
J Veg Sci. 2019;30:257–268.	 wileyonlinelibrary.com/journal/jvs�  |  257

Journal of Vegetation Science

© 2018 International Association 
for Vegetation Science

 

Received: 25 July 2018  |  Revised: 29 November 2018  |  Accepted: 3 December 2018
DOI: 10.1111/jvs.12708

R E S E A R C H  A R T I C L E

Variation in compositional and structural components of 
community assemblage and its determinants

Jie Yao1  | Chunyu Zhang1 | Miquel De Cáceres2,3 | Pierre Legendre4 | Xiuhai Zhao1

1Research Center of Forest Management 
Engineering of State Forestry and Grassland 
Administration, Beijing Forestry University, 
Beijing, China
2Forest Sciences Centre of Catalonia (CTFC), 
Solsona, Spain
3Center for Ecological Research and Forestry 
Applications (CREAF), Cerdanyola del Vallès, 
Spain
4Département de Sciences 
Biologiques, Université de Montréal, 
Montréal, Quebec, Canada

Correspondence
Xiuhai Zhao, Research Center of Forest 
Management Engineering of State Forestry 
and Grassland Administration, Beijing 
Forestry University, Beijing, China.
Email: zhaoxh@bjfu.edu.cn

Funding information
Key Project of National Key Research and 
Development Plan (2017YFC050400101) 
and Program of National Natural Science 
Foundation of China (31670643).

Co-ordinating Editor: Stephen Roxburgh

Abstract
Questions: What are the ecological processes that determine the spatial distribution 
of species and species diversity? Partitioning beta diversity can provide fundamental 
insights into the processes that determine the spatial variation of species assem-
blages. However, studying beta diversity is conventionally based only on species 
composition data, ignoring the structural component of communities.
Study site: Temperate mixed broadleaf–conifer forest in Jiaohe, Jilin Province, north-
eastern China.
Methods: We characterized the variation of community assemblages in terms of spe-
cies composition, size structure, or considering both components. We then employed 
environmental and spatial variables as explanatory factors to partition the variation 
in both compositional and structural components of community assemblage and as-
sess the relative contributions of the niche and neutral processes to community 
assembly.
Results: The values of overall beta diversity (BD statistics) and the relative contribu-
tion of individual sampling units to beta diversity (LCBD indices) depended on 
whether the species composition, size structure, or both together had been taken 
into account. The value of compositional–structural beta diversity was the largest, 
followed by traditional compositional beta diversity; the smallest was the structural 
beta diversity. The sites with high contributions to beta diversity (LCBD values) var-
ied among structural and compositional components. The explanatory power of the 
environmental variables and the spatial variables also varied widely with different 
components of a community. The combination of environmental and spatial variables 
explained the highest proportion of variation (43.8%) in the compositional compo-
nent and explained the lowest proportion of variation (25.4%) in the structural com-
ponent of community assemblage.
Conclusion: Both deterministic and stochastic processes are acting to determine 
community assemblages in terms of species composition and structure in our tem-
perate forest site. Our study highlights the importance of considering the structural 
component of forest communities, in addition to compositional data, when studying 
beta diversity.
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1  | INTRODUCTION

Understanding the mechanisms that determine the spatial distri-
bution of species and species diversity is a central theme in ecol-
ogy (Chave, 2004; Chesson, 2000; Hutchinson, 1961; Ricklefs, 
1990; Vellend, 2017). Deterministic niche-based and stochastic 
neutral processes have been widely discussed as potential driv-
ers of community assembly (Chesson, 2000; HilleRisLambers, 
Adler, Harpole, Levine, & Mayfield, 2012; Hubbell, 2001, 2006; 
Mayfield & Levine, 2010), but the factors underlying the relative 
contribution of the two processes are still unresolved (Legendre 
et al., 2009; Punchi-Manage et al., 2014; van der Plas et al., 2015). 
Niche and neutral theories emphasize different mechanisms as 
sources of species diversity. Niche theory predicts that deter-
ministic processes such as habitat filtering and competition shape 
species assemblages. Neutral theory, in contrast, assumes that all 
species are essentially functionally equivalent (HilleRisLambers 
et al., 2012; Hubbell, 2001, 2006; Keddy, 1992) and emphasizes 
the importance of stochastic processes in community assembly, 
such as random birth, death, dispersal events, speciation, and sto-
chastic extinction (Caswell, 1976; Hubbell, 2001). It is now gener-
ally accepted that both the deterministic and stochastic processes 
are potentially important determinants of the spatial distribution 
observed in community assemblages. At present, however, their 
relative importance in shaping different components of commu-
nity organization (i.e., the structural, compositional, or both com-
ponents together) is not clear (De Cáceres et al., 2012; Legendre 
et al., 2009; Punchi-Manage et al., 2014). In the present study, we 
defined the “compositional” term as the species composition data 
(e.g., species abundance values). We constrained the definition of 
“structural” to refer to the diameter at breast height of the individ-
ual trees making up the community.

The variation in species composition observed among a set of 
sampling units within a region is often described as beta diversity 
(Whittaker, 1960, 1972). The interest of community ecologists for 
beta diversity stems not only from the fact that it links local (i.e., 
alpha diversity) and regional diversity (i.e., gamma diversity) (De 
Cáceres et al., 2012), but also because it can provide fundamental 
insights into the processes that determine the spatial pattern of 
species assemblages (Anderson et al., 2011; Chase, 2010; Kraft 
et al., 2011; Legendre & De Cáceres, 2013; Myers et al., 2013). 
Beta diversity can be measured in many different ways (Koleff, 
Gaston, & Lennon, 2003; Legendre, Borcard, & Peres-Neto, 2005; 
Legendre & Legendre, 2012; Legendre et al., 2009). Beta diver-
sity estimates are most often based on species compositional data 
(e.g., species abundance values or species incidence), which take 
the form of a site-by-species data matrix with sites in rows and 
species abundances in columns. Although species composition 
data are fundamentally important, they alone may be insufficient 
for describing community organization and may neglect other 
valuable information to study community assembly processes, 
such as the structural component (e.g., the size structure of con-
stituent individuals) of a community (De Cáceres, Legendre, & He, 

2013; Faith, Austin, Belbin, & Margules, 1985; Fang et al., 2012). 
The phenomenon of competition asymmetry emphasizes that 
large individuals usually compete disproportionately with their 
smaller-sized neighbors (Weiner, 1990). Big trees control more 
above-  and below-ground resources (e.g., light and mineral nu-
trients) than small trees (Schwinning & Weiner, 1998). Therefore, 
larger individuals tend to have greater impact on the function and 
dynamics of forest ecosystems than small ones. Moreover, natural 
multi-species communities may exhibit similar compositions but 
differ in other features such as the size structure of their individu-
als (De Cáceres et al., 2013). The distribution of individual sizes is 
also an important component to represent and understand com-
munity assembly, therefore using species abundances only (i.e., 
the compositional component) to describe forest beta diversity 
may be an oversimplification of the spatial variation of commu-
nities. In order to get comprehensive insight into the processes 
that determine the spatial pattern of species assemblages, it is 
necessary to ensure first that we have the ability to describe beta 
diversity in a comprehensive way. Whether or not the structural 
component should or could be considered altogether with other 
beta diversity components has never been investigated and re-
mains to be explored.

In this study, we generalized the conventional approach to the 
study of beta diversity by considering structural data in addition 
to compositional data. We first measure the spatial variation of as-
semblages on the basis of species composition and size structure of 
constituents. We then use the environmental and spatial variables 
as explanatory factors to partition the variation in compositional 
and structural components of community assemblage. We specifi-
cally address the following questions: (a) Can we take both the spe-
cies compositional and size structural components of a community 
into account when describing beta diversity? Is there a correlation 
between these beta diversity components? (b) How is the assess-
ment of these beta diversity components affected by the size of the 
sampling units? (c) When considering both the compositional and 
structural components together, to what extent are beta diversity 
assessments affected by the relative importance accorded to struc-
tural vs compositional differences? (d) What is the relative contri-
bution of the environmental and spatial variables to community 
assembly in terms of species composition, size structure, or consid-
ering both components?

2  | MATERIAL AND METHODS

2.1 | Study sites and data collection

Our study was carried out in a temperate mixed broadleaf–conifer 
forest in Jiaohe, Jilin Province, northeastern China. The average hot-
test monthly temperature is 21.7°C in July, and the coldest month is 
January with an average day temperature of -18.6°C. The average 
annual precipitation is 695.9 mm (Zhang, Zhao, & Gadow, 2014). The 
soil is a brown forest soil with a rootable depth ranging between 20 
and 100 cm (Zhang, Zhao, Zhao, & Gadow, 2012). This study uses 
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data from a 30-ha (500 m × 600 m) forest dynamic plot (43°57.928′–
43°58.214′ N, 127°45.287′–127°45.790′ E), established in the sum-
mer of 2010. The plot is situated in a protected old-growth forest 
in a late stage of succession, with little human disturbance due to 
its remoteness from residential areas (Yao, Zhang, Zhang, Zhao, & 
Gadow, 2016).

All individuals with a diameter at breast height (dbh) of 1 cm or 
more in the plot were identified, measured and spatially mapped in 
2010. A total of 49,684 individual trees belonging to 20 families and 
47 species in the plot were used in the present study. The plot was 
divided into 120 (50 m × 50 m), 750 (20 m × 20 m) and 3,000 (10 m × 
10 m) subplots, hereafter called quadrats. Topographic and soil vari-
ables were also available for each quadrat. Four topographic vari-
ables (altitude, quadrat convexity, slope, and aspect) were calculated 
for each quadrat following the recommendation of Harms, Condit, 
Hubbell, and Foster (2001) and Yamakura et al. (1995). Eight soil en-
vironmental and nutrient variables were measured: pH, the amount 
of organic matter, and the total amounts as well as the available 
nutrients of nitrogen (N), phosphorus (P), and potassium (K) (g/g; 
Yan, Zhang, Wang, Zhao, & Gadow, 2015). All laboratory analyses 
were conducted following the procedures recommended by the Soil 
Science Society of China (1999).

2.2 | Statistical analyses

2.2.1 | Cumulative abundance profiles

The concept of cumulative abundance profile (CAP), developed by 
De Cáceres et al. (2013), is defined as a function that takes the val-
ues of a structural variable (e.g., height, dbh, etc.) as input and re-
turns the cumulative abundance of individuals whose values of the 
structural variable are equal to or larger than the input value. The 
CAP framework generalizes traditional species abundance values 
and allows researchers to describe the structural component of a 
community. In the present study, the structural variable was diam-
eter at breast height (dbh). According to this choice, the value of CAP 
for a given dbh value is the cumulative abundance of tree individuals 
as big as or bigger than the input value. Function CAP in fact replaces 
the abundance value of a dbh class by the sum of abundances in this 
and larger dbh classes.

2.2.2 | Community tables

Following the conventional methods, species composition tables 
(i.e. quadrats in rows, species in column, and the table contain-
ing individual counts) were assembled; in this study, we call this 
table the traditional species composition matrix (YCOMP). In order to 
generalize a traditional species abundance value and describe the 
size structure component of the community, the CAPs, consider-
ing species identity, were calculated to obtain the species composi-
tion combined with structural data matrix (YCOMP–STR). The YCOMP–STR 
is a matrix with as many rows as plot records and where columns 
are organized in blocks, and there are as many blocks as species 

and each block has as many columns as size classes. Disregarding 
species identity of the different individuals, CAPs were also calcu-
lated to obtain the community structural matrix (YSTR). The YSTR is 
a matrix with as many rows as plot records and as many columns 
as size classes.

Functions “stratifyvegdata” and “CAP” in the {vegclust} R pack-
age (De Cáceres, Font, & Oliva, 2010), available on CRAN (https://
CRAN.R-project.org/package=vegclust), were applied to calculate 
the CAPs. Functions “stratifyvegdata” and “CAP” require discretiz-
ing the structural variable, and the number of size bins affects the 
importance accorded to structural differences. Thus, there are de-
cisions to be made when creating YSTR and YCOMP–STR, particularly 
how we define the bins of the structural variables (e.g., dbh bins). 
In this study, we tested from 1-cm bin size to 15-cm bin size to dis-
cretize dbh into classes. That is, 1 cm bins lead to dbh classes 1–2, 
2–3, 3–4 and so on, whereas 5 cm bins lead to dbh classes 1–5, 6–10, 
10–15 and so on. The smaller the size of dbh bin, the more columns 
will be produced in each block in the table YCOMP–STR, indicating that 
more weight is accorded to differences in structure, and vice versa. 
If the bin size was big enough so that the number of columns in each 
block in the table YCOMP–STR was one, we would have that YCOMP–
STR = YCOMP. Generally, the larger the size of dbh bins, the more simi-
lar will YCOMP and YCOMP–STR be.

2.2.3 | Pairwise dissimilarity in terms of community 
composition and structure

We calculated dissimilarity matrices between all pairs of quadrats 
using the percentage difference index (a.k.a. Bray–Curtis dissimilar-
ity) on community matrices YCOMP, YSTR, and YCOMP–STR to obtain the 
compositional dissimilarity matrix (DCOMP), the structural dissimilar-
ity matrix (DSTR) and the compositional–structural dissimilarity matrix 
(DCOMP–STR), respectively. In order to explore the pairwise covari-
ation between the three kinds of dissimilarity assessments (i.e., 
DCOMP vs DSTR, DCOMP vs DCOMP–STR, and DSTR vs DCOMP–STR), we first 
computed principal coordinates of each dissimilarity matrix using 
principal coordinates analysis (PCoA), then compared the resulting 
matrices of principal coordinates, keeping all axes, using the RV co-
efficient. We expected that DCOMP–STR would be correlated to both 
DCOMP and DSTR, but the strength of the correlation does depend on 
the chosen size of diameter bins (i.e., on the weight given to struc-
tural vs compositional information).

Function “vegdist” with the dissimilarity index “bray” in the 
{vegan} R package (Oksanen et al., 2018) was used to calculate the 
dissimilarity matrices D. Function “pcoa” in the {ape} R package 
(Paradis, Claude, & Strimmer, 2004) was used to compute principal 
coordinates of each dissimilarity matrix D. The dissimilarities in D 
matrices were square-rooted before PCoA in order to make the ma-
trices Euclidean and prevent the generation of negative eigenvalues 
and complex PCoA axes (De Cáceres et al., 2013). Function “coef-
fRV” in the {FactoMineR} R package (Husson, Josse, Le, & Mazet, 
2015) was used to calculate the RV coefficients between the matri-
ces of principal coordinates.

https://CRAN.R-project.org/package=vegclust
https://CRAN.R-project.org/package=vegclust
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2.2.4 | Beta diversity components (BDCOMP, 
BDSTR, and BDCOMP–STR)

Conventionally, beta diversity (abbreviated BD) is assessed from 
a site-by-species data matrix; other basic characteristics (e.g., size 
of individuals) of the community are ignored. In order to general-
ize the concept of traditional beta diversity to CAP data, we ap-
plied the index proposed by Legendre et al. (2005) and Legendre 
and De Cáceres (2013) to compute beta diversity as the variance 
of the community data. Legendre and De Cáceres (2013) showed 
how to compute the total variance of the community composi-
tion data matrix from a dissimilarity matrix D. The total sum of 
squares, SS(Y), can be obtained from a dissimilarity matrix D using 
Equation 1 (Legendre & De Cáceres, 2013; Legendre & Legendre, 
2012). Dividing SS(Y) by (n -  1) produces the classical unbiased 
estimate of the total variance of Y computed from a user-selected 
Euclidean dissimilarity matrix D (i.e., Equation 2). We used that 
approach to calculate the traditional compositional beta diversity 
(BDCOMP), the structural beta diversity (BDSTR), and the composi-
tional–structural beta diversity (BDCOMP–STR), respectively, using the 
following equations: 

 

D = (Dhi) is an n × n symmetric dissimilarity matrix (either D
COMP, 

DSTR, or DCOMP–STR); i and h represent the sampling units; n is the 
number of the sampling units. If the calculations start with a per-
centage difference D matrix, which is non-Euclidean, one computes 
the square-roots of the D values in the D matrix to make it Euclidean, 
before using the transformed D values in Equations 1 and 2.

2.2.5 | Local contributions to beta diversity in 
terms of community composition and structure

Legendre and De Cáceres (2013) suggested that total beta diver-
sity can be partitioned into Local Contributions to Beta Diversity 
(LCBD, which are comparative indicators of the ecological unique-
ness of the sites). The Local Contributions to Beta Diversity (LCBDi) 
represent the relative contributions of the sampling unit i to beta 
diversity. LCBDi indicates how exceptional the composition of site 
i is when compared to the centroid of all points, which would rep-
resent a theoretical site with the average species composition of 
all the sampling units. In the present study, the LCBD represents 
the degree of uniqueness of each sampling unit in terms of com-
position and/or structure of community assemblages. LCBDi indi-
ces can be calculated from the dissimilarity matrices D (Legendre & 
De Cáceres, 2013). One first transforms the distance matrix D into 
matrix A = (ahi) = (–0.5D2

hi), then centers the matrix as proposed by 
Gower (1966): 

 where I is an identity matrix of size n, 1 is a vector of ones (of length 
n), and 1′ is its transpose (Legendre & Legendre, 2012). Here, each 
diagonal element of matrix G is the SSi values (i.e., the squared dis-
tance to the centroid of the ith sampling unit). Hence, the vector of 
local contributions of the sites to beta diversity(LCBDi) is: 

The LCBD indices are scaled to sum to 1. We used function 
“LCBD.comp” in the {adespatial} R package (Dray et al., 2018), avail-
able on CRAN (https://CRAN.R-project.org/package=adespatial), to 
calculate the LCBD indices.

We checked whether there is a correlation between the LCBD 
coefficients calculated from species composition, size structure, or 
using the two components together. Hence, we calculated Spearman 
rank correlations pairwise between the three types of LCBD vec-
tors (i.e., LCBDCOMP vs LCBDSTR, LCBDCOMP vs LCBDCOMP–STR, and 
LCBDSTR vs LCBDCOMP–STR). Since the LCBD indices indicate the de-
gree of uniqueness of the sampling units in terms of their species 
composition and/or size structure, we plotted the LCBD values on 
maps of the 30-ha plot. Large LCBD values indicate the sites that 
have unique species assemblages and small LCBD values indicate the 
sites that have assemblages that are very similar to those in other 
sites. Again, we expected LCBDCOMP–STR to be correlated to both 
LCBDCOMP and LCBDSTR, but with the strength of the correlation 
depending on the weight given to structural vs compositional infor-
mation. We thus showed the two extreme cases of the LCBD map: 
according a largest weight to the structural component and corre-
spondingly the smallest relative weight to the compositional compo-
nent (i.e., 1-cm bin size), and giving the largest relative weight to the 
compositional component (i.e., 15-cm bin size).

2.2.6 | Sets of explanatory variables: 
environmental and spatial variables

Following Legendre et al. (2009), we used altitude, convexity, and 
slope to construct third-degree polynomial functions (i.e., yielding 
nine variables). The monomials with exponents allow the modeling 
of nonlinear relationships between the topographic variables and 
the response variables. We calculated the aspect of a quadrat as 
the average angle of the four triangular planes that deviate from the 
north direction. We thus used the sin (aspect) and cos (aspect) in 
order to include it in a linear regression model. We therefore ob-
tained 11 expanded topographic variables. We then combined these 
11 expanded topographic variables with the eight soil variables 
(described in section 2.1 Study sites and data collection) to obtain 
the environmental variables data table (i.e., 19 variables) for each 
quadrat. We computed eigenfunctions of distance-based Moran’s 
eigenvector maps (dbMEM, also called Principal Coordinates of 
Neighbour Matrices, PCNM; Borcard, Legendre, Avois-Jacquet, & 

(1)SS(Y) =
1

n

n−1
∑

h=1

n
∑

i=h+1

D
2
hi

(2)BD = SS(Y)∕(n−1)

(3)G =

(

I−
11

�

n

)

A

(

I−
11

�

n

)

(4)(LCBDi) = (SSi)∕SS(Y) = diag(G)∕SS(Y)

https://CRAN.R-project.org/package=adespatial
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Tuomisto, 2004; Legendre & Legendre, 2012; Legendre et al., 2009) 
across the 3000 (10 m × 10 m), 750 (20 m × 20 m), and 120 (50 m × 
50 m) quadrats. The dbMEM eigenfunctions with positive eigenval-
ues only were used as spatial variables. We applied forward model 
selection (with permutation tests, at the 5% significance level, of the 
increase in R2 at each step) to extract the significant environment 
variables and eigenfunctions of dbMEM using the function “forward.
sel” in the package {adespatial} (Dray et al., 2018).

2.2.7 | Variation partitioning of DCOMP, DSTR and 
DCOMP–STR

To compare the influence of niche-based and spatial processes on 
community assembly represented by community composition, size 
structure, or the two components together, distance-based re-
dundancy analysis (dbRDA, Legendre & Anderson, 1999; Legendre 
& Legendre, 2012) was used to partition the variation of each of 
three community matrices (Borcard, Legendre, & Drapeau, 1992; 
Legendre et al., 2009; Peres-Neto, Legendre, Dray, & Borcard, 
2006). Specifically, we used the two sets of explanatory variables 
(after forward model selection) to partition variation in the princi-
pal coordinate tables extracted from DCOMP, DSTR, DCOMP–STR sepa-
rately into fractions explained by the four different components: 
(a) pure habitat, (b) spatially structured habitat, (c) pure space, and 
(d) undetermined (Borcard & Legendre, 1994; Borcard et al., 1992; 
De Cáceres et al., 2012; Legendre et al., 2009; Myers et al., 2013; 
Punchi-Manage et al., 2014). We hypothesized that the niche 

processes are responsible for the proportion of variation explained 
by the pure habitat and the spatially-structured habitat components 
(a + b) (Laliberté, Paquette, Legendre, & Bouchard, 2009; Legendre 
et al., 2009). While we hypothesized that the proportion of variation 
explained by the pure spatial component (c) is related to independ-
ent biological processes (e.g., dispersal limitation, competition, fa-
cilitation, historical events, and Janzen–Connell effects) (Legendre & 
Legendre, 2012; Legendre et al., 2009; Punchi-Manage et al., 2014). 
The undetermined proportion of variation (d) may be related to sto-
chastic processes or undefined non-spatially-structured biological 
or environmental variables (Dumbrell, Nelson, Helgason, Dytham, 
& Fitter, 2010). That allowed us to assess the relative contributions 
of the environmental and spatial variables to community assembly 
in terms of composition, structure, or taking the two components 
together. All analyses were performed using R (R Core Team, 2017).

3  | RESULTS

3.1 | Pairwise dissimilarity in terms of community 
composition and structure

We found that dissimilarity matrices computed from species com-
position (DCOMP), size structure (DSTR), and considering both compo-
nents together (DCOMP–STR) were correlated. However, the strength 
of the correlation depended on the size of bins used to discretize 
the structural variable and on the size of the quadrats (Figure 1a–
c). Overall, the correlation between DCOMP vs DCOMP–STR was 

F IGURE  1 The correlations between 
the pairwise dissimilarity in terms 
of species composition (DCOMP), size 
structure (DSTR) and both components 
together (DCOMP–STR). The correlations 
of DCOMP vs DSTR, DCOMP vs DCOMP–STR, 
and DSTR vs DCOMP–STR vary with dbh 
bins at the scale of (a) 10 m × 10 m, (b) 
20 m × 20 m and (c) 50 m × 50 m. In 
graphs (a), (b), and (c), the horizontal 
red dotted lines, horizontal blue long-
dash lines and horizontal green solid 
lines represent the mean values of RV 
coefficients of 1–15 cm dbh bins of DCOMP 
vs DSTR, DCOMP vs DCOMP–STR, and DSTR 
vs DCOMP–STR, respectively. (d) Boxplots 
for RV coefficients of the three pairwise 
dissimilarity comparisons (aggregated over 
all 1–15 cm dbh bin sizes), for each of the 
three quadrat sizes [Colour figure can be 
viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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substantially stronger than that of DCOMP vs DSTR, and of DSTR vs 
DCOMP–STR.

The correlation of DCOMP vs DCOMP–STR increased with the in-
crease of bin size. Correspondingly, the correlations of DSTR vs 
DCOMP–STR showed the opposite trend (Figure 1a–c). As to the ef-
fect of the size of the sampling units, the strength of correlations in-
creased with the quadrat size (Figure 1d), except for the correlation 
between DCOMP and DCOMP–STR, which exhibits no significant differ-
ence between the 10 m × 10 m and 20 m × 20 m quadrats (p = 0.23, 
Figure 1d).

3.2 | The three components of beta diversity (BD): 
BDCOMP, BDSTR and BDCOMP–STR

The beta diversity (BD) values were closely related to whether the 
species composition, size structure, or both components together 
had been taken into account. Among these three components of 
beta diversity, BDCOMP–STR was greatest, closely followed by BDCOMP, 
and the smallest was BDSTR (Figure 2). Since the size structure of in-
dividuals was not considered when calculating BDCOMP, this index 
was not affected by the size of dbh bins (Figure 2a–c). The values of 
BDCOMP–STR and BDSTR, however, decreased slightly with an increase 
of bin size. When increasing dbh bin size, the values of BDCOMP–STR 
gradually approached the values of BDCOMP (Figure 2a–c). BD also 

varied as a function of quadrat size (Figure 2); values of BDCOMP, 
BDSTR, and BDCOMP–STR (after averaging across bin sizes) systemati-
cally decreased with increasing quadrat size (Figure 2d).

3.3 | Local contributions to beta diversity in 
terms of community composition and structure

Local Contributions to Beta Diversity calculated using species com-
position, size structure, or both components were correlated. Again, 
the strength of correlations depended on the size of dbh bins and 
on the size of quadrats (Figure 3a–c). In the case of LCBDCOMP vs 
LCBDCOMP–STR, the strength of the correlation increased with an 
increase of bin size. Correspondingly, the correlation of LCBDSTR vs 
LCBDCOMP–STR showed the opposite trend (Figure 3a–c). The correla-
tions of LCBDCOMP vs LCBDSTR, and LCBDSTR vs LCBDCOMP–STR were 
significantly different for different quadrat sizes. A striking finding 
was that the strength of correlations was weaker at the scale of 20 
m × 20 m than that at the scales of 10 m × 10 m or 50 m × 50 m 
(Figure 3d). However, correlations between LCBDCOMP vs LCBDCOMP–
STR were not substantially affected by the size of quadrats (Figure 3d).

The LCBDi values indicate the ith quadrats that contribute more 
or less than the mean to beta diversity (in other words, the ith quad-
rats with high or low uniqueness of species assemblages). The results 
indicated that the sites with high LCBD values (contribute more than 

F IGURE  2 The Beta Diversity (BD) in terms of species composition (BDCOMP), size structure (BDSTR) and both components together 
(BDCOMP–STR). The values of BDCOMP–STR and BDSTR vary with the size of bins of the structural variable (dbh bin sizes = 1–15 cm) at the scale 
of (a) 10 m × 10 m, (b) 20 m × 20 m, and (c) 50 m × 50 m. The size structure of individuals (i.e., the dbh) is not considered when calculating 
the BDCOMP; thus, the values of BDCOMP were not affected by the bin size. In graphs (a), (b), and (c), the horizontal blue long-dash lines 
and horizontal green solid lines represent the mean values of BDCOMP–STR, and BDSTR across 1–15 cm bin sizes, respectively. (d) Values of 
BDCOMP, BDSTR, and BDCOMP–STR (after averaging across dbh bin sizes) vary with the sampling unit sizes [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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the mean to beta diversity) are varied among three components of 
a community (Figure 4). Specifically, 342 (45.6%), 290 (38.7%), and 
331 (44.1%) out of 750 quadrats contributed more than the mean 
to beta diversity in term of species composition (i.e., LCBDCOMP, 
Figure 4a), size structure (i.e., LCBDSTR, Figure 4g), and both compo-
nents together (i.e., LCBDCOMP–STR, Figure 4f), respectively.

3.4 | Variation partitioning of matrices DCOMP, 
DSTR, and DCOMP–STR

The explanatory power of the environmental variables and the spa-
tial variables varied for the three types of matrices and with quadrat 
sizes (Table 1). The variation explained by the environmental vari-
ables (a + b), and by the spatial variables (b + c) increased systemati-
cally with increasing scale (Table 1). Averaging across quadrat sizes, 
habitat and space jointly explained 43.8%, 25.4%, and 34.1% of the 
variation in compositional component, structural component, and 
the two components together of community assemblage, respec-
tively. However, the contribution of the pure habitat component (a) 
was negligible. The combination of environmental and spatial vari-
ables explained the lowest proportion of variation in the structural 
component alone and explained the highest proportion of variation in 
the compositional component alone (Table 1). Both the environmen-
tal variables (a + b) and the pure spatial variables (c) explained more 

variation in the compositional component than that in the structural 
components of community assemblage. Additionally, our findings in-
dicate that the unexplained (d) fractions dominated the variance par-
titioning computed for the structural component Ystr alone (Table 1).

4  | DISCUSSION

Forest ecosystems can be characterized and evaluated in terms of 
both their structure and composition (Peet, 1992). In previous stud-
ies, the compositional and structural components of a community 
assemblage were usually analyzed separately (e.g., Fang et al., 2012). 
However, the nature of species assemblages indicates that either spe-
cies composition or size structure of constituent individuals alone 
may oversimplify community organization (De Cáceres et al., 2013). 
Changes in structure and composition may be only weakly related 
(e.g., Arsenault & Bradfield, 1995); therefore, assessment of both si-
multaneously is important when evaluating community assembly. In 
the present study, we generalized the conventional approach to com-
munity assemblage by incorporating structural data of a community 
in addition to compositional data, using the CAP framework. To our 
knowledge, this is the first paper that investigates in a single study 
the variation in both the compositional and structural components of 
community assemblages simultaneously, as well as its determinants.

F IGURE  3 The correlations between 
the Local Contributions to Beta 
Diversity (LCBD) in terms of community 
composition (LCBDCOMP), structure 
(LCBDSTR) and both components together 
(LCBDCOMP–STR). The correlations of 
LCBDCOMP vs LCBDSTR, LCBDCOMP 
vs LCBDCOMP–STR, and LCBDSTR vs 
LCBDCOMP–STR with the size of bins of the 
structural variable (bin sizes = 1–15 cm) 
at the scale of (a) 10 m × 10 m, (b) 20 m 
× 20 m, and (c) 50 m × 50 m. In graphs 
(a), (b), and (c), the horizontal red dotted 
lines, horizontal blue long-dash lines and 
horizontal green solid lines represent 
the mean values of Spearman’s rank 
correlation coefficient r across 1–15 cm 
bin size of LCBDCOMP vs LCBDSTR, 
LCBDCOMP vs LCBDCOMP–STR, LCBDSTR vs 
LCBDCOMP–STR, respectively. (d) Boxplots 
for the Spearman’s rank correlation 
coefficient r between the pairwise of the 
three kinds of LCBD of 1–15 cm bin sizes 
at different quadrat sizes [Colour figure 
can be viewed at wileyonlinelibrary.com]
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We found that both overall beta diversity (BD) and the rela-
tive contribution of sampling units to beta diversity (LCBD) de-
pended on whether the species composition, size structure, or 
both components together had been taken into account. Beta di-
versity partitioning indicated that the explanatory power of the 

environmental and the spatial variables also varied widely with 
different components of a community. Our results highlight that 
considering both species compositional and size structural com-
ponents may be a more comprehensive way to describe the com-
munity organization.
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4.1 | Structural and compositional components of 
forest variation

The framework of CAP allowed us to incorporate the distribu-
tion of individual tree size into the analysis of community assem-
blage, thus making it possible to quantify the spatial variation of 
community structure beta diversity. Even so, such structural beta 
diversity can be quantified independently or in combination with 
species composition. The BDCOMP–STR is the largest among these 
three components of beta diversity, indicating that applying spe-
cies composition alone or size structure alone to assess the beta di-
versity may underestimate the variation of assemblages (Figure 2). 
The values of BDCOMP are closer to the BDCOMP–STR values than that 
of BDSTR (the BDSTR values are relatively small; Figure 2). Thus, as 
far as our CAP framework is concerned, it seems more appropri-
ate to quantify beta diversity using the species composition indi-
vidually than using the size structure individually. Nevertheless, if 
structure provides independent information and is deemed impor-
tant, one should incorporate it in BD assessment. As beta diversity 
indices were calculated from dissimilarity matrices, the structural 
component of beta diversity depended on the weight given to 

structural vs compositional information when calculating dissimi-
larity (Figure 2a–c). The larger the bin sizes (i.e. the smaller weight 
given to species structural information), the closer BDCOMP–STR val-
ues approached the values of BDCOMP (Figure 2a–c). If the bin sizes 
are big enough, the BDCOMP–STR value and the BDCOMP value are 
expected to converge at a certain size of dbh bin. Nevertheless, 
considering the necessity of comprehensive assessment of beta di-
versity, we advocate for small bin sizes, as they provide more inde-
pendent structural information. Finally, it is important to note that 
this forest plot includes 47 different tree species, which results in a 
strong relative weight of the compositional component of BDCOMP–
STR when using the CAP framework. Repeating our study in forests 
with lower species richness or in this forest but using a coarser 
compositional resolution (e.g., at the family level) would result in 
larger relative weight of the structural component.

4.2 | Local contributions to beta diversity in 
terms of community composition and structure

Ecologically, LCBD indices only represent the degree of uniqueness 
of the sampling units in terms of community composition (Legendre 

F IGURE  4 Maps of 30-ha (500 m × 600 m) plot showing the local contributions to beta diversity (LCBD) in terms of community 
composition and structure for 750 quadrats (20 m × 20 m). The solid circles represent the values of LCBDi for each ith quadrat (i = [1, 750]). 
(a) The map of LCBDs only in terms of species composition. Note that the size structure of individuals (i.e., dbh) is not considered when 
calculating the LCBDCOMP; thus, the values of LCBDCOMP were not affected by the size of the bins of the structural variable. (b)–(e) The two 
extreme cases of the LCBD map: (b) and (c) giving the most weight to the structural component and correspondingly the least weight to the 
compositional component (i.e., 1-cm bin size), and (d) and (e) giving the most weight to the compositional component and correspondingly 
the least weight to the structural component (i.e., 15-cm bin size). (f) and (g) Maps of LCBDs after averaging across dbh bin sizes. Size of the 
circles is proportional to the LCBDi values. The black and grey solid circles represent the sites with LCBD values higher and lower than the 
mean, respectively

TABLE  1 Variation partitioning results for three types of matrices at different scales of quadrats. The partitioning is based on adjusted R2 
statistics, as recommended by Peres-Neto et al. (2006)

Quadrat sizes (a) (b) (c) (d) (a + b) (b + c) (a + b + c)

YCOMP

10 m × 10 m 0.0044 0.0796 0.1361 0.7799 0.0840 0.2157 0.2201

20 m × 20 m 0.0028 0.1783 0.2862 0.5327 0.1811 0.4645 0.4673

50 m × 50 m 0.0050 0.2995 0.3229 0.3726 0.3045 0.6224 0.6274

YSTR

10 m × 10 m 0.0123 0.0131 0.0296 0.9450 0.0254 0.0427 0.0550

20 m × 20 m 0.0013 0.0907 0.1652 0.7428 0.0920 0.2560 0.2572

50 m × 50 m 0.0029 0.2300 0.2163 0.5509 0.2328 0.4463 0.4492

YCOMP–STR

10 m × 10 m 0.0055 0.0564 0.0932 0.8449 0.0619 0.1496 0.1551

20 m × 20 m 0.0028 0.1576 0.2559 0.5837 0.1604 0.4135 0.4163

50 m × 50 m 0.0013 0.2543 0.1948 0.5496 0.2556 0.4492 0.4504

Fractions (a)–(d) (adjusted R2 statistics): (a), variation explained by the environmental variables after controlling for the spatial structure; (b), variation 
explained by the spatially structured environmental variables; (c), spatially structured variation explained by pure space after controlling for environ-
mental variation, (d), residual variation. Environmental variables used to compute fraction (a + b). dbMEM eigenfunctions were the explanatory varia-
bles used to compute fraction (b + c). Only 5-cm-diameter classes (i.e., bin size = 5 cm) as the structural variable were used to calculate the YSTR and 
YCOMP–STR.
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& De Cáceres, 2013). However, natural communities may exhibit 
similar species compositions but differ in other features such as the 
size structure of individuals. In the present study, we assessed the 
degree of uniqueness of the quadrats in terms not only of their spe-
cies composition, but also of their size structure, and by using both 
components together. The degree of uniqueness of quadrats in terms 
of community composition individually had a very weak correlation 
with uniqueness in terms of size structure individually (LCBDCOMP 
vs LCBDSTR, Figure 3), indicating that sites that are unique in spe-
cies composition are not necessarily unique in size structure, and 
vice versa. Additionally, we found that the spatial distribution of 
sites with high LCBD values is different for the two components of 
a community, with sites with high structural uniqueness occurring 
in small forest patches (Figure 4). All these results reinforce the idea 
that considering both species compositional and size structural com-
ponents may be a more comprehensive way to describe the commu-
nity organization. However, if we accept the fact that sites that are 
unique in terms of size structure are the result of gap dynamics (see 
below), the non-zero correlation between LCBDCOMP vs LCBDSTR 
may indicate that forest gaps may be colonized by species that may 
later be suppressed as the forest grows, so that recent forest gaps 
have a different species composition than closed forest structures 
(Comita et al., 2009).

4.3 | Partitioning the structural and compositional 
components of beta diversity

About 34.4% of the variation in community assemblage was deter-
mined by environmental and spatial variables, depending on the scale 
(quadrat size) and on which components of community assemblage 
(i.e., compositional component, structural component, and taking 
both components together) were taken into account. This propor-
tion is slightly lower than the values found in studies by Legendre 
et al. (2009) and Punchi-Manage et al. (2014). A reason for this re-
sult is that we incorporated differences both in size structure and 
species composition into community assemblages rather than only 
using the conventional species composition data. When the species 
composition and size structure of the constituent individuals are 
incorporated into the community at the same time, more variation 
will occur in community assemblages. In our study, habitat (a + b) ex-
plained more variation in the compositional component (19.0%) than 
in the structural component (11.7%) of the community assemblages. 
Beta diversity partitioning indicated that the variation in the struc-
tural component is less dictated by environment than variation in the 
compositional component. We here hypothesize that canopy gap 
dynamics will be the potential drivers of structural variation. Winter 
in our study area is cold and long, with a long snowfall period. The 
snowfall period lasts for half a year, and the snow cover thickness in 
mountainous areas reaches 40–50 cm. We hypothesize that pulses 
of moderate-severity disturbances may be caused by snowstorms 
in our site. In the absence of stand-replacing disturbances, forest 
canopies are opened periodically by the death of single big trees or 
small groups of adult trees creating canopy gaps. Snowstorms may 

have altered forest structure by selectively removing larger canopy 
trees. Environmental selection of individuals shapes composition 
by determining the fitness of individuals, whereas structural varia-
tion may have some relationship with environmental conditions (i.e., 
larger trees in sites where larger sizes are supported for energy or 
water availability) but in general is the reflection of different stages 
around gap dynamics. Previous studies are consistent with our find-
ings. Fraver and White (2005) for instance, found that the repeated 
moderate-severity disturbances (i.e., windstorms) caused dramatic 
structural changes; they caused no significant change in species 
composition.

Because the relative importance of both niche and neutral the-
ory in structuring communities varies with spatial scale (Legendre 
et al., 2009; Punchi-Manage et al., 2014), we conducted scale-
dependent analyses. In sharp contrast to the finding by Legendre 
et al. (2009) for a broad-leaved forest in China, we found that the 
proportion of undetermined variation in compositional and struc-
tural components of community assemblages was very high at fine 
spatial scales (up to 94.5% for the structural component, 78.0% for 
the compositional component, and 84.4% for both components to-
gether) but decreased systematically with increasing spatial scale 
(up to a minimum of 37.3% for compositional component at the 
50-m scale). These results are in line with the findings by Punchi-
Manage et al. (2014) in a Sri Lankan dipterocarp forest and by De 
Cáceres et al. (2012) in a comparison of several forests. On the one 
hand, the high proportion of unexplained variation may be related 
to unmeasured and not spatially-structured biological or environ-
mental variables. Xu et al. (2016) showed that the soil nutrients in 
the upper (0–10 cm, considered in our study) and lower soil layers 
(10–20 cm), and the heavy metal elements (Cu, Ni, Cd, As, Pb, Zn, 
Mo, Cr, Mn and Mg) in the soil show a strong correlation with the 
species spatial distributions at Jiaohe. This may partly explain why 
the pure environmental variable (a) explained such little variation in 
the community assemblages. Another explanation for the high pro-
portion of unexplained variation is that it may be due to stochastic 
processes, which related to the neutral theory assuming that the 
dynamics of populations are primarily driven by ecological drift and 
dispersal (Legendre et al., 2009). On the other hand, the proportion 
of undetermined variation in compositional and structural compo-
nents of community assemblages decreased systematically with 
increasing spatial scale. This may indicate that community assem-
blage is highly stochastic in terms of species composition and tree 
size distribution at fine scales (i.e. 10-m scale), but this fine scale 
stochasticity tends to smooth out at the 50-m scale, where more 
consistent habitat-driven species assemblages emerged. When 
variance partitioning is conducted on the structural component 
alone, the unexplained (d) fraction is dominant. While the influence 
of environmental factors on size structure may be less important 
than for the compositional component, the effect of local distur-
bances (e.g., appearance of canopy gaps resulting from mortality 
of large trees) results in random spatial patterns of quadrats with 
rather different structure, contributing to a large unexplained 
fraction.
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5  | CONCLUSIONS

Species composition and size structure are the two essential features 
of a community. Only one of them individually may be insufficient to 
describe the organization of tree species assemblages. Defining and 
quantifying beta diversity using the species composition alone may 
be sufficient then in many occasions. Nevertheless, species compo-
sition is just one dimension of biodiversity; variation in size struc-
ture is also important. Incorporating structural data in beta diversity 
assessments allows ecologists to make use of valuable information 
collected during field surveys. If it is available, there is no reason to 
ignore the wealth of information about size structure when compar-
ing species assemblages. Our study highlights the need to incorpo-
rate the structural data of a community in addition to compositional 
data when quantifying and analyzing beta diversity. Finally, our re-
sults suggest that both deterministic and stochastic processes are 
relevant determinants of compositional and structural components 
of community assemblages in our temperate forest. Nevertheless, 
these processes are scale- and/or resolution-dependent.
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