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Abstract
Aim: Community variation (i.e. beta diversity) along geographical gradients is of sub-
stantial interest in ecology and biodiversity reserves in the face of global changes. 
However, the generality in beta diversity patterns and underlying processes remains 
less studied across trophic levels and geographical regions. We documented beta di-
versity patterns and underlying ecological processes of stream bacteria, diatoms and 
macroinvertebrates along six elevational gradients.
Locations: Asia and Europe.
Methods: We examined stream communities using molecular and morphological 
methods. We characterised community uniqueness with local contributions to beta 
diversity (LCBD), and investigated the drivers of its geographic patterns using Mid-
Domain Effect (MDE), coenocline simulation, Raup-Crick null model approach, and 
through comparisons to environmental factors. MDE is a stochastic model by consid-
ering species elevational range, while coenocline simulation is a deterministic model 
by considering species niche optima and tolerance. The null model provides possible 
underlying mechanisms of community assembly with the degree to which determinis-
tic processes create communities deviating from those of null expectations.
Results: Across all taxa, we revealed a general U-shaped LCBD-elevation relationship, 
suggesting higher uniqueness of community composition at both elevational ends. 
This pattern was confirmed and could be explained by both stochastic and determin-
istic models, that is, MDE and coenocline simulation, respectively, and was supported 
by the dominance of species replacement. Temperature was the main environmen-
tal factor underlying elevational patterns in LCBD. The generalists with broad niche 
breadths were key in maintaining community uniqueness, and the higher relative im-
portance of deterministic processes resulted in stronger U-shaped patterns regard-
less of taxonomic group.
Conclusions: Our synthesis across both mountains and taxonomic groups clearly 
shows that there are consistent elevational patterns in LCBD among taxonomic 
groups, and that these patterns are explained by similar ecological mechanisms, pro-
ducing a more complete picture for understanding and bridging the spatial variation 
in biodiversity under changing climate.
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1  | INTRODUC TION

Geographical transects on the Earth, for example, elevation and 
water depth, usually cover biological communities and environmen-
tal factors in a gradient of ecosystems (called ‘ecocline’ by Clements, 
1936). The corresponding community gradients, called ‘coenocline’ 
(Whittaker, 1960, 1967), have been documented for over two centu-
ries by Linnaeus and his contemporaries (cf. Lomolino, 2001). Their 
studies show that along elevational gradients there is a compressed 
and very orderly succession of climate, vegetation zones, animal 
communities (Grytnes & McCain, 2007; Lomolino, Sax, & Brown, 
2004; McCain, 2009; Morueta-Holme et al., 2015; Rahbek, 2005), 
and more recently, also of microbial communities with a clear zo-
nation (e.g. Wang, Pan, Soininen, Heino, & Shen, 2016). The char-
acteristics of biodiversity along geographical coenoclines are of 
substantial interest as they shed light on the identification of the un-
derlying mechanisms of biodiversity distributions, the development 
of ecological theories, and the examination of biodiversity response 
in the face of global changes (Clarke, Mac Nally, Bond, & Lake, 2008; 
Fukami & Wardle, 2005; Legendre & De Cáceres, 2013; Martiny et 
al., 2006). Thus, the generality in biodiversity patterns is import-
ant to be examined along geographical gradients, such as elevation 
(Rahbek, 2005; Rahbek et al., 2019; Wang et al., 2017).

Changes in species composition through space, that is, beta di-
versity, are as important as alpha diversity for ecological applications 
and theory, and have also long been of great interest to ecologists 
(Whittaker, 1960, 1967). The concept of beta diversity was first 
proposed by Robert Whittaker (1960) to be quantified with non- 
directional beta diversity, namely the ratio between the number of 
species in a region (i.e. gamma diversity) and the mean number of 
species at the study sites (i.e. alpha diversity). Beta diversity can also 
be measured non-directionally as community similarity among stud-
ied sites (Whittaker, 1972), and as the slope of similarity decay in 
species composition with geographical distance (Harte, McCarthy, 
Taylor, Kinzig, & Fischer, 1999; Soininen, McDonald, & Hillebrand, 
2007). In general, these approaches to estimating beta diversity are, 
however, inevitably numerically related to alpha and gamma diver-
sity (Kraft et al., 2011).

By adopting the total variance of community data as an estimate 
of beta diversity, Legendre and De Cáceres (2013) proposed a new 
approach, computationally independent of alpha and gamma diver-
sity. This approach allows researchers to partition beta diversity into 
local contributions to beta diversity (LCBD). Local contributions to 
beta diversity can be used to quantify the relative contributions of 

individual sites to total beta diversity, and to test whether individual 
sites have an exceptionally high contribution to overall beta diver-
sity. When beta diversity is measured as the total variance captured 
by dissimilarity measures (e.g. Jaccard, Sørensen indices), total beta 
diversity can be decomposed into local contributions to replace-
ment (ReplLCBD) and richness differences (RichDiffLCBD) (Legendre, 
2014). Lower species richness or higher dissimilarity of community 
composition thus may cause higher LCBD. These new developments 
enable ecologists to answer precise ecological questions and to test 
hypotheses about the origin and maintenance of beta diversity in 
ecosystems; they also allow to identify the sites with unique envi-
ronmental conditions and communities, the sites plagued by inva-
sive species or those with high conservation values (Legendre & De 
Cáceres, 2013).

Beta diversity along coenoclines on mountainsides has long been 
extensively examined among macroorganisms (e.g. higher plants and 
animals). Elevational beta diversity is often used to infer variation 
in the processes structuring communities and the results obtained 
are comparable with those of latitudinal gradients (e.g. Kraft et al., 
2011). For plants, beta diversity showed monotonically decreasing 
(Kraft et al., 2011) and hump-shaped (Tello et al., 2015) patterns to-
wards high elevations. However, elevational beta diversity for mi-
croorganisms has been receiving increasing attentions only recently 
(e.g. Wang et al., 2012). Stochastic processes (i.e. dispersal, ecolog-
ical drift) have been shown to be less likely dominant in structuring 
spatial variations in bacterial assemblages in various habitats rang-
ing from subsurface environments, soil, stream, to lake (Wang et al., 
2013). The mid-domain effect (MDE), a stochastic model consider-
ing only geometric constraints on species geographic ranges, could 
generate a mid-domain peak or plateau in species richness (Colwell 
& Lees, 2000), and further affect the geographic patterns in beta 
diversity. The focal question to be answered is whether general ele-
vational patterns in beta diversity for microbes exist – and if so, what 
are the main drivers behind elevational patterns in beta diversity? 
Moreover, a fruitful approach would be to compare the elevational 
patterns in beta diversity of microorganisms with those of macroor-
ganisms from the same ecosystems and spatial scales.

Here, we examined the elevational patterns in beta diversity 
along the coenoclines of stream micro- and macroorganisms at the 
same sites of six mountains from Europe and Asia continents, and 
investigated the underlying drivers for the observed elevational 
patterns. Streams represent important aquatic ecosystems em-
bedded within the terrestrial landscape in mountain regions, and 
provide a great variety of habitat types and disproportionately 
high biodiversity (Vörösmarty et al., 2010). For the streams of each 
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mountain, we used LCBD and its relative metrics (i.e. ReplLCBD 
and RichDiffLCBD) to quantify beta diversity. Our main questions 
were: (a) Are there general elevational patterns in LCBD across the 
three taxonomic groups? (b) Can the observed LCBD patterns be 
repeated and supported with MDE and simulated coenoclines, for 
example, based on the observed communities along elevations? (c) 
What are the dominant ecological processes and important envi-
ronmental variables affecting LCBD? Such experiment design with 
the true replication across taxonomic groups and mountains over 
a large spatial scale enables the generality of the findings on the 
approached research questions for the elevational patterns of com-
munity composition.

2  | MATERIAL AND METHODS

2.1 | Study area and field sampling

We sampled six streams along mountainsides in three regions: (1) 
one stream in the Balggesvarri Mountain in Norway in July 2012, 
(2) one stream in Pyrenees Mountain in Spain in October 2012, and 
(3) four streams in Hengduan Mountain region in China (Wang et 
al., 2017). For the latter, we used the stream samples from Laojun 
Mountain collected in October 2009 (Wang et al., 2011), comple-
mented by three streams in Haba, Meili and Yulong Mountains in 
October 2013 (Wang et al., 2017), all in Yunnan Province, China. 
These six different mountains covered great climatic variations 
(Table S1) and thus the generality in the observed patterns in beta 
diversity may be expected. By following the same protocols as in 
Wang et al. (2011), each study site was divided into five or 10 cross-
sections, depending on the stream width. For diatoms and bacteria, 
10 stones were selected randomly from riffle/run habitats along 
these sections. Biofilm was scraped off the stones for subsamples 
from a predefined area (9 cm2) using a toothbrush (for diatoms) or 
a sterilized sponge (for bacteria). We collected four kicknet samples 
of macroinvertebrates from stony riffle/run habitats. Biofilm bac-
teria and diatoms were obtained from all six mountains, whereas 
macroinvertebrates were sampled in the four mountains of China. 
We measured environmental characteristics in situ, such as latitude, 
longitude, elevation, shading (% canopy cover), water depth, current 
velocity, width, substratum particle size, water conductivity, pH and 
temperature. More details on field sampling could be found in previ-
ous reports (Wang et al., 2017, 2011).

2.2 | Physical, chemical and climatic variables

Total phosphorus (TP) was analysed by peroxodisulphate oxidation 
and spectrophotometric method (Wang et al., 2017). Chromophoric 
dissolved organic matter (cDOM) abundance was measured by the ab-
sorption coefficient of cDOM at wavelength 355 nm (m-1) (Wang et al., 
2017). To indicate spatial patterns in temperature, we used mean annual 
temperature (MAT) obtained from WorldClim (Hijmans, Cameron, Parra, 

Jones, & Jarvis, 2005). We did not include nitrogen variables, such ni-
trate, because they were below detection limit for the water in Norway.

2.3 | Biological communities

Macroinvertebrates were identified to the lowest category level (e.g., 
species) when possible using standard keys (Morse, Yang, & Tian, 
1994) as in our previous studies (Wang et al., 2011, 2017). The dia-
tom and bacterial communities were obtained following our previ-
ous studies (Wang et al., 2011, 2017). Briefly, for diatoms, a total 
of 500 frustules per sample were identified to species level using 
phase-contrast light microscopy (magnification 1000×). For bacteria, 
16S rRNA genes were amplified using bacterial primers (515F and 
806R) (Wang et al., 2017), and were sequenced with Illumina MiSeq 
(Illumina, San Diego, CA, USA). The sequences were clustered into 
OTUs at 97% pairwise identity with uclust algorithm (Edgar, 2010). 
We randomly subsampled 10,000 sequences per sample, and the 
relative abundance of each species was calculated for each sample.

2.4 | Statistical analyses

We quantified biological community differences with beta diversity 
following Legendre and De Cáceres (Legendre & De Cáceres, 2013). 
The total beta diversity for each mountain (BDTotal) was estimated as 
the variance of the Hellinger-transformed community data matrix, 
and was decomposed into the relative contributions of individual el-
evations, called LCBD (Legendre & De Cáceres, 2013). The Hellinger 
transformation is suitable for abundance data because it gives low 
weights to species with low counts and many zeros (Legendre & 
Gallagher, 2001), which is especially true for microbial data. The 
LCBD indices were calculated as the row sums of the squared de-
viations from the species means in the abundance matrix, divided 
by the total sum of squares. LCBDs were tested for significance 
with 999 permutations (Legendre & De Cáceres, 2013). Significant 
LCBD values indicate the sites that have different community com-
positions from the other sites on each mountain. Different from 
traditional pairwise beta diversity metrics, such as Sorensen and 
Bray-Curtis, LCBD, based on the  site level, quantifies the relative 
contributions of individual sites to total beta diversity, and allows us 
to test whether each site has an exceptionally high contribution to 
overall beta diversity.

To examine the relative proportion of species replacement 
(ReplProp) and richness difference (RichDiffProp) to BDTotal, we par-
titioned BDTotal into species replacement and richness difference 
based on replacement and richness difference matrix, respectively, 
with Sørensen dissimilarity in Podani family for both quantitative 
and qualitative communities (Legendre, 2014; Podani, Ricotta, & 
Schmera, 2013; Podani & Schmera, 2011). These two metrics were 
well described in previous studies (e.g. Legendre, 2014). For in-
stance, species replacement refers to the fact that species tend to 
replace each other along ecological gradients that are sufficiently 
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long; the replacement rate is also a function of the ecological tol-
erance, or niche breadth, of the species (Baselga, 2010; Legendre, 
2014; Podani & Schmera, 2011). Richness difference refers to the 
fact that one community may include a larger number of species 
than another, and may reflect the diversity of niches available at 
different locations along the sampling axis or throughout the study 
area (Legendre, 2014). Because the replacement components were 
extremely dominant for quantitative bacteria and diatom commu-
nity data, we only considered ReplLCBD and RichDiffLCBD for quali-
tative data (that is, binary data; Fig. S1). There were no significant 
differences for RichDiffLCBD whether or not the species replacement 
components derived from the Baselga’s and Podani’s frameworks 
(Baselga & Leprieur, 2015) are independent of richness difference 
because the species replacement was usually dominant as shown in 
the following results (Fig. S1) and there were strong correlations for 
either component between these two frameworks (Fig. S2). These 
LCBD analyses were done using adespatial package in R (Dray et al., 
2017).

To explore the LCBD-elevation relationships (LCBDer), we used 
linear and quadratic models with the better goodness of fit model 
selected based on lower value of Akaike information criterion (AIC) 
(Yamaoka, Nakagawa, & Uno, 1978).

We further confirmed the geographic patterns in LCBD and in-
vestigated the drivers using MDE (Colwell & Lees, 2000), coenocline 
simulations, Paup-Crick null model approach (Chase, Kraft, Smith, 
Vellend, & Inouye, 2011), and through comparisons to environmental 
drivers. The framework of our data analyses is shown in Fig. S3, and 
the details of these statistical analyses are as follows.

First, to support the observed LCBDer or explore possible eco-
logical processes underlying the beta diversity patterns, we asked 
whether the observed LCBDer could reproduced and supported by 
MDE (Colwell & Lees, 2000) and coenocline simulation. MDE is a 
pure stochastic model by considering species elevational range size 
only. Generally, MDE will produce a mid-domain richness peak with 
elevational geometric constraints even without environmental gra-
dients (Colwell & Lees, 2000). We however expect that MDE will re-
sult in higher LCBDs towards elevational edges where MDE produce 
lower species richness and higher dissimilarities of community com-
position. For each species, we considered its maximum elevational 
range size. If the elevational range size was zero (which indicates that 
species occurred in only one site), we replaced the elevational range 
size by half of the shortest elevation difference among sites in each 
mountain.

Compared to MDE, coenocline simulation is a more deterministic 
model by considering species niche optima and tolerance along the 
main environmental gradient, that is, the elevational gradient (Fig. 
S4). For each species, we estimated the species weighted elevational 
optimum by averaging the product of the species elevation values 
and their abundances across all samples (Wang et al., 2013), and cal-
culated each species' environmental tolerance as its maximum eleva-
tional range size. Then, we simulated coenoclines with the obtained 
weighted elevational optimum and elevational range size for each 
species along an elevational gradient with the Gaussian response 

model in R package coenocliner (Simpson, 2016). We would like to 
note that we did not examine the fundamental niches for optima or 
tolerance, which is a challenge so far for these diverse taxonomic 
groups examined, for example, for thousands of bacterial species. 
We also did not simulate species counts or occurrences with error 
from the parameterized species response curves, and thus the val-
ues of the parametrized response curves evaluated at the gradient 
locations were returned. The coenocline simulations were carried 
out for each mountain and taxonomic group, and we calculated the 
simulated LCBDs based on each coenocline. We further partitioned 
the variations of observed LCBDs into MDE and coenocline simula-
tion by the modelled or simulated LCBDs using linear model across 
mountains and taxonomic groups (Borcard, Legendre, & Drapeau, 
1992).

We also simulated coenoclines using generated communities to 
study, for species with fairly similar niche breadths, the extent to 
which species replacement affects the U-shaped LCBD pattern that 
we discovered (Figure 1). We generated communities of 20 species 
at 30 equally spaced locations along a hypothetical spatial gradient. 
The abundance of each species was set to a maximum of 20. For 
each simulation, the niche optima of 20 species was an arithmetic 
progression from 0 to 30. The niche breadth of all 20 species was a 
fixed value selected from an arithmetic progression from 0.2 to 2.6 
by a constant quantity of 0.05, which indicates the change in species 
replacement. We then calculated the LCBD for each simulation, and 
the trends of LCBD along the spatial gradient were fitted with qua-
dratic models. With the species of similar niche breadths, we could 
tease out whether specialist or generalist species are more associ-
ated with the U-shaped pattern.

Second, for each mountain, we explored the linear relationships 
between beta diversity (i.e. LCBD, ReplLCBD and RichDiffLCBD) and 
environmental variables with an information theoretical approach 
(Burnham & Anderson, 2002; Nakamura et al., 2015). Briefly, we se-
lected 11 environmental variables with low collinearity by excluding 
variables with Pearson r > 0.75): MAT, squared MAT, stream depth, 
substratum, shading, streamwater width, velocity, pH, conductiv-
ity, TP and cDOM. We first fitted models of all combinations of the 
z-transformed variables (211 models), using linear models for beta 
diversity. We ordered all fitted models from most to least plausi-
ble based on the corrected AIC values (AICc, developed to handle 
situations where the sample size is small relative to the number of 
predictor variables) (Burnham & Anderson, 2002). AICc ‘penalizes’ 
over-parameterized models and hence these models with a large 
number of predictor variables did not attain high Akaike weights 
(Burnham & Anderson, 2002; Wagenmakers & Farrell, 2004). The 
relative importance of each predictor variable was then calculated 
by summing the Akaike weights of all models in which that predic-
tor variable was included. The sum of the Akaike weights indicates 
the importance of a variable in explaining variation in a given data-
set, relative to other predictor variables included in the analysis. 
We selected ‘plausible’ predictor variables by testing whether the 
sum of the Akaike weights of each predictor variable was signifi-
cantly greater than the summed Akaike weights obtained from a 
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null distribution of sites (999 permutations) with custom R scripts 
(Nakamura et al., 2015).

We also asked what environmental variables affect the mag-
nitude of LCBDer in a meta-analysis context. Because most 
LCBDers were best fitted with quadratic models, we quantified 
the LCBDer in each mountain with the coefficient of determina-
tion (R2) of a quadratic model as effect size, and further to explore 
the potential factors (i.e. MAT and heterogeneity in environmen-
tal variables) in explaining R2 of LCBDers across mountains and 
taxonomic groups. We considered the mean value of MAT in each 
mountain as an explanatory variable for LCBDer R2. We also in-
cluded the environmental heterogeneities in explaining LCBDer 
R2, which were first classified into four different variable groups: 
(1) stream morphology (stream width, shading, substratum size, 
depth and current velocity), (2) chemistry (pH and conductivity), 
(3) nutrients (TP and cDOM), and (4) MAT. Second, for the first 
three groups, environmental heterogeneity was calculated as the 
mean environmental Euclidean distance of standardized variables 
(mean = 0; SD = 1) among sites for each mountain, while for MAT, 
the heterogeneity was calculated as the standard deviation of MAT 
for each mountain. Among the above five explanatory variables, 
the Pearson coefficients of determination were smaller than 0.60. 
The relationships between LCBDer R2 and potential explanatory 
variables were analysed using beta regression of the logit link with 
the betareg R package (Cribari-Neto & Zeileis, 2010). The non-sig-
nificant LCBDer R2 values were excluded from the meta-analyses, 

and we note that more comprehensive meta-analyses are wanted 
in future studies by including both significant and non-significant 
LCBDers from more mountains and taxonomic groups. Such me-
ta-analysis would show us how the environmental conditions, such 
as stream morphology and chemical variables, will affect the rela-
tionships between LCBD and elevation.

We further investigated to what extent the LCBDer pattern would 
be affected by generalist and specialist species by removing the spe-
cies with large and small niche breadth (i.e. species elevational range 
size), respectively. This is because generalist and specialist species may 
contribute differently to LCBD values and thus affect the generality 
of the relationships between LCBD and elevation. For each mountain 
and taxonomic group, we classified the species into 20 range-size cat-
egories according to their elevational range size. For generalist spe-
cies, for instance, we removed the species starting from the category 
of the largest elevational range size for the observed community, and 
then recalculated LCBD. The relationship between the  recalculated 
LCBD and elevation for each category was determined with a qua-
dratic model, and the change in the coefficient of determination (R2) 
was used to quantify the effects of species removal of generalists or 
specialists on the LCBDer. Such experimental removal of generalists or 
specialists could identify the threshold for non-detectable U-shaped 
elevational patterns in LCBD.

Finally, in order to understand how LCBDer R2 is affected by 
ecological community assembly processes (that is, deterministic 
or stochastic processes), we used a null model approach based 

F I G U R E  1   Local contributions to beta diversity (LCBD) along multiple elevational gradients. LCBDs were calculated for each mountain 
based on a Hellinger-transformed species abundance matrix. Solid dots indicate the significant (p ≤ .05) LCBD with permutation test. These 
trends along elevations were fitted with linear and quadratic models. The best model, shown as a solid line, was selected based on the 
lower value of Akaike’s information criterion. The values of R2 were shown for each significant regression. Non-significant trends for both 
models are shown by dotted grey lines of linear model. The upper, middle and lower panels are for bacteria, diatoms and macroinvertebrates, 
respectively [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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on the Raup-Crick metric of beta diversity (βRC) following Chase 
et al. (2011) method for the observed communities and also the 
sub-communities with the generalist species gradually removed. 
We did not distinguish detailed ecological processes combin-
ing both phylogenetic beta diversity and βRC (Chase et al., 2011; 
Stegen, Lin, Fredrickson, & Konopka, 2015) because we lacked 
phylogenic information for diatoms and macroinvertebrates. βRC 
values, ranging from −1 to 1, were calculated for each pair of local 
communities after a total of 1000 iterations of null communities 
with random species distribution among samples. To identify the 
deterministic and stochastic processes affecting the community 
assembly, the βRC metric was converted to a binary number after 
analyzing three possibilities: the binary value was 1 when βRC was 
more similar (i.e. –0.95 > βRC> –1) or less similar (i.e. 0.95 < βRC < 1) 
than by chance, and 0 when βRC was inside the interval (i.e. 
–0.95 < βRC < 0.95). The proportions of dominant assembly pro-
cesses were estimated as the ratio between the sum of all posi-
tive pairwise tests (comparisons with values equal to 1) and the 
total number of possible pairwise comparisons. It is worth noting 
that the influence of environmental filtering and dispersal limita-
tion on βRC (or any β-diversity metric) will depend on the sampling 
scale (Chase et al., 2011). βRC could be significant due to either 
low or high rates of dispersal, and can also be significant due to 
environmental filtering (Chase et al., 2011; Stegen et al., 2015). 
For instance, βRC can also be closer to 1 when dispersal among 
sites is very low, leading to dispersal limitation (Chase et al., 2011). 
This, however, is less likely dominant for our study with fairly 
short spatial distances and continuously running water for each 
mountain. We thus did not decompose deterministic processes 
into significantly positive and negative deviations. As the sampling 
scale was consistent for both the observed communities and the 
sub-communities with the generalist gradually removed, the ob-
tained deterministic or stochastic processes using βRC should be 
comparable within each mountain.

3  | RESULTS

3.1 | Elevational patterns of observed and modelled 
LCBDs

We observed consistent, significant (p < .05) U-shaped patterns for 
almost all LCBD-elevation relationships, except for the diatoms in 
Meili Mountain and the macroinvertebrates in Laojun Mountain 
(Figure 1). The LCBDs of coenocline simulations (Fig. S4) and MDE 
(Fig. S5) also showed consistent U-shaped elevational patterns for all 
mountains and taxonomic groups (Fig. S6). We further used partial 
linear regression to partition the variation of observed LCBDs be-
tween the modelled values of MDE and coenocline simulations, and 
found both models could contribute substantially to observe LCBDs 
across mountains and taxonomic groups (Figure 2).

U-shaped patterns were also observed in coenocline simula-
tions along a hypothetical spatial gradient, but the strength of the 
U-shaped patterns decreased towards smaller species niche breadth, 
and became non-significant (p  >  .05) when a species replacement 
percentage was lower than 89.6% and the species niche breadth was 
below than a threshold of 0.5 (Fig. S7).

Significant (p < .05) LCBD-richness relationships were observed 
on all six mountains for bacteria, five mountains for diatoms, and only 
one mountain for macroinvertebrates (Fig. S8); however, the LCBD-
richness patterns were contrasting across mountains. For instance, 
the patterns were significantly (p < .05) declining in eight cases, but 
five of them were better modelled by quadratic models (Fig. S8).

3.2 | Replacement and richness difference 
components of LCBD

The replacement component was dominant in beta diversity (Fig. S1). 
The dominance of the replacement component was much stronger 

F I G U R E  2   The variations of observed LCBDs explained by Mid-Domain Effect (MDE) and coenocline simulation (COE) across mountains 
and taxonomic groups [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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when we considered the abundance-based communities, compared 
with the presence-absence analyses for bacteria and diatoms (Fig. S1).

ReplLCBD showed significant (p  <  .05) elevational patterns for 
one mountain for bacteria, five for diatoms and three for macro-
invertebrates, but the outcomes were contrasting: U-shaped (4), 
hump-shaped (1), increasing (3) and decreasing (1) patterns (Fig. 
S9). Similarly, no consistent elevational patterns were observed for 
RichDiffLCBD, which showed significant (p  <  .05) U-shaped eleva-
tional patterns for two mountains for bacteria, two for diatoms and 
two for macroinvertebrates (Fig. S10).

3.3 | Ecological explanations of LCBD and 
its relatives

For each mountain, both climatic and local environmental variables 
were frequently considered for explaining the elevational patterns 
of LCBD (Figure 3), ReplLCBD (Fig. S11), and RichDiffLCBD (Fig. S12). 
For instance, MAT and its squared values were key variables for 
LCBD (Figure 3), ReplLCBD (Fig. S11) and RichDiffLCBD (Fig. S12) of 
the three taxonomic groups. Other environmental variables, such as 
conductivity, substratum and pH, were also important for ReplLCBD 
(Fig. S11).

The R2 of quadratic LCBDer (Figure 1) did not show significant 
differences among taxonomic groups (F2,29 = 0.603, p = .550, two-
way ANOVA), while there were significant differences among moun-
tains (F5,26 = 2.639, p = .047). When potential explanatory variables 
were considered, the R2 values were significantly (p < .05) negatively 
related to the heterogeneity of stream morphology, but positively 
related to the heterogeneities of MAT, and were also marginally sig-
nificantly (p = .06) positively related to the mean values of MAT in 
each mountain (Fig. S13). The heterogeneity of stream morphology 
(p  <  .01) was most important, followed by the heterogeneities of 
MAT (p = .07).

When generalist species were removed gradually, the significant 
U-shaped elevational patterns in LCBD were persistent with mod-
erate removal of species of larger elevational range sizes, but be-
came non-significant for almost all mountains and taxonomic groups 
after the removal of species over specific elevational range sizes 
(Figure 4). For instance, in Laojun Mountain, U-shaped LCBDers be-
came non-significant for all taxonomic groups when the species with 
elevational range sizes larger than 1000 m were removed (Figure 4). 
However, the removal of specialists did not affect the observation 
of significant U-shaped LCBDers for 11 out of 16 cases (Fig. S14).

Raup-Crick beta diversity showed that community assembly 
was dominantly structured by deterministic processes for bacteria 
(62.5 ± 11.0%), but not for diatoms (21.0 ± 10.3%) and macroinverte-
brates (16.3 ± 9.2%) (Figure 5). For all taxonomic groups, the removal 
of generalists decreased deterministic processes for community 
assembly (Fig. S15), and further resulted in a significantly (p <  .05) 
positive relationship between deterministic processes and the R2 of 
quadratic LCBDers for most mountains and taxonomic groups, ex-
cept for the diatoms of three mountains (Figure 5).

4  | DISCUSSION

To the best of our knowledge, this is the first study to extensively 
reveal a universal pattern in beta diversity along elevational gradi-
ents across micro- and macroorganisms using the total variance of 
community composition and the LCBD metric family. Briefly, we 
revealed a general U-shaped elevational pattern for LCBD, despite 
striking differences in organism taxonomy, geographical locations of 
mountains, and elevational patterns in species richness. This pattern 
was supported by the dominance of species replacement in total 
beta diversity and was further demonstrated by both stochastic and 
deterministic models, that is, Mid-Domain Effect and coenocline 
simulations. The climatic variable, temperature, as the main environ-
mental gradient, was dominant in explaining beta diversity and its 
metric relatives for the three taxa, followed by local environmental 
variables. U-shaped elevational patterns in LCBD were favoured by 
the occurrence of generalist species, and increasing deterministic 
processes of community assembly strengthened the higher unique-
ness of community composition at both ends of the gradients.

4.1 | Universal elevational patterns in LCBD

Our results revealed that the U-shaped elevational pattern for LCBD 
on mountainsides is not only consistent across mountains, but also 
did not show significant differences between micro- and macroor-
ganisms. The pattern could not be caused by the presence of fewer 
species towards the ends of the gradient because the elevational 
patterns in species richness were different across taxonomic groups 
and even among mountains (Wang et al., 2017, 2011), and there were 
no consistent relationships between LCBD and species richness (Fig. 
S8). Our finding is also consistent with the elevational patterns in 
LCBD for microbial communities in arctic ponds (Teittinen, Wang, 
Strömgård, & Soininen, 2017; Yeh, Soininen, Teittinen, & Wang, 
2019). Thus, this general finding in the U-shaped pattern suggests 
that the higher uniqueness of community compositions at both ends 
of elevational gradients is a general ecological pattern across taxa. 
For instance, if the species abundances vary in a unimodal manner 
with the elevational gradient and species replacement is dominant in 
coenoclines, we can expect the sampling units near the centre of the 
gradient to have small LCBD values because the species abundances 
are near the column means of the Site-by-Species matrix, whereas 
the sampling units (streams in this study) at the ends of the gradient 
have the largest deviations from the mean.

4.2 | Underlying mechanisms for elevational pattern 
in LCBD

To support this coenocline hypothesis, we first referred to the pre-
dictions in the context of classical ecological hypotheses about how 
gradients and edge effect can affect community composition, such 
as MDE and coenocline simulation, because simulated data can be 
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compared with field data to see how realistic the underlying model 
of the simulation is. The interplay between theoretical model and 
field data can yield insights into the community and coenocline 

structures (Gauch & Whittaker, 1972). The simulated coenoclines 
showed that there were species with narrow niche breadths in 
elevation and others with very broad niche breadths (Fig. S4).  

F I G U R E  3   Environmental factors related to local contributions to beta diversity (LCBD). For all taxonomic groups, the explanatory 
factors were identified by an information theoretical approach, and the significance was tested by asking whether the sum of the Akaike 
weights of each predictor variable was significantly greater than the summed Akaike weights obtained from a null distribution of sites. 
(A) For each mountain or taxonomic group, non-significant variables are shown by grey open circles, and the significant variables by black 
and grey filled circles for p < .01 and p < .05, respectively. (B) Frequency of environmental variables which significantly (p < .05) explained 
LCBD for each taxonomic group. MAT: mean annual temperature. MAT.squared: squared MAT. Depth: streamwater depth. Width: stream 
width. Velocity: current velocity. TP: total phosphorus. cDOM: chromophoric dissolved organic matter [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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The modelled LCBDs from both MDE and coenocline simulation 
revealed a stronger U-shaped elevational pattern across taxonomic 
groups and mountains than the observed LCBDs and also left largely 
unexplained the variations of observed LCBDs, suggesting that the 
observed LCBD can be partly explained by these two null models, 
but is also affected by local environmental variables. It should be 
noted that because no particular ecological variable or process of 
range limitation is specified, these two models are potentially very 
general for elevational LCBD, but their predictive and explanatory 

power is severely limited as they provide little basis for interpreting 
how specific ecological variables limit elevational ranges of species 
or the uniqueness of community compositions in different parts of 
the gradient (Brown, 2001).

Second, species replacement was dominant in total beta di-
versity for all six mountains, especially when the abundance infor-
mation was considered for bacteria and diatoms. The dominance 
of species replacements in total beta diversity confirmed that the 
community uniqueness based on LCBD was mainly driven by species 

F I G U R E  4   Effects of species elevational range size on the local contributions to beta diversity (LCBD) and elevation relationships 
(LCBDer). Beta diversity was decomposed into LCBD. All species having larger elevational range size than specific cut-offs (x-axes) were 
removed from the observed community matrix and then LCBD were recalculated for each mountain and taxonomic group. The relationship 
of LCBD and elevation for each cutoff was quantified with a quadratic model and the significant (p < .05) and non-significant (p > .05) 
relationships are shown by filled and open circles for adjusted R2, respectively [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E  5   Effects of deterministic processes on the local contributions to beta diversity (LCBD) and elevation relationships (LCBDer). 
The relative importance of deterministic processes was quantified with Raup-Crick metric of beta diversity as the ratio between the sum of 
all positive pairwise tests (i.e. |βRC|> 0.95) and the total number of possible pairwise comparisons. All species having larger elevational range 
size than specific cut-offs were removed from the observed community matrix and then the proportions of deterministic processes were 
calculated for the sub-communities of each mountain and taxonomic group (Fig. S15). The relationship between LCBD R2 and the relative 
importance of deterministic processes was evaluated with linear model and the significant (p < .05) and non-significant (p > .05) relationships 
are shown by solid and dashed lines, respectively [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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replacement and also partly abundance-based replacement, indicat-
ing that species abundance changes along environmental gradients 
were stronger than species shifts. This also partly supports the im-
portance of coenocline simulation in explaining the observed LCBD.

Third, coenocline simulations were further used to explore, for 
species with fairly similar niche breadths, how much community re-
placement there can be while the U-shaped pattern is still detected 
in LCBD indices. Along the hypothetical spatial gradient with 20 
species at 30 equally spaced locations, for instance, the U-shaped 
pattern in LCBD disappears if the species replacement percentage 
is lower than 89.6%, where the species niche breadth is 0.5 (Fig. S7). 
This result indicates that for biological communities along a long en-
vironmental gradient with strong species replacement, the signifi-
cant U-shaped pattern in LCBD should emerge.

To test the above thresholds in species replacement or niche 
breadth, we experimentally removed the species with large niche 
breadths from the observed communities and recalculated LCBD, 
and found that there were thresholds for non-detectable U-shaped 
patterns for almost all mountains and taxonomic groups. These 
results clearly show that the generalist species with broad niche 
breadths are key in maintaining community uniqueness for each 
environmental gradient. This conclusion was further confirmed by 
starting to remove the species with small niche breadths from the 
observed communities, which shows that the removal of such spe-
cialist species affected less the U-shaped patterns in LCBD than the 
removal of generalist species (Fig. S14). Thus, we think that the pat-
tern in community uniqueness is a general paradigm for elevational 
gradients, and the U-shaped LCBD should be seen in all systems in 
which there are species capable of existing across a large portion of 
the main associated environmental gradients. We expect that such a 
pattern should also be found in other environmental gradients, such 
as water depth and latitudinal gradients.

Fourth, we explicitly considered the relative importance of de-
terministic and stochastic processes in explaining the U-shaped 
patterns by using βRC diversity with null models, and found positive 
relationships between deterministic processes and the R2 of qua-
dratic LCBDers. This result indicates that increasing deterministic 
processes favoured higher uniqueness of community composition at 
the two ends of the gradients regardless of the taxonomic groups 
and regions. The deterministic processes may be caused by envi-
ronmental filtering, such as temperature and local environmental 
variables, and also dispersal limitation (Chase et al., 2011; Leibold 
et al., 2004), which is less likely dominant in running waters of small 
spatial scales as in this study, especially for unicellular species due to 
its small size, strong adaptation, and high abundance and dispersal 
ability (Lennon & Jones, 2011).

Finally, we found that the variations in these relationships were 
related to environmental heterogeneity in each mountain, such as 
the heterogeneities of stream morphology and MAT. For instance, 
the mountainsides with higher heterogeneity in climate variables, 
that is, with greater elevational gradient, will show stronger rela-
tionships between elevation and LCBD. However, the contributions 
of MAT heterogeneity were compromised by the heterogeneity 

in stream morphology, showing higher homogenization in stream 
morphology resulting in weaker relationships between elevation 
and LCBD. This finding revealed the different effects of local en-
vironment and climate on elevational beta diversity patterns. For 
instance, the elevational gradient and associated climatic variables 
usually promote the higher uniqueness of communities at both ends 
of elevational gradients. However, the local environment differen-
tiates the community compositions at local scales, and thus masks 
the corresponding climatic effects. This might be the reason for 
the observed non-significant relationships between elevation and 
LCBD for macroinvertebrates in Laojun Mountain or diatoms in Meili 
Mountain (Figure 1). In Meili Mountains, the substantial increase 
in nutrients due to the input of domestic sewage from the Yubeng 
Village (elevation ∼ 3100 m) (Wang et al., 2017) may cause the unex-
pected high uniqueness in diatom communities. Thus, such trade-off 
between local and climatic effects on community uniqueness would 
have important implications to guide future studies dealing with cli-
mate gradients but with strong local environmental homogenization, 
for example, caused by human activities.

4.3 | Species richness and environmental variables 
in explaining LCBD

Using comprehensive data sets across mountains and taxonomic 
groups, we support the observation that the negative relationship 
between LCBD and species richness is not universal, which is also 
indicated by Legendre and De Cáceres (2013). For instance, we ob-
served various patterns in LCBD along the gradients of species rich-
ness, including decreasing, U-shaped and non-significant patterns. 
This is unexpected because negative correlations between LCBD 
and species richness are frequently, but not always, as reported by 
previous studies (Heino & Grönroos, 2016; Legendre & De Cáceres, 
2013; da Silva & Hernández, 2014; Tonkin, Heino, Sundermann, 
Haase, & Jähnig, 2016). This indicates that high uniqueness of spe-
cies composition was often (but not always) related to low numbers 
of species, and that sites with high LCBD were occupied by special-
ized species tolerant of harsh conditions (Legendre & De Cáceres, 
2013). The LCBD based on binary community data (Fig. S16) also 
did not show clear improvement in the LCBD and species richness 
relations compared to those based on abundance community data 
(Fig. S8). Furthermore, coenocline simulations confirm that there is 
no general pattern between LCBD and species richness (data not 
shown), and our findings suggest that the rare species have less influ-
ence on the overall elevational patterns of LCBD than the generalist 
species (Figure 4, S14). Thus, our study suggests that the uniqueness 
in community composition is possibly explained by different under-
lying factors than species richness.

Regarding the U-shaped elevational patterns in LCBD, MAT and 
its squared values were the key variables. This is not surprising be-
cause temperature is usually the main environmental gradient on 
mountainsides (Lomolino, 2001; Wang et al., 2016), resulting in or-
derly successions of climates and ecotones of plants (Korner & Spehn, 
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2019; Lomolino, 2001; Lomolino et al., 2004), animals (Lomolino, 
2001; Lomolino et al., 2004) and microbes (Wang et al., 2016). For 
species richness, water chemistry variables such as TP and pH were 
the dominant drivers for bacteria and diatoms (Wang et al., 2017). 
For LCBD, however, the dominant driver was the main environmental 
gradient, that is, temperature. Therefore, LCBD is probably more ef-
ficient than species richness in reflecting the most dominant underly-
ing driver of community changes in environments (e.g. water depth in 
oceans and lakes, temperature variation on mountainsides).

5  | CONCLUSIONS

We comprehensively showed a generality in the U-shaped eleva-
tional patterns in LCBD across mountains and taxonomic groups. 
The U-shaped patterns were affected by the dominance of species 
replacement in total beta diversity, and could be strengthened by 
the generalist species with large elevational range size, while being 
less affected by the rare species with small elevational range size. 
These patterns were highly constrained by deterministic processes, 
and were mainly explained by annual mean temperature but were 
also mediated by local environmental variables. Compared to natural 
gradients studied here, anthropogenic stressors may show differ-
ent effects on species replacement and nestedness components of 
beta diversity (e.g. Gutiérrez-Cánovas, Millán, Velasco, Vaughan, & 
Ormerod, 2013). Thus, the universal patterns and pivotal roles of cli-
matic variables enable a more complete picture for the understand-
ing and further bridging of the spatial variation in biodiversity under 
global change.
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