.036 0.094 0.195 0.263 0.386

12 —0.028 0.068 0.167 0.231 0.340 12 —0.035 0.088 0.190 0.240 - 0.353

13 —-0.025 0.058 0.153 0.212 0.325 13 —0.012 0.086 0.163 0.223 0.339

14 —0.012 0.060 0.147 0.190 0.297 14 —0.075 0.077 0.159 0.219 0.311

15 —-0.018 0.056 0.126 0.172 0.277 15 —0.063 0.076 0.150 0.203 0.307

20 —0.012 0.043 0.098 0.140 0.204 20 —0.041 0.053 0.108 0.143 0.249

25 —0.007 0.035 0.083 0.101 0.170 25 0.003 0.046 0.093 0.120 0.195

30 —0.008 0.027 0.071 0.093 0.163 30 —0.021 0.039 0.087 0.114 0.163

35 —0.003 0.027 0.058 0.080 0.123 35 —0.008 0.036 0.068 0.096 0.145

40 —0.003 0.022 0.054 0.069 0.104 40 0.004 0.031 0.063 0.079 0.138

45 —0.001 0.023 0.047 0.059 0.088 45 —0.017 0.030 0.059 0.076 0.116

50 —0.003 0.020 0.042 0.056 0.084 50 —0.011 0.025 0.051 0.069 0.102

75 —0.002 0.014 0.029 0.036 0.056 75 0.022 0.020 0.038 0.053 0.095

100 —0.001 0.009 0.020 0.026 0.046 100 0.018 0.016 0.030 0.043 0.061

computed here, however; more compari-
sons would have been required to obtain
accurate critical values for this level.

EXAMPLE

To compare the dendrograms and clado-
grams depicted in Figure 1, the first step
is to compute the matrix correlation coef-
ficient between their associated path-length
matrices. The significance of this statistic
is evaluated by examining the tables of
critical values under the preselected level
of significance (say o = 0.05) and the cor-
responding number of taxa (five in this
case). If the actual value of the statistic is
larger than or equal to the critical value
from the random distribution, then the null
hypothesis of randomness of the relation
between the two phylogenetic trees is to
be rejected. In our example, we obtained a
correlation of 0.926 between the two clado-
grams and a correlation of 0.684 between
the two dendrograms. Therefore, the
cladograms under comparison are more
similar than expected by chance alone, and

TABLE 4. Critical values of the matrix correlation
coefficient based on topological comparisons of in-
dependent dendrograms.

Level of significance («)

n 0.50 0.25 0.10 0.05 0.01
4 —0.158 0.316 0700 0.999 1.000
‘5 —0.072 0.144 0.500 0.818 1.000
6 —0.068 0.167 0.349 0474 0912
7 —0.044 0.089 0324 0431 0.880
8 —0.061 0.080 0.275 0.424 0.798
9 —0.044 0074 0224 0.391 0.637
10 —0.049 0.062 0.214 0321 0.618
11 —0.045 0.051 0.216 0.298 0.599
12 —0.049 0.040 0.190 0.289 0.585
13 —0.040 0.045 0.167 0275 0.577
14 —0.039 0.036 0.139 0.262 0.564
15 —0.041 0.029 0.141 0.249 0.541
20 —0.028 0.026 0.110 0.180 0.359
25 —0.023 0.022 0.113 0.182 0.360
30 —0.020 0.019 0.092 0.178 0.327
35 —0.019 0.018 0.088 0.155 0.311
40 —0.016 0.016 0.080 0.131 0.253
45 —0.014 0.015 0.070 0.119 0.233
50 —0.012 0.017 0.064 0.108 0.201
75 —0.007 0.016 0.062 0.091 0.188
100 —0.006 0.016 0.055 0.083 0.180
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the two dendrograms are statistically dif-
ferent, at the given significance level. When
comparing topologies, all tests are signif-
icant (r = 1.00) at the 0.01 level, however,
illustrating the difference between topo-
logical and path-length comparisons. The
magnitude of type Il error, i.e., of accepting
the null hypothesis when it is wrong, re-
mains unknown because we have not con-
ducted a power analysis of these tests
(Kraemer and Thieman, 1987; Cohen, 1988).

DiscUSSION

We have generated specific tables of sig-
nificance values to measure the consensus
of cladograms and dendrograms, based on
matrix correlations. Although our tables are
based on [0, 1] distance matrix correlations,
they can also be used to compare trees pre-
sented on a similarity scale, as long as both
path-length matrices are either similarity
or distance. The correlation coefficient is
invariant over the rescaling and transfor-
mation required to convert similarity val-
ues into distances, which is also true for
distances not bounded by 0 and 1.

The method proposed to construct the
reference distribution of the matrix cor-
relation coefficient could be repeated for
other consensus indices, for larger num-
bers of objects, and even for other types of
trees. An interesting extension would be
to consider nonparametric indices such as
the Spearman rank correlation coefficient
or the Procrustes statistic (Gower, 1971,
1975). In the case of dendrograms, the com-
putation of a Spearman rank correlation on
ultrametric matrices is identical to a Pear-
son correlation computed over ranked
dendrograms; for the Pearson correlation,
the ultrametric distances are replaced by
their ranks in the ultrametric matrix. The
Procrustes problem, however, consists of
translating, rotating, reflecting, and scal-
ing the distance matrix configurations to
minimize a goodness-of-fit criterion (Gow-
er, 1975); the “stress” statistic then repre-
sents a consensus index that can be tested
using a standard permutation procedure.
These nonparametric approaches are quite
appealing for overcoming the problems

encountered when comparing indepen-
dent phylogenies based on different dis-
tance metrics and derived using distinct
methods.
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Geographic Origin of Human Mitochondrial
DNA Revisited

MARK STONEKING, STEPHEN T. SHERRY, AND LINDA VIGILANT

Department of Anthropology, P.ennsylmmia State University,
University Park, Pennsylvania 16802, USA

In a Points of View section in a previous
issue of Systematic Biology, Maddison et al.
(1992) presented a reanalysis of the DNA
sequences of the human mitochondrial
DNA (mtDNA) control region that were
originally determined and analyzed by
Vigilant et al. (1991). Maddison et al. ar-
rived at the following three conclusions:
(1) the parsimony analysis performed in
the original study was inadequate, result-
ing in a biased sample of most-parsimo-
nious trees (MPTs); (2) the geographic-
states test described in the original study
is flawed on several grounds; and (3) the

chimpanzee control region sequences that
were used as outgroups may be too dis-
tantly related to human control region se-
quences to provide a meaningful place-
ment of the ancestor on the human tree.
We consider each of these conclusions in
turn.

THE PROBLEM WITH PARSIMONY ANALYSES

We agree with the first conclusion
reached by Maddison et al., i.e., that the
original parsimony analysis was inade-
quate and found a biased set of trees. This



