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A STATISTICAL FRAMEWORK TO TEST THE
CONSENSUS OF TWO NESTED CLASSIFICATIONS

FRANGOIS-JOSEPH LAPOINTE AND PIERRE LEGENDRE

Département de Sciences biologiques, Université de Montréal,
C.P. 6128, Succursale A, Montréal, Québec H3C 3]7, Canada

Abstract.—We propose a method to compare rooted classifications when the fusion levels
between OTUs are to be taken into account. This problem can be formulated as a statistical
randomization test, that includes a double permutation procedure involving the generation of
random dendrograms from ultrametric matrices. We test the null hypothesis stating that the two
dendrograms under comparison are not more similar than dendrograms randomly generated in
terms of three different aspects: topology, leaf positions, fusion level positions. The similarity
beween nested trees is computed using a normalized form of the intermediate consensus index
of Faith and Belbin (1986). A special case is discussed where limited permutations are required
to test a conditional null hypothesis. This test is applied to kangaroo classifications to measure
the congruence between dendrograms derived from different character sets. [Classification; con-
sensus method; kangaroo; limited permutations; Macropodidae; nested tree; permutation test;
statistical test.]

Résumé.—Nous proposons une méthode pour comparer des classifications enracinées lorsqu’on
désire tenir compte des niveaux de fusion entre les objets. Ce probléme peut s’exprimer en termes
d’un test statistique impliquant une procédure & double permutation permettant la génération
de dendrogrammes aléatoires a partir de matrices ultramétriques. Nous testons ’hypothése nulle
stipulant que les deux dendrogrammes comparés ne sont pas plus semblables entre eux que des
dendrogrammes générés au hasard selon trois aspects: topologie, position des feuilles, position
des niveaux de fusion. La similarité entre les arbres hiérarchiques emboités est calculée en
utilisant une forme normalisée de 'indice de consensus intermédiaire de Faith et Belbin (1986).
Nous discutons d"un cas particulier ot il est nécessaire d’avoir recours & des permutations limitées
pour tester une hypothése nulle conditionnelle. Nous appliquons ce test a la classification des

kangourous afin de mesurer la congruence entre des dendrogrammes basés sur différents jeux

de caractéres.

The task of early numerical taxonomy
was to propose and evaluate methods of
reconstructing evolution as well as tech-
niques to classify present-day taxa. The next
problem was to compare the methods that
had been developed and the solutions they
generated. This gave birth to several com-
parison schemes involving binary trees,
" nested trees, unrooted trees, classifications,
networks and even unlabeled trees (Wil-
liams and Clifford, 1971; Adams, 1972; Hu-
bert and Baker, 1977; Waterman and Smith,
1978; Margush and McMorris, 1981; Rob-
inson and Foulds, 1981; Neumann, 1983;
Stinebrickner, 1984; Day, 1985; Estabrook
etal., 1985; Penny and Hendy, 1985). These
methods were designed to find answers to
an equally vast range of specific problems
such as testing evolutionary hypotheses
(Penny et al., 1982), evaluating taxonomic
characters (Thorpe and Dickinson, 1988),

comparing cladistic and phenetic methods
(Sokal, 1983), measuring congruence for
different datasets (Colless, 1980; Schuh and
Polhemus, 1980), and so on. Notwithstand-
ing this diversity of purposes in tree com-
parisons, most of the recent studies have
revolved around two major questions: °

1. Do different methods of tree reconstruc-
tion produce similar trees?

2. Do different groups of variables about
the same OTUs lead to similar trees with
a given method?

Consensus techniques were developed to
answer these questions. Consensus indices
measure the resemblance between trees,
while consensus tree methods are used to
produce a solution that reflects common
aspects of two or more trees.

Despite all the work that has been done
on consensus methods during the last de-
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cade, few statistical methods to compare
taxonomic classifications have been pro-
posed yet. Considering the recent develop-
ments in this area, the major concern of
taxonomists should now be to test statis-
tically their specific hypotheses about the
consensus between trees. Some methods
have already been developed to statisti-
cally compare special kinds of trees in tax-
onomy (Templeton, 1985, 1986; Shao and
Sokal, 1986; Prager and Wilson, 1988) or in
biogeography (Rosen, 1978; Simberloff,
1987; Page, 1988). The present paper intro-
duces a new statistical framework de-
signed to compare trees when fusion levels
are to be taken into account. Some of the
former methods required the generation
of random trees; the procedure we propose
proceeds instead to a special type of ran-
domization test.

The position of the procedure proposed
here is the following with respect to a nest-
ed series of possible comparisons of two
datasets about the same OTUs. First, two
data tables (same OTUs, different vari-
ables) can be compared by canonical cor-
relation analysis or by redundancy analy-
sis. The null hypothesis when testing
canonical correlations for significance is
that the two sets of variables are unrelated.
In redundancy analysis, the null hypoth-
esis can be stated in the regression frame-
work: the variables in the first set do not
explain a significant fraction of the vari-
ance of the variables in the second set (or
conversely). Secondly, similarity or dis-
tance matrices can be computed for the two
data tables, and compared using a Mantel
test (1967). The null hypothesis in that case
is that similarities (or distances) in the first
matrix are no more (linearly) related to the
similarities (or distances) in the second ma-
trix than if the data vectors had been at-
tributed at random to the OTUs. The third
step consists of deriving dendrograms from
the said similarity or distance matrices. This
is the problem of consensus, discussed in
the present paper. When testing for sig-
nificance, the null hypothesis is that the
two dendrograms do not exhibit a higher
consensus than two randomly constructed
dendrograms; “randomly constructed” will

be discussed in some detail below. A fourth
step would be to choose a partition of in-
terest in each of the two dendrograms and
to compare these partitions for informa-
tion in common. This can be accomplished
by contingency table analysis; the null hy-
pothesis is then that there is no more in-
formation in common between the two
partitions of interest than if the OTUs had
been attributed at random to the groups.
Alternatively, Nemec and Brinkhurst
(1988) have proposed a test of significance
comparing in turn all the cutting levels of
two dendrograms, using Fowlkes and Mal-
lows (1983) statistic computed on a match-
ing matrix..

THE NEED FOR A SPECIFIC TEST
TO COMPARE CLASSIFICATIONS

Let us come back to the formulation of
the null hypothesis for comparing classi-
fications. The objective is to test the sig-
nificance of the resemblance—measured
possibly by consensus indices—between
two real classifications of the same OTUs.
This objective may be made operational by
testing whether two classifications based
on real data are more closely related than
two random dendrograms. The null hy-
pothesis can then be stated as follows: the
two classifications are no more similar than
expected from pairs of dendrograms ran-
domly selected from the populations to
which the two real dendrograms pertain.

The approach used by Shao and Rohlf
(1983) and by Shao and Sokal (1986) to test
the significance of consensus indices be-
tween trees pertains to this family. They
performed elaborate simulations to eval-
uate the sampling distribution of ten con-
sensus tree methods and eight consensus
indices. Their approach is designed, how-
ever, to compare labeled binary trees or
n-trees. It does not take into consideration
the hierarchical levels of fusion that form
a prime component of dendrograms.

To overcome this shortcoming of most
consensus techniques, Rohlf (1982) has
proposed using matrix correlations (called
“cophenetic correlations” in Sneath and
Sokal, 1973) as consensus indices, since the
direct comparison of ultrametric “cophe-
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netic” matrices is equivalent to the com-
parison of the associated dendrograms.
Correlation statistics, either parametric
or nonparametric, cannot be tested in the
usual way, however, because individual
values within distance matrices are not in-
dependent of one another. The Mantel
(1967) randomization test represents a so-
lution to the problem of comparing resem-
blance matrices. It is also called the
Quadratic Assignment Procedure in psy-
chometrics (Hubert and Schultz, 1976).
Notice that the standardized form of the
Mantel statistic is equivalent to a Pearson’s
correlation coefficient computed over the
distance values in the two resemblance ma-
trices. When this statistic is computed over
cophenetic matrices, it is the same as the
matrix correlation index advocated by
Rohlf (1982). The difference with the clas-
sical test of the Pearson product-moment
correlation coefficient lies in the fact that
the Mantel test proceeds by randomization
to assess the significance of the correlation
statistic. Contrary to most consensus in-
dices, both the fusion levels and the dis-
tribution of the matrix elements can be tak-
en into account in the Mantel test.
Accordingly, Hubert and Baker (1977) have
proposed to extend the use of the Mantel
method, originally designed to compare
resemblance matrices, to measure the as-
sociation between two cophenetic matri-
ces. While this technique is directly appli-
cable to dendrograms, it does not fully
correspond to the null hypothesis that we
would like to test. A permutation test of
this kind simply rearranges the rows and
columns of the matrices in all possible ways.
This corresponds to a randomization of the
OTU positions on the nested tree, while
keeping its topology and fusion levels con-
stant. Therefore, it does not test whether
two trees are topologically similar, but in-
stead it compares only the position of the
OTUs on two dendrograms without any
reference to the underlying topology. This
does not correspond to the generation of
completely random classifications.
Although the consensus tree distribu-
tion. method.and the cophenetic matrix
technique do not solve, alone, the problem

of comparing classifications, we would like
to show that combining them does produce
an acceptable test of the consensus be-
tween nested classifications.

DEFINITION OF A NESTED
CLASSIFICATION

There are several types of classification
(Sneath and Sokal, 1973). One of them can
be represented by a dendrogram, which is
a rooted tree of non-overlapping groups
with fusion levels organized in a hierar-
chic way. This type of classification has
three formal properties:

1. The tree topology and the position of
the root must be specified. In evolu-
tionary biology, this information con-
ceptually represents the bifurcation se-
quence of the phyletic lineages leading
to present-day taxa.

2. A scale must be given, to which the
levels of hierarchic fusion are related;
the position of those levels must be giv-
en. The scale provides information about
the degree of resemblance between two
sister-taxa. If we consider the scale to
be time-related -(constant evolutionary
clock hypothesis), the fusion levels may
then be thought of as representing the
relative dates of divergence of the taxa.

3. The position of the OTUs on the ter-
minal edges (“leaves”) of this tree must
be given; the tree must be labeled. Those
labels are generally the species, or any
other supraspecific taxa that we want to
classify or the phylogeny of which we
want to retrace.

All three aspects are essential. When one
is missing, a classification can no longer be
represented by a hierarchical dendrogram
but degenerates into a scale-less binary or
n-tree (no scale), an unlabeled nested tree
(no specified leaves), a network (no root),
or an ordination (no tree topology). Notice
that a dendrogram is not necessarily a bi-
nary tree; it is called an n-tree (McMorris
et al., 1983) when some fusion levels are
equal.

Figure 1 illustrates four classifications
that differ from one another in at least one
aspect of the definition of a dendrogram.
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FiG. 1. Four nested classifications that differ in at
least one aspect of the definition of a dendrogram.
See text for details.

T, and T, have different topologies, T, and
T, have different leaf positions, while T,
and T, though having the same topology
and leaf positions, still differ because of
their fusion levels. The two most dissimilar
classifications are T, and T4 because they
are different in all three aspects.

Considering the three characteristics
above, a randomization test comparing
dendrograms requires that we generate
classifications that are random with respect
to all three criteria. A random classifica-
tion, acceptable as a realization of the null
hypothesis, will then have a random to-
pology, random fusion levels and random
leaf positions. Hubert and Baker (1977)
randomized only the positions of the
leaves, so that they did not meet this def-
inition of a random dendrogram. Shao and
Sokal (1986) generated random trees but
did not randomize the fusion levels, which
is an important aspect of the definition. We
will propose now a randomization proce-
dure for all three aspects of a nested clas-
sification, following a “double-permuta-
tion” procedure.

CONDITIONS TO GENERATE
RANDOM DENDROGRAMS

When generating random trees, one has
to conform to a null distribution. Various
authors (Rosen, 1978; Savage, 1983; Page,
1988) proposed different distributions from
which the trees can be sampled randomly.

All agree with Simberloff et al. (1981) who
defined three hypotheses of tree distribu-
tion: a) every topology is equiprobable, b)
every tree is equally probable, and c) when
growing a random tree, the location of the
next branching node is equiprobably dis-
tributed among all growing tips (strictly
Markovian dichotomous branching pro-
cess with branching points equiprobable).
The trees generated by the double per-
mutation procedure (described beneath) are
equally probable, as described in the sec-
ond hypothesis of Simberloff et al. which
is also called the proportional-to-distin-
guishable-types hypothesis. Therefore, the
different topologies that result from the
randomization process appear in propor-
tion to the number of distinguishable trees
with that same topology. Shao and Sokal
(1986) also worked under the random tree
hypothesis.

Notice that we don’t want to simply gen-
erate random trees, but random dendro-
grams. This implies generating random fu-
sion levels as well as random topologies.
Those levels must be sampled from a dis-
tribution corresponding to the resem-
blance coefficients on which the dendro-
grams to be compared are based. Hajdu
(1981) and Gower and Legendre (1986) have
shown that the values produced by the var-
ious resemblance coefficients follow dif-
ferent distributions. Consequently, an easy
way to insure that the random dendro-
grams will obey the correct fusion level
sampling distributions is to simply ran-
domize the actual fusion levels during the
generation of random dendrograms. This
constraint prevents fusion levels from tak-
ing incorrect values, thus removing that
possibility of bias from the results of the
test.

DOUBLE-PERMUTATION PROCEDURE
FOR RANDOM DENDROGRAMS

As mentioned above, any classification
can be translated into a “cophenetic” ma-
trix; the classification and the cophenetic
matrix both contain exactly the same in-
formation. Furthermore, if no reversal is
present in the classification, the cophenetic
matrix is also ultrametric; strictly hierar-
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chical dendrograms do not contain re-
versals. Randomizing this matrix for all
three aspects of our definition should gen-
erate a random classification which is ac-
ceptable as a realization of the null hy-
pothesis. The following procedure, which
allows every possible dendrogram to occur
equiprobably, is carried out independently
for each of the two matrices being com-
pared.

1) Permutation of the tree structure (topology
and fusion levels).—To fulfill the random-
ness requirement when permuting the tree
structure, we will take advantage of the
inequality defining the ultrametric axiom.
The algorithm proceeds in three steps:

* Read the fusion levels: First, we construct
a vector V containing the (n — 1) simi-
larity levels V;; of hierarchic fusion be-
tween elements (leaves, OTUs, ...) of a
tree T. In Figure 2, for instance, the 4
fusion levels for 5 objects in tree T, are
0.17, 0.44, 0.72 and 0.84.

* Permute the fusion levels: Permuting V at
random enables us to generate any one
member of the set of all possible random
fusion level orders, and thus all topolo-
gies corresponding to this given set of
hierarchic levels. These unlabeled trees
appear in proportion to the number of
different combinations of OTUs that they
can distinguish. Suppose that a permu-
tation of the vector V produces the values
in the following order: 0.84, 0.72, 0.44
and 0.17. Let us write these values, in that
order, in the off-diagonal of an empty
cophenetic half-matrix. This defines the
fusion levels between objects 1 and 2, 2
and 3, 3 and 4, and 4 and 5 respectively,
as in Figure 2, tree T..

e Fill the random matrix: The well-known
ultrametric property tells us that

Vi = min(V,;, V;,) where i, j and k € OTU

where OTU = {1, 2, ..., (n — 1), n} is
the set of n OTUs. From the similarity
levels in vector V, the entire ultrametric
matrix can be filled by using the ultra-
metric formula V,; = min(V,,;, V). In Fig-
ure 2, tree T, for instance, V,; = min(V,,,
V,s) = min(0.84, 0.72) = 0.72. This first

1.0

84
7
44 =
17
T»
0.0 Ta
44070172 4407 .77
17 17 44 17 17 44
84 17 84 17
7 17
IDI =-346; SIDI=-1.00; NISI =1.00
1 2 3 4 5 1 3 2 4 s
10
84
7
44 ES
17
Ta
00 Te
84 72 44 .17 72 84 417
72 44 17 72 4417
a8 17 4417
m 17

IDI = -3.92; SIDI =-0.942; NISI=0.971

FiG. 2. The need for a standardization of the In-
termediate Dissimilarity Index (IDI). Classifications
T, and T, are identical but are considered less similar
by IDI (higher value) than classifications T, and T,,
which are different. The ultrametric similarity matrix
is presented under each tree.

procedure fills the randomness require-
ments simultaneously for the topology
and for the fusion levels by a simple per-
mutation of fusion values. The leaf po-
sitions are not specified yet.

2) Permutation of the OTUs.—To obtain a
random labeled dendrogram instead of a
random unlabeled topology, the set of ob-
ject numbers is permuted at random, and
these numbers are attributed in that new
order to the n terminal edges of the random
dendrogram. Figure 2, T,, shows a tree with
a topology identical to T,, but with differ-
ent labels generated by the permutation of
the OTUs. This random positioning of the
leaves on the topology corresponds to the
permutations of the rows and columns of
the matrix in a Mantel test.

3) Final step.—The randomized ultra-
metric matrix is re-written in the original
object order, so that the two matrices will
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remain comparable. For instance, Figure 2,
could not easily be compared because the
order of the objects is not the same. One
of the two cophenetic matrices has to be
re-written in a different order to make them
comparable. Alternatively, in program-
ming, one can use a vector of indirection
indices to provide the order of the object
numbers.

A statistical test for comparing classifi-
cations is obtained by adding two proce-
dures to this algorithm:

* Choose and compute a consensus statistic
between the pair of real classifications on
the one hand, and between pairs of ran-
dom tree ultrametric matrices on the oth-
er. The statistic described below pertains
to the family of similarity functions.
Compare the value of this consensus sta-
tistic, obtained for the pair of real clas-
sifications, to the distribution of values
for some large number of pairs of random
ultrametric matrices. If the actual value
of the statistic is one likely to have oc-
curred under the null hypothesis, then
H, is accepted; if it is so large as to be
considered an unlikely result under H,,
then H, is rejected.

This statistical scheme represents a gen-
eral randomization test for the resem-
blance between dendrograms. Details of
the double-permutation procedure are
available upon request from the authors.
A PASCAL program is also available to
compute the double-permutation test.

As mentioned above, this procedure is
not intended to produce all possible ran-
dom classifications for n objects. It can gen-
erate only the dendrograms corresponding
to the fusion levels of the real input ma-
trices. This constraint, justified above, re-
duces the number of possible random trees
when some fusion levels are equal. If we
compared, for example, a hierarchical den-
drogram to a “bush” (a tree with all fusion
levels equal), we are not interested to know
(H,) whether these two dendrograms are
more similar to one another than most pairs
of random classifications, but instead (H,')
whether the fully hierarchical solution is
among the closest approximations of a bush

that one could get from a given vector of
fusion levels. The null hypothesis tested
with this algorithm asserts that the simi-
larity value between the two real classifi-
cations is as small as the similarity between
most pairs of random matrices containing
the same levels of hierarchic fusion. The
test must be one-tailed, because only the
highest values of consensus, on a similarity
scale, are reasons to reject the null hypoth-
esis. The probability of the null hypothesis
being true is obtained by counting the
number of pairs of random ultrametric ma-
trices with a similarity statistic as large as
or larger than the similarity value for the
pair of real classifications, divided by the
total number of permutations; following
Dwass (1957) and Hope (1968), the con-
sensus value for the pair of real classifi-
cations is counted as one of the members
of the reference distribution and is thus
added to both the numerator and the de-
nominator before computing the proba-
bility.

THE COMPARISON CRITERION, NISI

A choice has to be made between differ-
ent measures of resemblance (consensus)
for ultrametric matrices. Faith (1984) has
defined three kinds of association mea-
sures for pairs of resemblance matrices,
based on their pattern of sensitivity. The
first type (equation 1 below) captures the
similarity shared by two classifications,
while the second (equation 2) measures the
difference between the two matrices. These
salient properties, found in all indices of
type 1 or type 2, can be summarized as
follows, with A; and B; representing simi-
larities between OTUs i and j in the first
and the second matrix respectively:

Co = ZZ min(A;, By) 1)
Cu = ZZ|A; — Byl )

where, following Day’s (1983) nomencla-
ture, Co is the organized complexity and
Cuisthe unorganized complexity. It is then
obvious that these two types of measures
evaluate different aspects of the resem-
blance between classifications. Co and Cu
do not add up to one. Various authors have
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TaBLE 1. Terminologies used by different authors to refer to measures of association between classifica-

tions.

Similarity measure

Dissimilarity measure

References

Organized complexity (Co)
Minimum value sensitivity
Consensus similarity

Unorganized complexity (Cu)
Separation sensitivity
Metric dissimilarity

(Day, 1983)
(Faith, 1984)
(Faith and Belbin, 1986)

called these two types of measures by dif-
ferent names (Table 1).

The third pattern of association de-
scribed by Faith (1984) combines the “sep-
aration sensitivity” (Cu) with the “mini-
mum value sensitivity” (Co) properties
(Table 1) into an intermediate type. These
intermediate-type measures of association
have the advantage of combining different
association indices into simple linear al-
gebraic expressions (Day and Faith, 1986).
The Intermediate Dissimilarity Index (IDI)
proposed by Faith and Belbin (1986), is an
example of the third pattern of association:

IDI = 22[|A; — B;| — min(4; By)] (3)

This equation could also be expressed as
follows:

IDI* = ZZ(Cu; — Coy) 4)

Now, one could argue about which
equation better reflects the association be-
tween two classifications. We have decided
to use the intermediate dissimilarity index
of Faith and Belbin (1986) in our test of the
consensus between ultrametric matrices for
dendrograms. This index (equation 3)
seems to be appropriate for our study (see
application, below) because, as argued by
Faith and Belbin, their compromise-con-
sensus measure is highly informative. In
its actual form, the IDI coefficient is de-
signed to compare similarity matrices
scaled between 0 and 1. When using this
index with distances matrices, one has to
transform thé fusion levels into similari-
ties using a standardization of the level
values between 0 and 1. The reader who
prefers to do so is free to change this equa-
tion for one that he feels is more appro-
priate to his study, since the validity of our
permutation test does not depend on the
choice of a specific measure of consensus.

Of course, changing the consensus mea-
sure may change the outcome of the test.

Since this index is a difference between
two terms, the result may be positive or
negative, depending on which is the larg-
est term in the equation. The lowest and
highest values that can be obtained from
this measure are —Co and Cu, when the
other term equals zero. The more negative
the IDI value is, the more similar are the
two classifications.

We standardize the index between fixed
minimum and maximum values, to insure
that two different dendrograms will not
appear to have a smaller dissimilarity than
two identical classifications. Figure 2 shows
an example where this could occur. With-
out standardization of the intermediate
dissimilarity index, two identical trees

_could have been declared statistically dif-

ferent after the permutation test. To make
sure that the lowest possible dissimilarity
is that of two identical dendrograms dur-
ing the generation of the reference statis-
tical distribution of consensus index val-
ues, we divide the intermediate
dissimilarity index by the largest of the
two terms in equation 4, Co or Cu, to obtain
a standardized intermediate dissimilarity’
index (SIDI) ranging from —1 to +1:

2Z2[|A; — B;| — min(4;, B;)]
IDI = 2 V) 1 q
5 MAX )
where MAX =
max[ZZ|A; — B;|, ZZ min(A;, B;)] (6)

The minimum SIDI value (—1) is found for
two identical classifications, while the
maximum value (+1) corresponds to the
consensus between a hierarchical dendro-
gram and a bush whose single fusion level
is zero (Fig. 3). The maximum distance
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FiG. 3. Maximum and minimum values that could
be taken by the Standardized Intermediate Dissimi-
larity Index (SIDI). (a) Maximum consensus. (b) Min-
imum consensus. The ultrametric similarity matrix is
presented under each tree.

(minimum consensus) will rarely be found
in real taxonomic studies.

To normalize the index values between
0 and 1, the equation of the intermediate
dissimilarity is modified into a Normalized
Intermediate Dissimilarity Index as fol-
lows:

NIDI = 7)
1+ [(ZZ( |A; — Bijl — min(A;, B;)))/ MAX]
2

Expressing this equation 7 in terms of sim-
ilarity, we obtain:

NISI = 1 — NIDI (8)

where NISI is the Normalized Intermedi-
ate Similarity Index. Transformed in this
way, the Faith and Belbin index loses its
specificity to distinguish among identical
trees those that share more “organized
complexity” than others, but it retains all
its properties when comparing non-iden-
tical dendrograms. Using this transformed
consensus index NISI, two identical clas-
sifications always have a maximum simi-
larity of 1 independent of the range of their

NISKT 4 ,Tp )= 0.850
NISKT s ,T¢ )=0.786

FiGc. 4. Sackin’s concept applied to the comparison
of classifications.

fusion levels. The higher the consensus be-
tween two non-identical classifications, the
larger the NISI value is. This is in agree-
ment with the “good phenogram” concept
of Sackin (1972) who stated that a classi-
fication with higher fusion levels is better
than a classification with the same topol-
ogy but lower hierarchic levels of fusion.
The application of this assertion to the
comparison of classifications means that in
otherwise identical pairs of nested trees,
T, and T, will be considered more similar
than T, and T. if the (T,, T,) pair has higher
organized complexity Co (higher value of
22 min[A;, B;]) (Fig. 4).

SPECIAL COMPARISONS REQUIRING
LIMITED PERMUTATIONS

The general procedure requiring total
permutations is not always adequate. It may
prove to be irrelevant for special classifi-
cation comparisons. Consider, for instance,
the comparison of two dendrograms when
both contain two identical, well-identified
subsets of the same objects. An example is
given in Figure 5. As will be shown below,
a test of the consensus between these clas-
sifications, by complete randomization of
both matrices, always rejects the null hy-
pothesis of no consensus between these

_ classifications, due to the trivial but pre-

dominant influence of the two-subset
structure.

This type of situation is often found in
taxonomic studies, when authors agree on
the position of families but classify genera
differently within these families. A test al-
lowing genera of distinct families to be
mixed by permutation will generate a vast
majority of random trees less similar than
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FiG. 5. A special case requiring limited permutations. The ultrametric similarity matrix is presented under

each tree.

the two real dendrograms. Another situa-
tion would be the comparison of two area
dendrograms concerning the same geo-
graphic areas, in biogeographic analysis,
when a major vicariant event, such as con-
tinental drift, unquestionably creates two
major groups of areas that form the main
partition in each of the two dendrograms.
To test correctly the consensus in these
special conditions, we need either to test
the two families or major areas separately,
and then combine the probabilities, or more
easily to limit the permutations to within
the subsets only, instead of permuting all
OTUs and fusion levels. These are the two
ways of dealing with a conditional null
hypothesis stating that within each subset
the two trees do not share information. Let
us illustrate this point.

Frank and Svensson (1981) have shown
that for n objects, the number of possible
dendrograms with distinct fusion levels
(i.e., binary dendrograms) is equal to

nl(n—1)!/2"? 9)

if all the fusion levels are different. For the
7-OTU case of Figure 5, the number of ran-

dom classifications generated by the per- .

mutation of a (7 X 7) matrix is 56,700. The
total number of comparisons involving all
permutations of both matrices is then
(56,700)?, or about 3.2 X 10°. Under a con-
ditional null hypothesis, the number of
possible random trees is 54 for each clas-
sification when allowing only for limited
permutations, which gives a total number
of possible permutations of (54)> = 2,916.

This means that virtually all the permu-
tations produced by complete randomiza-
tion are not relevant and should not be
used to test the conditional null hypothesis
of interest. Since most of these permuta-
tions would produce NISI values that are
smaller than the index value for the real
dendrograms, the test would always turn
out to be significant. Empirical studies show
that the consensus between pairs of clas-
sifications involving major common sub-
sets of OTUs is always significant when the
test is done by complete permutations.

Indeed, the classifications of Figure 5
prove to be statistically similar when com-
pared by total permutations (NISI: 0.93204,
p(H,) = 0.00599), while limited permuta-
tions provide opposite results (NISI:
0.93204, p(H,) = 0.61067). We could have
obtained the same probability of the null
hypothesis by comparing each subset in-
dependently before combining the prob-
abilities: the product of the probabilities of
the consensus associated with each subset
(p(H,), = 1.00, p(H,), = 0.60159), obtained
by sampling 10,000 times the set of the
possible permutations, is equal to the prob-
ability of the limited permutation test
(p(Hy), x p(H,), = 0.60159 = 0.61067 =
P(Ho)imited perm.)- The slight discrepancy be-
tween the probability values is due to sam-
pling error.

APPLICATION TO KANGAROO
CLASSIFICATION

We offer the following example of an
application of the test of consensus be-



10 SYSTEMATIC ZOOLOGY

voL. 39

S M. fuliginosus

M parryi
M. rufogriseus

M. rufa

M. robustus
—1 e

M. agilis

M.irma

__|

0.37 0.58
L 1

Wallabia

1.00

0.79
1 1

— M. rufa

L M.robustus

- M. eugenii
_—: M. agilis
M. irma

Wallabia

M. fuliginosus

M. parryi
—:: M. rufogriseus

FiG. 6. Classifications of the Macropodidae derived from different datasets, nine species. (a) Electrophoretic
data from Richardson et al. (1973). (b) Serological data from Kirsch (1977).

tween dendrograms, involving an uncon-
ditional null hypothesis. The taxonomic
problem under study, that triggered our
interest in classification comparison meth-
ods, is whether different published kan-
garoo datasets are congruent in the clas-
sifications they lead to.

Kirsch (1977) has studied serological re-
lationships within several Marsupial fam-
ilies. His work is considered to be provid-
ing a sound model for Macropodid
(kangaroo) taxonomy. Will different char-
acter sets also lead to Kirsch’s classifica-
tion? In particular, Avise (1974) and
Baverstock et al. (1979) argued that elec-
trophoresis does produce good taxonomic
characters. Richardson et al. (1973) at-
tempted to substantiate this assertion for
the kangaroos, but their work was not sta-
tistically conclusive. We want to test here
the statement that electrophoretic data and
serological characters yield congruent
dendrograms.

In a first-test, we chose nine species for
comparison, all from the single sub-family

Macropodinae; eight of them are from genus
Macropus and the other one is a Wallabia;
only nine species are used in this first ex-
ample in order to avoid using limited per-
mutations. We computed the electropho-
resis similarity matrix from Richardson et
al.’s published dataset, using Jaccard’s sim-
ilarity coefficient. Dendrograms were con-
structed using a variety of clustering meth-
ods; the one with the highest cophenetic
correlation was obtained from the UPGMA
method (Fig. 6a). The serological dendro-
gram (Fig. 6b), on the other hand, is given
by Kirsch (1977). We compared these two
classifications to measure the consensus
between the two taxonomic solutions. In
order to evaluate the distribution of the
consensus statistic NISI, we computed 5,000
permutations out of the (57,153,600)?, or
about 3.27 X 10, that are possible when
comparing two classifications of nine ob-
jects. The normalised intermediate simi-
larity index for this pair of matrices proved
not to be significant at level a = 0.05 (NISI
=0.82927, p(H,) = 0.53589: one-tailed test).
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F1G.7. Classifications of the Macropodidae derived from different datasets, eight species pertaining to two
distinct groups. (a) Electrophoretic data from Richardson et al. (1973). (b) Serological data from Kirsch (1977).

We conclude from this statistical result that
the electrophoretic and serological data did
not produce statistically similar dendro-
grams. Those who believe that Kirsch’s
classification is correct are led to the con-
clusion that, contrary to the statement of
Richardson et al. (1973), electrophoresis did
not produce “good taxonomic characters”
in this case.

To illustrate the use of limited permu-
tations, the same datasets were compared
again, for species pertaining to two distinct
subsets (Fig. 7). For the purpose of the dem-
onstration, we chose eight species divided
equally in two subgroups. We would like
to point out that we could have used more
thantwo groups, and that the groups need
not have the same cardinality. The first

group contains four Macropus species, while
the second one contains representatives of
genera Thylogale (two species), Setonix and
Petrogale (one species each). The classifi-
cations based on electrophoretic (Fig. 7a)
and on serological (Fig. 7b) data both trace
the dichotomy between the two subsets.
We computed 5,000 permutations out of

- the (396,900)* possibilities for eight objects

to evaluate the distribution of the statistic
NISI. The general randomization test al-
lowing every permutation to occur rejects
the null hypothesis (stating that there is
no consensus between these dendrograms)
at level o = 0.01 (NISI = 0.83282, p(H,) =
0.00979). Limited permutations lead to the
opposite conclusion (NISI = 0.83282, p(H,)
= 0.60878). Although both classifications
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find the same major partition, the position
of the species in the two higher subsets is
not statistically similar.

These applications illustrate the fact that
total permutations do test mainly for the
presence of similar partitions at higher
levels of the hierarchy. The fine compo-
sition of these higher subsets may be an-
alysed through the use of a conditional null
hypothesis involving limited permuta-
tions.

CONCLUSION

A recent trend in evolutionary studies is
to try to test evolutionary hypotheses, trad-
ing simple descriptions of taxonomic struc-
tures for predictions. Recent developments
in consensus theory have led to some
methods for the statistical comparison of
evolutionary trees. These tests are de-
signed to evaluate clearly specified hy-
potheses:

1. The comparison of binary trees on the
sole basis of their bifurcation sequence,
ignoring the fusion levels of the hier-
archy (Shao and Sokal, 1986).

2. The comparison of partitions involving
terminal edges of a tree, without ref-
erence to the underlying topology (Hu-
bert and Baker, 1977).

In this paper, we proposed a test which
is a combination of these two comparison
schemes. It should be applied to the com-
parison of classifications when all three as-
pects of the two rooted trees are seen as
essential components of the description of
these classifications: topology, leaf posi-
tions, fusion levels. It is not meant to re-
place other methods. Instead, it is proposed
as a refinement of earlier tests. A further
point to remember is that it must be used
only to compare classifications that are
based on different datasets, and not to com-
pare different methods of classification, be-
cause from the same data, different meth-
ods will produce solutions that are not
independent, which makes the null hy-
pothesis very unlikely to be supported in-
deed.

Further research is needed in this new
area of the statistical comparison of trees.

The next problem to be solved is the com-
parison of phylogenetic trees, that is, bi-
nary trees with patristic distances. To do
this, one must first be able to produce ran-
dom patristic matrices, in order to evaluate
the distribution of the consensus statistic.
Since no such test is available at the mo-
ment, one could use in the meantime our
double permutation procedure and com-
pare dendrograms derived from the pa-
tristic distance matrices.
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