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Abstract
Questions: What	are	the	ecological	processes	that	determine	the	spatial	distribution	
of	species	and	species	diversity?	Partitioning	beta	diversity	can	provide	fundamental	
insights	 into	 the	 processes	 that	 determine	 the	 spatial	 variation	 of	 species	 assem-
blages.	 However,	 studying	 beta	 diversity	 is	 conventionally	 based	 only	 on	 species	
composition	data,	ignoring	the	structural	component	of	communities.
Study site: Temperate	mixed	broadleaf–conifer	forest	in	Jiaohe,	Jilin	Province,	north-
eastern	China.
Methods: We	characterized	the	variation	of	community	assemblages	in	terms	of	spe-
cies	composition,	size	structure,	or	considering	both	components.	We	then	employed	
environmental	and	spatial	variables	as	explanatory	factors	to	partition	the	variation	
in	both	compositional	and	structural	components	of	community	assemblage	and	as-
sess	 the	 relative	 contributions	 of	 the	 niche	 and	 neutral	 processes	 to	 community	
assembly.
Results: The	values	of	overall	beta	diversity	(BD	statistics)	and	the	relative	contribu-
tion	 of	 individual	 sampling	 units	 to	 beta	 diversity	 (LCBD	 indices)	 depended	 on	
whether	 the	species	composition,	size	structure,	or	both	together	had	been	taken	
into	account.	The	value	of	compositional–structural	beta	diversity	was	the	largest,	
followed	by	traditional	compositional	beta	diversity;	the	smallest	was	the	structural	
beta	diversity.	The	sites	with	high	contributions	to	beta	diversity	(LCBD	values)	var-
ied	among	structural	and	compositional	components.	The	explanatory	power	of	the	
environmental	variables	and	 the	spatial	variables	also	varied	widely	with	different	
components	of	a	community.	The	combination	of	environmental	and	spatial	variables	
explained	the	highest	proportion	of	variation	(43.8%)	in	the	compositional	compo-
nent	and	explained	the	lowest	proportion	of	variation	(25.4%)	in	the	structural	com-
ponent	of	community	assemblage.
Conclusion: Both	 deterministic	 and	 stochastic	 processes	 are	 acting	 to	 determine	
community	assemblages	in	terms	of	species	composition	and	structure	in	our	tem-
perate	forest	site.	Our	study	highlights	the	importance	of	considering	the	structural	
component	of	forest	communities,	in	addition	to	compositional	data,	when	studying	
beta	diversity.
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1  | INTRODUCTION

Understanding	the	mechanisms	that	determine	the	spatial	distri-
bution	of	species	and	species	diversity	is	a	central	theme	in	ecol-
ogy	 (Chave,	 2004;	 Chesson,	 2000;	 Hutchinson,	 1961;	 Ricklefs,	
1990;	 Vellend,	 2017).	 Deterministic	 niche-	based	 and	 stochastic	
neutral	 processes	 have	 been	widely	 discussed	 as	 potential	 driv-
ers	 of	 community	 assembly	 (Chesson,	 2000;	 HilleRisLambers,	
Adler,	 Harpole,	 Levine,	 &	Mayfield,	 2012;	Hubbell,	 2001,	 2006;	
Mayfield	&	Levine,	2010),	but	the	factors	underlying	the	relative	
contribution	of	 the	 two	processes	are	still	unresolved	 (Legendre	
et	al.,	2009;	Punchi-	Manage	et	al.,	2014;	van	der	Plas	et	al.,	2015).	
Niche	 and	 neutral	 theories	 emphasize	 different	 mechanisms	 as	
sources	 of	 species	 diversity.	 Niche	 theory	 predicts	 that	 deter-
ministic	processes	such	as	habitat	filtering	and	competition	shape	
species	assemblages.	Neutral	theory,	in	contrast,	assumes	that	all	
species	 are	 essentially	 functionally	 equivalent	 (HilleRisLambers	
et	al.,	 2012;	Hubbell,	 2001,	2006;	Keddy,	1992)	 and	emphasizes	
the	 importance	 of	 stochastic	 processes	 in	 community	 assembly,	
such	as	random	birth,	death,	dispersal	events,	speciation,	and	sto-
chastic	extinction	(Caswell,	1976;	Hubbell,	2001).	It	is	now	gener-
ally	accepted	that	both	the	deterministic	and	stochastic	processes	
are	potentially	important	determinants	of	the	spatial	distribution	
observed	 in	 community	 assemblages.	At	 present,	 however,	 their	
relative	 importance	 in	 shaping	different	 components	of	 commu-
nity	organization	(i.e.,	the	structural,	compositional,	or	both	com-
ponents	together)	is	not	clear	(De	Cáceres	et	al.,	2012;	Legendre	
et	al.,	2009;	Punchi-	Manage	et	al.,	2014).	In	the	present	study,	we	
defined	the	“compositional”	term	as	the	species	composition	data	
(e.g.,	species	abundance	values).	We	constrained	the	definition	of	
“structural”	to	refer	to	the	diameter	at	breast	height	of	the	individ-
ual	trees	making	up	the	community.

The	variation	in	species	composition	observed	among	a	set	of	
sampling	units	within	a	region	is	often	described	as	beta	diversity	
(Whittaker,	1960,	1972).	The	interest	of	community	ecologists	for	
beta	diversity	stems	not	only	from	the	fact	that	it	links	local	(i.e.,	
alpha	diversity)	 and	 regional	diversity	 (i.e.,	 gamma	diversity)	 (De	
Cáceres	et	al.,	2012),	but	also	because	it	can	provide	fundamental	
insights	 into	 the	processes	 that	determine	 the	 spatial	pattern	of	
species	 assemblages	 (Anderson	 et	al.,	 2011;	 Chase,	 2010;	 Kraft	
et	al.,	 2011;	 Legendre	 &	 De	 Cáceres,	 2013;	Myers	 et	al.,	 2013).	
Beta	 diversity	 can	 be	measured	 in	many	 different	 ways	 (Koleff,	
Gaston,	&	Lennon,	2003;	Legendre,	Borcard,	&	Peres-	Neto,	2005;	
Legendre	 &	 Legendre,	 2012;	 Legendre	 et	al.,	 2009).	 Beta	 diver-
sity	estimates	are	most	often	based	on	species	compositional	data	
(e.g.,	species	abundance	values	or	species	 incidence),	which	take	
the	 form	of	 a	 site-	by-	species	 data	matrix	with	 sites	 in	 rows	 and	
species	 abundances	 in	 columns.	 Although	 species	 composition	
data	are	fundamentally	important,	they	alone	may	be	insufficient	
for	 describing	 community	 organization	 and	 may	 neglect	 other	
valuable	 information	 to	 study	 community	 assembly	 processes,	
such	as	the	structural	component	(e.g.,	the	size	structure	of	con-
stituent	individuals)	of	a	community	(De	Cáceres,	Legendre,	&	He,	

2013;	Faith,	Austin,	Belbin,	&	Margules,	1985;	Fang	et	al.,	2012).	
The	 phenomenon	 of	 competition	 asymmetry	 emphasizes	 that	
large	 individuals	 usually	 compete	 disproportionately	 with	 their	
smaller-	sized	 neighbors	 (Weiner,	 1990).	 Big	 trees	 control	 more	
above-		 and	 below-	ground	 resources	 (e.g.,	 light	 and	 mineral	 nu-
trients)	than	small	trees	(Schwinning	&	Weiner,	1998).	Therefore,	
larger	individuals	tend	to	have	greater	impact	on	the	function	and	
dynamics	of	forest	ecosystems	than	small	ones.	Moreover,	natural	
multi-	species	 communities	 may	 exhibit	 similar	 compositions	 but	
differ	in	other	features	such	as	the	size	structure	of	their	individu-
als	(De	Cáceres	et	al.,	2013).	The	distribution	of	individual	sizes	is	
also	an	 important	component	to	represent	and	understand	com-
munity	 assembly,	 therefore	 using	 species	 abundances	 only	 (i.e.,	
the	 compositional	 component)	 to	 describe	 forest	 beta	 diversity	
may	 be	 an	 oversimplification	 of	 the	 spatial	 variation	 of	 commu-
nities.	 In	 order	 to	 get	 comprehensive	 insight	 into	 the	 processes	
that	 determine	 the	 spatial	 pattern	 of	 species	 assemblages,	 it	 is	
necessary	to	ensure	first	that	we	have	the	ability	to	describe	beta	
diversity	 in	a	comprehensive	way.	Whether	or	not	the	structural	
component	 should	or	 could	be	considered	altogether	with	other	
beta	 diversity	 components	 has	 never	 been	 investigated	 and	 re-
mains	to	be	explored.

In	 this	study,	we	generalized	the	conventional	approach	to	 the	
study	 of	 beta	 diversity	 by	 considering	 structural	 data	 in	 addition	
to	compositional	data.	We	first	measure	the	spatial	variation	of	as-
semblages	on	the	basis	of	species	composition	and	size	structure	of	
constituents.	We	then	use	the	environmental	and	spatial	variables	
as	 explanatory	 factors	 to	 partition	 the	 variation	 in	 compositional	
and	structural	components	of	community	assemblage.	We	specifi-
cally	address	the	following	questions:	(a)	Can	we	take	both	the	spe-
cies	compositional	and	size	structural	components	of	a	community	
into	account	when	describing	beta	diversity?	 Is	there	a	correlation	
between	 these	beta	diversity	 components?	 (b)	How	 is	 the	 assess-
ment	of	these	beta	diversity	components	affected	by	the	size	of	the	
sampling	 units?	 (c)	When	 considering	 both	 the	 compositional	 and	
structural	 components	 together,	 to	what	extent	are	beta	diversity	
assessments	affected	by	the	relative	importance	accorded	to	struc-
tural	 vs	 compositional	 differences?	 (d)	What	 is	 the	 relative	 contri-
bution	 of	 the	 environmental	 and	 spatial	 variables	 to	 community	
assembly	in	terms	of	species	composition,	size	structure,	or	consid-
ering	both	components?

2  | MATERIAL AND METHODS

2.1 | Study sites and data collection

Our	study	was	carried	out	 in	a	temperate	mixed	broadleaf–conifer	
forest	in	Jiaohe,	Jilin	Province,	northeastern	China.	The	average	hot-
test	monthly	temperature	is	21.7°C	in	July,	and	the	coldest	month	is	
January	with	an	average	day	temperature	of	 -	18.6°C.	The	average	
annual	precipitation	is	695.9	mm	(Zhang,	Zhao,	&	Gadow,	2014).	The	
soil	is	a	brown	forest	soil	with	a	rootable	depth	ranging	between	20	
and	100	cm	 (Zhang,	Zhao,	Zhao,	&	Gadow,	2012).	This	 study	uses	
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data	from	a	30-	ha	(500	m	×	600	m)	forest	dynamic	plot	(43°57.928′–
43°58.214′	N,	127°45.287′–127°45.790′	E),	established	in	the	sum-
mer	of	2010.	The	plot	 is	situated	 in	a	protected	old-	growth	forest	
in	a	 late	stage	of	 succession,	with	 little	human	disturbance	due	 to	
its	 remoteness	 from	residential	 areas	 (Yao,	Zhang,	Zhang,	Zhao,	&	
Gadow,	2016).

All	individuals	with	a	diameter	at	breast	height	(dbh)	of	1	cm	or	
more	in	the	plot	were	identified,	measured	and	spatially	mapped	in	
2010.	A	total	of	49,684	individual	trees	belonging	to	20	families	and	
47	species	in	the	plot	were	used	in	the	present	study.	The	plot	was	
divided	into	120	(50	m	×	50	m),	750	(20	m	×	20	m)	and	3,000	(10	m	×	
10	m)	subplots,	hereafter	called	quadrats.	Topographic	and	soil	vari-
ables	were	also	available	 for	each	quadrat.	Four	 topographic	vari-
ables	(altitude,	quadrat	convexity,	slope,	and	aspect)	were	calculated	
for	each	quadrat	following	the	recommendation	of	Harms,	Condit,	
Hubbell,	and	Foster	(2001)	and	Yamakura	et	al.	(1995).	Eight	soil	en-
vironmental	and	nutrient	variables	were	measured:	pH,	the	amount	
of	 organic	 matter,	 and	 the	 total	 amounts	 as	 well	 as	 the	 available	
nutrients	 of	 nitrogen	 (N),	 phosphorus	 (P),	 and	 potassium	 (K)	 (g/g;	
Yan,	Zhang,	Wang,	Zhao,	&	Gadow,	2015).	All	 laboratory	analyses	
were	conducted	following	the	procedures	recommended	by	the	Soil	
Science	Society	of	China	(1999).

2.2 | Statistical analyses

2.2.1 | Cumulative abundance profiles

The	concept	of	cumulative	abundance	profile	 (CAP),	developed	by	
De	Cáceres	et	al.	(2013),	is	defined	as	a	function	that	takes	the	val-
ues	of	a	structural	variable	 (e.g.,	height,	dbh,	etc.)	as	 input	and	re-
turns	the	cumulative	abundance	of	individuals	whose	values	of	the	
structural	variable	are	equal	 to	or	 larger	than	the	 input	value.	The	
CAP	 framework	 generalizes	 traditional	 species	 abundance	 values	
and	 allows	 researchers	 to	 describe	 the	 structural	 component	 of	 a	
community.	In	the	present	study,	the	structural	variable	was	diam-
eter	at	breast	height	(dbh).	According	to	this	choice,	the	value	of	CAP	
for	a	given	dbh	value	is	the	cumulative	abundance	of	tree	individuals	
as	big	as	or	bigger	than	the	input	value.	Function	CAP	in	fact	replaces	
the	abundance	value	of	a	dbh	class	by	the	sum	of	abundances	in	this	
and	larger	dbh	classes.

2.2.2 | Community tables

Following	 the	conventional	methods,	 species	composition	 tables	
(i.e.	 quadrats	 in	 rows,	 species	 in	 column,	 and	 the	 table	 contain-
ing	 individual	 counts)	were	assembled;	 in	 this	 study,	we	call	 this	
table	the	traditional species composition matrix	(YCOMP).	In	order	to	
generalize	a	traditional	species	abundance	value	and	describe	the	
size	structure	component	of	the	community,	the	CAPs,	consider-
ing	species	identity,	were	calculated	to	obtain	the	species composi-
tion combined with structural data matrix	(YCOMP–STR).	The	YCOMP–STR 
is	a	matrix	with	as	many	rows	as	plot	records	and	where	columns	
are	organized	 in	blocks,	and	there	are	as	many	blocks	as	species	

and	each	block	has	as	many	columns	as	size	classes.	Disregarding	
species	identity	of	the	different	individuals,	CAPs	were	also	calcu-
lated	to	obtain	the	community structural matrix	 (YSTR).	The	YSTR is 
a	matrix	with	as	many	rows	as	plot	records	and	as	many	columns	
as size classes.

Functions	“stratifyvegdata”	and	“CAP”	in	the	{vegclust}	R	pack-
age	(De	Cáceres,	Font,	&	Oliva,	2010),	available	on	CRAN	(https://
CRAN.R-project.org/package=vegclust),	 were	 applied	 to	 calculate	
the	CAPs.	Functions	“stratifyvegdata”	and	“CAP”	require	discretiz-
ing	the	structural	variable,	and	the	number	of	size	bins	affects	the	
importance	accorded	to	structural	differences.	Thus,	there	are	de-
cisions	 to	be	made	when	creating	YSTR and YCOMP–STR,	 particularly	
how	we	define	 the	bins	of	 the	structural	variables	 (e.g.,	dbh	bins).	
In	this	study,	we	tested	from	1-	cm	bin	size	to	15-	cm	bin	size	to	dis-
cretize	dbh	into	classes.	That	 is,	1	cm	bins	lead	to	dbh	classes	1–2,	
2–3,	3–4	and	so	on,	whereas	5	cm	bins	lead	to	dbh	classes	1–5,	6–10,	
10–15	and	so	on.	The	smaller	the	size	of	dbh	bin,	the	more	columns	
will	be	produced	in	each	block	in	the	table	YCOMP–STR,	indicating	that	
more	weight	is	accorded	to	differences	in	structure,	and	vice	versa.	
If	the	bin	size	was	big	enough	so	that	the	number	of	columns	in	each	
block	 in	 the	 table	YCOMP–STR	was	one,	we	would	have	 that	YCOMP–
STR	=	YCOMP.	Generally,	the	larger	the	size	of	dbh	bins,	the	more	simi-
lar will YCOMP and YCOMP–STR be.

2.2.3 | Pairwise dissimilarity in terms of community 
composition and structure

We	calculated	dissimilarity	matrices	 between	 all	 pairs	 of	 quadrats	
using	the	percentage	difference	index	(a.k.a.	Bray–Curtis	dissimilar-
ity)	on	community	matrices	YCOMP,	YSTR,	and	YCOMP–STR	to	obtain	the 
compositional dissimilarity matrix	 (DCOMP),	 the structural dissimilar-
ity matrix	 (DSTR)	and	the compositional–structural dissimilarity matrix 
(DCOMP–STR),	 respectively.	 In	 order	 to	 explore	 the	 pairwise	 covari-
ation	 between	 the	 three	 kinds	 of	 dissimilarity	 assessments	 (i.e.,	
DCOMP vs DSTR,	DCOMP vs DCOMP–STR,	and	DSTR vs DCOMP–STR),	we	first	
computed	 principal	 coordinates	 of	 each	 dissimilarity	 matrix	 using	
principal	coordinates	analysis	 (PCoA),	 then	compared	the	resulting	
matrices	of	principal	coordinates,	keeping	all	axes,	using	the	RV	co-
efficient.	We	expected	that	DCOMP–STR	would	be	correlated	to	both	
DCOMP and DSTR,	but	the	strength	of	the	correlation	does	depend	on	
the	chosen	size	of	diameter	bins	(i.e.,	on	the	weight	given	to	struc-
tural	vs	compositional	information).

Function	 “vegdist”	 with	 the	 dissimilarity	 index	 “bray”	 in	 the	
{vegan}	R	package	(Oksanen	et	al.,	2018)	was	used	to	calculate	the	
dissimilarity	 matrices	 D.	 Function	 “pcoa”	 in	 the	 {ape}	 R	 package	
(Paradis,	Claude,	&	Strimmer,	2004)	was	used	to	compute	principal	
coordinates	 of	 each	dissimilarity	matrix	D.	 The	dissimilarities	 in	D 
matrices	were	square-	rooted	before	PCoA	in	order	to	make	the	ma-
trices	Euclidean	and	prevent	the	generation	of	negative	eigenvalues	
and	complex	PCoA	axes	 (De	Cáceres	et	al.,	2013).	Function	 “coef-
fRV”	 in	 the	 {FactoMineR}	 R	 package	 (Husson,	 Josse,	 Le,	&	Mazet,	
2015)	was	used	to	calculate	the	RV	coefficients	between	the	matri-
ces	of	principal	coordinates.

https://CRAN.R-project.org/package=vegclust
https://CRAN.R-project.org/package=vegclust
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2.2.4 | Beta diversity components (BDCOMP, 
BDSTR, and BDCOMP–STR)

Conventionally,	beta	diversity	 (abbreviated	BD)	 is	 assessed	 from	
a	site-	by-	species	data	matrix;	other	basic	characteristics	(e.g.,	size	
of	individuals)	of	the	community	are	ignored.	In	order	to	general-
ize	the	concept	of	traditional	beta	diversity	to	CAP	data,	we	ap-
plied	the	index	proposed	by	Legendre	et	al.	 (2005)	and	Legendre	
and	De	Cáceres	(2013)	to	compute	beta	diversity	as	the	variance	
of	the	community	data.	Legendre	and	De	Cáceres	(2013)	showed	
how	 to	 compute	 the	 total	 variance	 of	 the	 community	 composi-
tion	 data	matrix	 from	 a	 dissimilarity	matrix	D.	 The	 total	 sum	 of	
squares,	SS(Y),	can	be	obtained	from	a	dissimilarity	matrix	D	using	
Equation	1	(Legendre	&	De	Cáceres,	2013;	Legendre	&	Legendre,	
2012).	 Dividing	 SS(Y)	 by	 (n	 -		 1)	 produces	 the	 classical	 unbiased	
estimate	of	the	total	variance	of	Y	computed	from	a	user-	selected	
Euclidean	 dissimilarity	 matrix	D	 (i.e.,	 Equation	 2).	We	 used	 that	
approach	 to	 calculate	 the traditional compositional beta diversity 
(BDCOMP),	 the structural beta diversity	 (BDSTR),	 and	 the composi-
tional–structural beta diversity	(BDCOMP–STR),	respectively,	using	the	
following	equations:	

 

D =	(Dhi)	is	an	n	×	n	symmetric	dissimilarity	matrix	(either	D
COMP,	

DSTR,	or	DCOMP–STR);	 i and h	 represent	the	sampling	units;	n	 is	 the	
number	of	the	sampling	units.	 If	 the	calculations	start	with	a	per-
centage	difference	D	matrix,	which	is	non-	Euclidean,	one	computes	
the	square-	roots	of	the	D	values	in	the	D	matrix	to	make	it	Euclidean,	
before	using	the	transformed	D	values	in	Equations	1	and	2.

2.2.5 | Local contributions to beta diversity in 
terms of community composition and structure

Legendre	 and	De	 Cáceres	 (2013)	 suggested	 that	 total	 beta	 diver-
sity	 can	 be	 partitioned	 into	 Local	 Contributions	 to	Beta	Diversity	
(LCBD,	which	are	comparative	 indicators	of	the	ecological	unique-
ness	of	the	sites).	The	Local	Contributions	to	Beta	Diversity	(LCBDi)	
represent	 the	 relative	 contributions	of	 the	 sampling	unit	 i	 to	 beta	
diversity.	LCBDi	 indicates	how	exceptional	 the	composition	of	site	
i	 is	when	compared	to	the	centroid	of	all	points,	which	would	rep-
resent	 a	 theoretical	 site	 with	 the	 average	 species	 composition	 of	
all	 the	 sampling	 units.	 In	 the	 present	 study,	 the	 LCBD	 represents	
the	 degree	 of	 uniqueness	 of	 each	 sampling	 unit	 in	 terms	 of	 com-
position	 and/or	 structure	 of	 community	 assemblages.	 LCBDi indi-
ces	can	be	calculated	from	the	dissimilarity	matrices	D	(Legendre	&	
De	Cáceres,	2013).	One	first	transforms	the	distance	matrix	D	into	
matrix	A =	(ahi)	=	(–0.5D2

hi),	 then	 centers	 the	matrix	 as	 proposed	by	
Gower	(1966):	

 where I	is	an	identity	matrix	of	size	n,	1	is	a	vector	of	ones	(of	length	
n),	and	1′	is	its	transpose	(Legendre	&	Legendre,	2012).	Here,	each	
diagonal	element	of	matrix	G	is	the	SSi	values	(i.e.,	the	squared	dis-
tance	to	the	centroid	of	the	ith	sampling	unit).	Hence,	the	vector	of	
local	contributions	of	the	sites	to	beta	diversity(LCBDi)	is:	

The	 LCBD	 indices	 are	 scaled	 to	 sum	 to	 1.	 We	 used	 function	
“LCBD.comp”	in	the	{adespatial}	R	package	(Dray	et	al.,	2018),	avail-
able	on	CRAN	(https://CRAN.R-project.org/package=adespatial),	to	
calculate	the	LCBD	indices.

We	checked	whether	there	 is	a	correlation	between	the	LCBD	
coefficients	calculated	from	species	composition,	size	structure,	or	
using	the	two	components	together.	Hence,	we	calculated	Spearman	
rank	 correlations	 pairwise	 between	 the	 three	 types	of	 LCBD	vec-
tors	 (i.e.,	LCBDCOMP	vs	LCBDSTR,	LCBDCOMP	vs	LCBDCOMP–STR,	and	
LCBDSTR	vs	LCBDCOMP–STR).	Since	the	LCBD	indices	indicate	the	de-
gree	of	uniqueness	of	 the	sampling	units	 in	 terms	of	 their	 species	
composition	and/or	size	structure,	we	plotted	the	LCBD	values	on	
maps	of	 the	30-	ha	plot.	Large	LCBD	values	 indicate	 the	sites	 that	
have	unique	species	assemblages	and	small	LCBD	values	indicate	the	
sites	 that	have	assemblages	that	are	very	similar	 to	 those	 in	other	
sites.	 Again,	we	 expected	 LCBDCOMP–STR	 to	 be	 correlated	 to	 both	
LCBDCOMP	 and	 LCBDSTR,	 but	with	 the	 strength	 of	 the	 correlation	
depending	on	the	weight	given	to	structural	vs	compositional	infor-
mation.	We	thus	showed	the	two	extreme	cases	of	the	LCBD	map:	
according	a	 largest	weight	to	the	structural	component	and	corre-
spondingly	the	smallest	relative	weight	to	the	compositional	compo-
nent	(i.e.,	1-	cm	bin	size),	and	giving	the	largest	relative	weight	to	the	
compositional	component	(i.e.,	15-	cm	bin	size).

2.2.6 | Sets of explanatory variables: 
environmental and spatial variables

Following	 Legendre	 et	al.	 (2009),	we	 used	 altitude,	 convexity,	 and	
slope	 to	 construct	 third-	degree	polynomial	 functions	 (i.e.,	 yielding	
nine	variables).	The	monomials	with	exponents	allow	the	modeling	
of	 nonlinear	 relationships	 between	 the	 topographic	 variables	 and	
the	 response	 variables.	We	 calculated	 the	 aspect	 of	 a	 quadrat	 as	
the	average	angle	of	the	four	triangular	planes	that	deviate	from	the	
north	direction.	We	 thus	used	 the	 sin	 (aspect)	 and	 cos	 (aspect)	 in	
order	 to	 include	 it	 in	 a	 linear	 regression	model.	We	 therefore	ob-
tained	11	expanded	topographic	variables.	We	then	combined	these	
11	 expanded	 topographic	 variables	 with	 the	 eight	 soil	 variables	
(described	 in	section	2.1	Study	sites	and	data	collection)	 to	obtain	
the	 environmental	 variables	 data	 table	 (i.e.,	 19	 variables)	 for	 each	
quadrat.	We	 computed	 eigenfunctions	 of	 distance-	based	Moran’s	
eigenvector	 maps	 (dbMEM,	 also	 called	 Principal	 Coordinates	 of	
Neighbour	 Matrices,	 PCNM;	 Borcard,	 Legendre,	 Avois-	Jacquet,	 &	
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Tuomisto,	2004;	Legendre	&	Legendre,	2012;	Legendre	et	al.,	2009)	
across	the	3000	(10	m	×	10	m),	750	(20	m	×	20	m),	and	120	(50	m	×	
50	m)	quadrats.	The	dbMEM	eigenfunctions	with	positive	eigenval-
ues	only	were	used	as	spatial	variables.	We	applied	forward	model	
selection	(with	permutation	tests,	at	the	5%	significance	level,	of	the	
increase in R2	 at	each	step)	 to	extract	 the	significant	environment	
variables	and	eigenfunctions	of	dbMEM	using	the	function	“forward.
sel”	in	the	package	{adespatial}	(Dray	et	al.,	2018).

2.2.7 | Variation partitioning of DCOMP, DSTR and 
DCOMP–STR

To	compare	 the	 influence	of	niche-	based	and	spatial	processes	on	
community	assembly	 represented	by	community	composition,	size	
structure,	 or	 the	 two	 components	 together,	 distance-	based	 re-
dundancy	analysis	 (dbRDA,	Legendre	&	Anderson,	1999;	Legendre	
&	 Legendre,	 2012)	was	 used	 to	 partition	 the	 variation	 of	 each	 of	
three	 community	 matrices	 (Borcard,	 Legendre,	 &	 Drapeau,	 1992;	
Legendre	 et	al.,	 2009;	 Peres-	Neto,	 Legendre,	 Dray,	 &	 Borcard,	
2006).	 Specifically,	we	used	 the	 two	 sets	of	 explanatory	variables	
(after	 forward	model	selection)	 to	partition	variation	 in	 the	princi-
pal	coordinate	tables	extracted	from	DCOMP,	DSTR,	DCOMP–STR	sepa-
rately	 into	 fractions	 explained	 by	 the	 four	 different	 components:	
(a)	pure	habitat,	 (b)	spatially	structured	habitat,	 (c)	pure	space,	and	
(d)	undetermined	 (Borcard	&	Legendre,	1994;	Borcard	et	al.,	1992;	
De	Cáceres	et	al.,	 2012;	Legendre	et	al.,	 2009;	Myers	et	al.,	 2013;	
Punchi-	Manage	 et	al.,	 2014).	 We	 hypothesized	 that	 the	 niche	

processes	are	responsible	for	the	proportion	of	variation	explained	
by	the	pure	habitat	and	the	spatially-	structured	habitat	components	
(a	+	b)	(Laliberté,	Paquette,	Legendre,	&	Bouchard,	2009;	Legendre	
et	al.,	2009).	While	we	hypothesized	that	the	proportion	of	variation	
explained	by	the	pure	spatial	component	(c)	is	related	to	independ-
ent	 biological	 processes	 (e.g.,	 dispersal	 limitation,	 competition,	 fa-
cilitation,	historical	events,	and	Janzen–Connell	effects)	(Legendre	&	
Legendre,	2012;	Legendre	et	al.,	2009;	Punchi-	Manage	et	al.,	2014).	
The	undetermined	proportion	of	variation	(d)	may	be	related	to	sto-
chastic	 processes	 or	 undefined	 non-	spatially-	structured	 biological	
or	 environmental	 variables	 (Dumbrell,	 Nelson,	 Helgason,	 Dytham,	
&	Fitter,	2010).	That	allowed	us	to	assess	the	relative	contributions	
of	the	environmental	and	spatial	variables	to	community	assembly	
in	 terms	of	 composition,	 structure,	or	 taking	 the	 two	components	
together.	All	analyses	were	performed	using	R	(R	Core	Team,	2017).

3  | RESULTS

3.1 | Pairwise dissimilarity in terms of community 
composition and structure

We	found	 that	dissimilarity	matrices	computed	 from	species	com-
position	(DCOMP),	size	structure	(DSTR),	and	considering	both	compo-
nents	together	(DCOMP–STR)	were	correlated.	However,	the	strength	
of	 the	 correlation	depended	on	 the	 size	of	bins	used	 to	discretize	
the	structural	variable	and	on	the	size	of	 the	quadrats	 (Figure	1a–
c).	 Overall,	 the	 correlation	 between	 DCOMP vs DCOMP–STR was 

F IGURE  1 The	correlations	between	
the	pairwise	dissimilarity	in	terms	
of	species	composition	(DCOMP),	size	
structure	(DSTR)	and	both	components	
together	(DCOMP–STR).	The	correlations	
of	DCOMP vs DSTR,	DCOMP vs DCOMP–STR,	
and DSTR vs DCOMP–STR	vary	with	dbh	
bins	at	the	scale	of	(a)	10	m	×	10	m,	(b)	
20	m	×	20	m	and	(c)	50	m	×	50	m.	In	
graphs	(a),	(b),	and	(c),	the	horizontal	
red	dotted	lines,	horizontal	blue	long-	
dash	lines	and	horizontal	green	solid	
lines	represent	the	mean	values	of	RV	
coefficients	of	1–15	cm	dbh	bins	of	DCOMP 
vs DSTR,	DCOMP vs DCOMP–STR,	and	DSTR 
vs DCOMP–STR,	respectively.	(d)	Boxplots	
for	RV	coefficients	of	the	three	pairwise	
dissimilarity	comparisons	(aggregated	over	
all	1–15	cm	dbh	bin	sizes),	for	each	of	the	
three	quadrat	sizes	[Colour	figure	can	be	
viewed	at	wileyonlinelibrary.com]
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substantially	 stronger	 than	 that	 of	DCOMP vs DSTR,	 and	of	DSTR vs 
DCOMP–STR.

The	 correlation	 of	DCOMP vs DCOMP–STR	 increased	with	 the	 in-
crease	 of	 bin	 size.	 Correspondingly,	 the	 correlations	 of	 DSTR vs 
DCOMP–STR	 showed	 the	 opposite	 trend	 (Figure	1a–c).	 As	 to	 the	 ef-
fect	of	the	size	of	the	sampling	units,	the	strength	of	correlations	in-
creased	with	the	quadrat	size	(Figure	1d),	except	for	the	correlation	
between	DCOMP and DCOMP–STR,	which	exhibits	no	significant	differ-
ence	between	the	10	m	×	10	m	and	20	m	×	20	m	quadrats	(p = 0.23,	
Figure	1d).

3.2 | The three components of beta diversity (BD): 
BDCOMP, BDSTR and BDCOMP–STR

The	beta	diversity	(BD)	values	were	closely	related	to	whether	the	
species	 composition,	 size	 structure,	 or	 both	 components	 together	
had	 been	 taken	 into	 account.	 Among	 these	 three	 components	 of	
beta	diversity,	BDCOMP–STR	was	greatest,	closely	followed	by	BDCOMP,	
and	the	smallest	was	BDSTR	(Figure	2).	Since	the	size	structure	of	in-
dividuals	was	not	 considered	when	 calculating	BDCOMP,	 this	 index	
was	not	affected	by	the	size	of	dbh	bins	(Figure	2a–c).	The	values	of	
BDCOMP–STR	and	BDSTR,	however,	decreased	slightly	with	an	increase	
of	bin	size.	When	increasing	dbh	bin	size,	the	values	of	BDCOMP–STR 
gradually	approached	the	values	of	BDCOMP	 (Figure	2a–c).	BD	also	

varied	 as	 a	 function	 of	 quadrat	 size	 (Figure	2);	 values	 of	 BDCOMP,	
BDSTR,	and	BDCOMP–STR	(after	averaging	across	bin	sizes)	systemati-
cally	decreased	with	increasing	quadrat	size	(Figure	2d).

3.3 | Local contributions to beta diversity in 
terms of community composition and structure

Local	Contributions	to	Beta	Diversity	calculated	using	species	com-
position,	size	structure,	or	both	components	were	correlated.	Again,	
the	 strength	of	 correlations	depended	on	 the	 size	of	dbh	bins	 and	
on	 the	 size	 of	 quadrats	 (Figure	3a–c).	 In	 the	 case	 of	 LCBDCOMP vs 
LCBDCOMP–STR,	 the	 strength	 of	 the	 correlation	 increased	 with	 an	
increase	of	bin	size.	Correspondingly,	the	correlation	of	LCBDSTR vs 
LCBDCOMP–STR	showed	the	opposite	trend	(Figure	3a–c).	The	correla-
tions	of	LCBDCOMP	vs	LCBDSTR,	and	LCBDSTR	vs	LCBDCOMP–STR were 
significantly	 different	 for	 different	quadrat	 sizes.	A	 striking	 finding	
was	that	the	strength	of	correlations	was	weaker	at	the	scale	of	20	
m	×	20	m	 than	 that	 at	 the	 scales	of	10	m	×	10	m	or	50	m	×	50	m	
(Figure	3d).	However,	correlations	between	LCBDCOMP	vs	LCBDCOMP–
STR	were	not	substantially	affected	by	the	size	of	quadrats	(Figure	3d).

The	LCBDi	values	indicate	the	ith	quadrats	that	contribute	more	
or	less	than	the	mean	to	beta	diversity	(in	other	words,	the	ith	quad-
rats	with	high	or	low	uniqueness	of	species	assemblages).	The	results	
indicated	that	the	sites	with	high	LCBD	values	(contribute	more	than	

F IGURE  2 The	Beta	Diversity	(BD)	in	terms	of	species	composition	(BDCOMP),	size	structure	(BDSTR)	and	both	components	together	
(BDCOMP–STR).	The	values	of	BDCOMP–STR	and	BDSTR	vary	with	the	size	of	bins	of	the	structural	variable	(dbh	bin	sizes	=	1–15	cm)	at	the	scale	
of	(a)	10	m	×	10	m,	(b)	20	m	×	20	m,	and	(c)	50	m	×	50	m.	The	size	structure	of	individuals	(i.e.,	the	dbh)	is	not	considered	when	calculating	
the	BDCOMP;	thus,	the	values	of	BDCOMP	were	not	affected	by	the	bin	size.	In	graphs	(a),	(b),	and	(c),	the	horizontal	blue	long-	dash	lines	
and	horizontal	green	solid	lines	represent	the	mean	values	of	BDCOMP–STR,	and	BDSTR	across	1–15	cm	bin	sizes,	respectively.	(d)	Values	of	
BDCOMP,	BDSTR,	and	BDCOMP–STR	(after	averaging	across	dbh	bin	sizes)	vary	with	the	sampling	unit	sizes	[Colour	figure	can	be	viewed	at	
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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the	mean	to	beta	diversity)	are	varied	among	three	components	of	
a	community	 (Figure	4).	Specifically,	342	(45.6%),	290	(38.7%),	and	
331	 (44.1%)	out	of	750	quadrats	contributed	more	than	the	mean	
to	 beta	 diversity	 in	 term	 of	 species	 composition	 (i.e.,	 LCBDCOMP,	
Figure	4a),	size	structure	(i.e.,	LCBDSTR,	Figure	4g),	and	both	compo-
nents	together	(i.e.,	LCBDCOMP–STR,	Figure	4f),	respectively.

3.4 | Variation partitioning of matrices DCOMP, 
DSTR, and DCOMP–STR

The	explanatory	power	of	the	environmental	variables	and	the	spa-
tial	variables	varied	for	the	three	types	of	matrices	and	with	quadrat	
sizes	 (Table	 1).	 The	 variation	 explained	 by	 the	 environmental	 vari-
ables	(a	+	b),	and	by	the	spatial	variables	(b	+	c)	increased	systemati-
cally	with	 increasing	scale	 (Table	1).	Averaging	across	quadrat	sizes,	
habitat	and	space	jointly	explained	43.8%,	25.4%,	and	34.1%	of	the	
variation	 in	 compositional	 component,	 structural	 component,	 and	
the	 two	 components	 together	 of	 community	 assemblage,	 respec-
tively.	However,	the	contribution	of	the	pure	habitat	component	 (a)	
was	 negligible.	 The	 combination	 of	 environmental	 and	 spatial	 vari-
ables	explained	 the	 lowest	proportion	of	variation	 in	 the	 structural	
component	alone	and	explained	the	highest	proportion	of	variation	in	
the	compositional	component	alone	(Table	1).	Both	the	environmen-
tal	variables	(a	+	b)	and	the	pure	spatial	variables	(c)	explained	more	

variation	in	the	compositional	component	than	that	in	the	structural	
components	of	community	assemblage.	Additionally,	our	findings	in-
dicate	that	the	unexplained	(d)	fractions	dominated	the	variance	par-
titioning	computed	for	the	structural	component	Ystr	alone	(Table	1).

4  | DISCUSSION

Forest	 ecosystems	 can	 be	 characterized	 and	 evaluated	 in	 terms	 of	
both	their	structure	and	composition	(Peet,	1992).	In	previous	stud-
ies,	 the	 compositional	 and	 structural	 components	 of	 a	 community	
assemblage	were	usually	analyzed	separately	(e.g.,	Fang	et	al.,	2012).	
However,	the	nature	of	species	assemblages	indicates	that	either	spe-
cies	 composition	 or	 size	 structure	 of	 constituent	 individuals	 alone	
may	oversimplify	community	organization	 (De	Cáceres	et	al.,	2013).	
Changes	 in	 structure	 and	 composition	may	 be	 only	weakly	 related	
(e.g.,	Arsenault	&	Bradfield,	1995);	therefore,	assessment	of	both	si-
multaneously	is	important	when	evaluating	community	assembly.	In	
the	present	study,	we	generalized	the	conventional	approach	to	com-
munity	assemblage	by	incorporating	structural	data	of	a	community	
in	addition	to	compositional	data,	using	the	CAP	framework.	To	our	
knowledge,	 this	 is	 the	 first	paper	 that	 investigates	 in	a	single	study	
the	variation	in	both	the	compositional	and	structural	components	of	
community	assemblages	simultaneously,	as	well	as	its	determinants.

F IGURE  3 The	correlations	between	
the	Local	Contributions	to	Beta	
Diversity	(LCBD)	in	terms	of	community	
composition	(LCBDCOMP),	structure	
(LCBDSTR)	and	both	components	together	
(LCBDCOMP–STR).	The	correlations	of	
LCBDCOMP	vs	LCBDSTR,	LCBDCOMP 
vs	LCBDCOMP–STR,	and	LCBDSTR vs 
LCBDCOMP–STR	with	the	size	of	bins	of	the	
structural	variable	(bin	sizes	=	1–15	cm)	
at	the	scale	of	(a)	10	m	×	10	m,	(b)	20	m	
×	20	m,	and	(c)	50	m	×	50	m.	In	graphs	
(a),	(b),	and	(c),	the	horizontal	red	dotted	
lines,	horizontal	blue	long-	dash	lines	and	
horizontal	green	solid	lines	represent	
the	mean	values	of	Spearman’s	rank	
correlation	coefficient	r across 1–15 cm 
bin	size	of	LCBDCOMP	vs	LCBDSTR,	
LCBDCOMP	vs	LCBDCOMP–STR,	LCBDSTR vs 
LCBDCOMP–STR,	respectively.	(d)	Boxplots	
for	the	Spearman’s	rank	correlation	
coefficient	r	between	the	pairwise	of	the	
three	kinds	of	LCBD	of	1–15	cm	bin	sizes	
at	different	quadrat	sizes	[Colour	figure	
can	be	viewed	at	wileyonlinelibrary.com]
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We	 found	 that	both	overall	 beta	diversity	 (BD)	 and	 the	 rela-
tive	 contribution	 of	 sampling	 units	 to	 beta	 diversity	 (LCBD)	 de-
pended	 on	 whether	 the	 species	 composition,	 size	 structure,	 or	
both	components	together	had	been	taken	into	account.	Beta	di-
versity	 partitioning	 indicated	 that	 the	 explanatory	 power	 of	 the	

environmental	 and	 the	 spatial	 variables	 also	 varied	 widely	 with	
different	components	of	a	community.	Our	 results	highlight	 that	
considering	both	 species	 compositional	 and	 size	 structural	 com-
ponents	may	be	a	more	comprehensive	way	to	describe	the	com-
munity	organization.
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4.1 | Structural and compositional components of 
forest variation

The	 framework	 of	 CAP	 allowed	 us	 to	 incorporate	 the	 distribu-
tion	of	 individual	tree	size	 into	the	analysis	of	community	assem-
blage,	 thus	making	 it	 possible	 to	quantify	 the	 spatial	 variation	of	
community	structure	beta	diversity.	Even	so,	such	structural	beta	
diversity	can	be	quantified	 independently	or	 in	combination	with	
species	 composition.	 The	BDCOMP–STR	 is	 the	 largest	 among	 these	
three	components	of	beta	diversity,	 indicating	 that	applying	spe-
cies	composition	alone	or	size	structure	alone	to	assess	the	beta	di-
versity	may	underestimate	the	variation	of	assemblages	(Figure	2).	
The	values	of	BDCOMP	are	closer	to	the	BDCOMP–STR	values	than	that	
of	BDSTR	(the	BDSTR	values	are	relatively	small;	Figure	2).	Thus,	as	
far	as	our	CAP	framework	 is	concerned,	 it	 seems	more	appropri-
ate	to	quantify	beta	diversity	using	the	species	composition	 indi-
vidually	than	using	the	size	structure	individually.	Nevertheless,	if	
structure	provides	independent	information	and	is	deemed	impor-
tant,	one	should	incorporate	it	in	BD	assessment.	As	beta	diversity	
indices	were	calculated	from	dissimilarity	matrices,	 the	structural	
component	 of	 beta	 diversity	 depended	 on	 the	 weight	 given	 to	

structural	 vs	 compositional	 information	when	calculating	dissimi-
larity	(Figure	2a–c).	The	larger	the	bin	sizes	(i.e.	the	smaller	weight	
given	to	species	structural	information),	the	closer	BDCOMP–STR val-
ues	approached	the	values	of	BDCOMP	(Figure	2a–c).	If	the	bin	sizes	
are	 big	 enough,	 the	BDCOMP–STR	 value	 and	 the	BDCOMP value are 
expected	 to	 converge	 at	 a	 certain	 size	 of	 dbh	 bin.	Nevertheless,	
considering	the	necessity	of	comprehensive	assessment	of	beta	di-
versity,	we	advocate	for	small	bin	sizes,	as	they	provide	more	inde-
pendent	structural	information.	Finally,	it	is	important	to	note	that	
this	forest	plot	includes	47	different	tree	species,	which	results	in	a	
strong	relative	weight	of	the	compositional	component	of	BDCOMP–
STR	when	using	the	CAP	framework.	Repeating	our	study	in	forests	
with	 lower	 species	 richness	 or	 in	 this	 forest	 but	 using	 a	 coarser	
compositional	 resolution	 (e.g.,	 at	 the	 family	 level)	would	 result	 in	
larger	relative	weight	of	the	structural	component.

4.2 | Local contributions to beta diversity in 
terms of community composition and structure

Ecologically,	LCBD	indices	only	represent	the	degree	of	uniqueness	
of	the	sampling	units	in	terms	of	community	composition	(Legendre	

F IGURE  4 Maps	of	30-	ha	(500	m	×	600	m)	plot	showing	the	local	contributions	to	beta	diversity	(LCBD)	in	terms	of	community	
composition	and	structure	for	750	quadrats	(20	m	×	20	m).	The	solid	circles	represent	the	values	of	LCBDi	for	each	ith	quadrat	(i =	[1,	750]).	
(a)	The	map	of	LCBDs	only	in	terms	of	species	composition.	Note	that	the	size	structure	of	individuals	(i.e.,	dbh)	is	not	considered	when	
calculating	the	LCBDCOMP;	thus,	the	values	of	LCBDCOMP	were	not	affected	by	the	size	of	the	bins	of	the	structural	variable.	(b)–(e)	The	two	
extreme	cases	of	the	LCBD	map:	(b)	and	(c)	giving	the	most	weight	to	the	structural	component	and	correspondingly	the	least	weight	to	the	
compositional	component	(i.e.,	1-	cm	bin	size),	and	(d)	and	(e)	giving	the	most	weight	to	the	compositional	component	and	correspondingly	
the	least	weight	to	the	structural	component	(i.e.,	15-	cm	bin	size).	(f)	and	(g)	Maps	of	LCBDs	after	averaging	across	dbh	bin	sizes.	Size	of	the	
circles	is	proportional	to	the	LCBDi	values.	The	black	and	grey	solid	circles	represent	the	sites	with	LCBD	values	higher	and	lower	than	the	
mean,	respectively

TABLE  1 Variation	partitioning	results	for	three	types	of	matrices	at	different	scales	of	quadrats.	The	partitioning	is	based	on	adjusted	R2 
statistics,	as	recommended	by	Peres-	Neto	et	al.	(2006)

Quadrat sizes (a) (b) (c) (d) (a + b) (b + c) (a + b + c)

YCOMP

10	m	×	10	m 0.0044 0.0796 0.1361 0.7799 0.0840 0.2157 0.2201

20	m	×	20	m 0.0028 0.1783 0.2862 0.5327 0.1811 0.4645 0.4673

50	m	×	50	m 0.0050 0.2995 0.3229 0.3726 0.3045 0.6224 0.6274

YSTR

10	m	×	10	m 0.0123 0.0131 0.0296 0.9450 0.0254 0.0427 0.0550

20	m	×	20	m 0.0013 0.0907 0.1652 0.7428 0.0920 0.2560 0.2572

50	m	×	50	m 0.0029 0.2300 0.2163 0.5509 0.2328 0.4463 0.4492

YCOMP–STR

10	m	×	10	m 0.0055 0.0564 0.0932 0.8449 0.0619 0.1496 0.1551

20	m	×	20	m 0.0028 0.1576 0.2559 0.5837 0.1604 0.4135 0.4163

50	m	×	50	m 0.0013 0.2543 0.1948 0.5496 0.2556 0.4492 0.4504

Fractions	(a)–(d)	(adjusted	R2	statistics):	(a),	variation	explained	by	the	environmental	variables	after	controlling	for	the	spatial	structure;	(b),	variation	
explained	by	the	spatially	structured	environmental	variables;	(c),	spatially	structured	variation	explained	by	pure	space	after	controlling	for	environ-
mental	variation,	(d),	residual	variation.	Environmental	variables	used	to	compute	fraction	(a	+	b).	dbMEM	eigenfunctions	were	the	explanatory	varia-
bles	used	to	compute	fraction	(b	+	c).	Only	5-	cm-	diameter	classes	(i.e.,	bin	size	=	5	cm)	as	the	structural	variable	were	used	to	calculate	the	YSTR and 
YCOMP–STR.
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&	 De	 Cáceres,	 2013).	 However,	 natural	 communities	 may	 exhibit	
similar	species	compositions	but	differ	in	other	features	such	as	the	
size	structure	of	 individuals.	 In	the	present	study,	we	assessed	the	
degree	of	uniqueness	of	the	quadrats	in	terms	not	only	of	their	spe-
cies	composition,	but	also	of	their	size	structure,	and	by	using	both	
components	together.	The	degree	of	uniqueness	of	quadrats	in	terms	
of	community	composition	individually	had	a	very	weak	correlation	
with	uniqueness	 in	 terms	of	 size	 structure	 individually	 (LCBDCOMP 
vs	LCBDSTR,	Figure	3),	 indicating	 that	 sites	 that	 are	unique	 in	 spe-
cies	 composition	 are	 not	 necessarily	 unique	 in	 size	 structure,	 and	
vice	 versa.	 Additionally,	 we	 found	 that	 the	 spatial	 distribution	 of	
sites	with	high	LCBD	values	is	different	for	the	two	components	of	
a	community,	with	 sites	with	high	structural	uniqueness	occurring	
in	small	forest	patches	(Figure	4).	All	these	results	reinforce	the	idea	
that	considering	both	species	compositional	and	size	structural	com-
ponents	may	be	a	more	comprehensive	way	to	describe	the	commu-
nity	organization.	However,	if	we	accept	the	fact	that	sites	that	are	
unique	in	terms	of	size	structure	are	the	result	of	gap	dynamics	(see	
below),	 the	 non-	zero	 correlation	 between	 LCBDCOMP	 vs	 LCBDSTR 
may	indicate	that	forest	gaps	may	be	colonized	by	species	that	may	
later	be	suppressed	as	the	forest	grows,	so	that	recent	forest	gaps	
have	a	different	species	composition	than	closed	forest	structures	
(Comita	et	al.,	2009).

4.3 | Partitioning the structural and compositional 
components of beta diversity

About	34.4%	of	the	variation	in	community	assemblage	was	deter-
mined	by	environmental	and	spatial	variables,	depending	on	the	scale	
(quadrat	size)	and	on	which	components	of	community	assemblage	
(i.e.,	 compositional	 component,	 structural	 component,	 and	 taking	
both	components	 together)	were	 taken	 into	account.	This	propor-
tion	 is	slightly	 lower	than	the	values	found	 in	studies	by	Legendre	
et	al.	 (2009)	and	Punchi-	Manage	et	al.	 (2014).	A	reason	for	this	re-
sult	 is	 that	we	 incorporated	differences	both	 in	size	structure	and	
species	composition	 into	community	assemblages	rather	than	only	
using	the	conventional	species	composition	data.	When	the	species	
composition	 and	 size	 structure	 of	 the	 constituent	 individuals	 are	
incorporated	into	the	community	at	the	same	time,	more	variation	
will	occur	in	community	assemblages.	In	our	study,	habitat	(a	+	b)	ex-
plained	more	variation	in	the	compositional	component	(19.0%)	than	
in	the	structural	component	(11.7%)	of	the	community	assemblages.	
Beta	diversity	partitioning	indicated	that	the	variation	in	the	struc-
tural	component	is	less	dictated	by	environment	than	variation	in	the	
compositional	 component.	We	 here	 hypothesize	 that	 canopy	 gap	
dynamics	will	be	the	potential	drivers	of	structural	variation.	Winter	
in	our	study	area	is	cold	and	long,	with	a	long	snowfall	period.	The	
snowfall	period	lasts	for	half	a	year,	and	the	snow	cover	thickness	in	
mountainous	areas	reaches	40–50	cm.	We	hypothesize	that	pulses	
of	moderate-	severity	 disturbances	may	 be	 caused	 by	 snowstorms	
in	 our	 site.	 In	 the	 absence	 of	 stand-	replacing	 disturbances,	 forest	
canopies	are	opened	periodically	by	the	death	of	single	big	trees	or	
small	groups	of	adult	trees	creating	canopy	gaps.	Snowstorms	may	

have	altered	forest	structure	by	selectively	removing	larger	canopy	
trees.	 Environmental	 selection	 of	 individuals	 shapes	 composition	
by	determining	the	fitness	of	 individuals,	whereas	structural	varia-
tion	may	have	some	relationship	with	environmental	conditions	(i.e.,	
larger	trees	in	sites	where	larger	sizes	are	supported	for	energy	or	
water	availability)	but	in	general	is	the	reflection	of	different	stages	
around	gap	dynamics.	Previous	studies	are	consistent	with	our	find-
ings.	Fraver	and	White	(2005)	for	instance,	found	that	the	repeated	
moderate-	severity	 disturbances	 (i.e.,	windstorms)	 caused	dramatic	
structural	 changes;	 they	 caused	 no	 significant	 change	 in	 species	
composition.

Because	the	relative	importance	of	both	niche	and	neutral	the-
ory	in	structuring	communities	varies	with	spatial	scale	(Legendre	
et	al.,	 2009;	 Punchi-	Manage	 et	al.,	 2014),	 we	 conducted	 scale-	
dependent	analyses.	 In	sharp	contrast	to	the	finding	by	Legendre	
et	al.	(2009)	for	a	broad-	leaved	forest	in	China,	we	found	that	the	
proportion	of	undetermined	variation	 in	compositional	and	struc-
tural	components	of	community	assemblages	was	very	high	at	fine	
spatial	scales	(up	to	94.5%	for	the	structural	component,	78.0%	for	
the	compositional	component,	and	84.4%	for	both	components	to-
gether)	but	decreased	systematically	with	 increasing	spatial	 scale	
(up	 to	 a	 minimum	 of	 37.3%	 for	 compositional	 component	 at	 the	
50-	m	scale).	These	results	are	in	line	with	the	findings	by	Punchi-	
Manage	et	al.	(2014)	in	a	Sri	Lankan	dipterocarp	forest	and	by	De	
Cáceres	et	al.	(2012)	in	a	comparison	of	several	forests.	On	the	one	
hand,	the	high	proportion	of	unexplained	variation	may	be	related	
to	unmeasured	and	not	spatially-	structured	biological	or	environ-
mental	variables.	Xu	et	al.	(2016)	showed	that	the	soil	nutrients	in	
the	upper	(0–10	cm,	considered	in	our	study)	and	lower	soil	layers	
(10–20	cm),	and	the	heavy	metal	elements	(Cu,	Ni,	Cd,	As,	Pb,	Zn,	
Mo,	Cr,	Mn	and	Mg)	in	the	soil	show	a	strong	correlation	with	the	
species	spatial	distributions	at	Jiaohe.	This	may	partly	explain	why	
the	pure	environmental	variable	(a)	explained	such	little	variation	in	
the	community	assemblages.	Another	explanation	for	the	high	pro-
portion	of	unexplained	variation	is	that	it	may	be	due	to	stochastic	
processes,	which	 related	 to	 the	neutral	 theory	assuming	 that	 the	
dynamics	of	populations	are	primarily	driven	by	ecological	drift	and	
dispersal	(Legendre	et	al.,	2009).	On	the	other	hand,	the	proportion	
of	undetermined	variation	in	compositional	and	structural	compo-
nents	 of	 community	 assemblages	 decreased	 systematically	 with	
increasing	spatial	scale.	This	may	indicate	that	community	assem-
blage	is	highly	stochastic	in	terms	of	species	composition	and	tree	
size	distribution	at	fine	scales	 (i.e.	10-	m	scale),	but	this	fine	scale	
stochasticity	tends	to	smooth	out	at	the	50-	m	scale,	where	more	
consistent	 habitat-	driven	 species	 assemblages	 emerged.	 When	
variance	 partitioning	 is	 conducted	 on	 the	 structural	 component	
alone,	the	unexplained	(d)	fraction	is	dominant.	While	the	influence	
of	environmental	 factors	on	size	structure	may	be	 less	 important	
than	 for	 the	compositional	component,	 the	effect	of	 local	distur-
bances	 (e.g.,	 appearance	of	 canopy	gaps	 resulting	 from	mortality	
of	 large	trees)	results	 in	random	spatial	patterns	of	quadrats	with	
rather	 different	 structure,	 contributing	 to	 a	 large	 unexplained	
fraction.
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5  | CONCLUSIONS

Species	composition	and	size	structure	are	the	two	essential	features	
of	a	community.	Only	one	of	them	individually	may	be	insufficient	to	
describe	the	organization	of	tree	species	assemblages.	Defining	and	
quantifying	beta	diversity	using	the	species	composition	alone	may	
be	sufficient	then	in	many	occasions.	Nevertheless,	species	compo-
sition	 is	 just	one	dimension	of	biodiversity;	 variation	 in	 size	 struc-
ture	is	also	important.	Incorporating	structural	data	in	beta	diversity	
assessments	allows	ecologists	to	make	use	of	valuable	information	
collected	during	field	surveys.	If	it	is	available,	there	is	no	reason	to	
ignore	the	wealth	of	information	about	size	structure	when	compar-
ing	species	assemblages.	Our	study	highlights	the	need	to	incorpo-
rate	the	structural	data	of	a	community	in	addition	to	compositional	
data	when	quantifying	and	analyzing	beta	diversity.	Finally,	our	re-
sults	 suggest	 that	both	deterministic	and	stochastic	processes	are	
relevant	determinants	of	compositional	and	structural	components	
of	 community	assemblages	 in	our	 temperate	 forest.	Nevertheless,	
these	processes	are	scale-		and/or	resolution-	dependent.
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