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Abstract. We present a new multivariate technique for testing the significance of in-
dividual terms in a multifactorial analysis-of-variance model for multispecies response
variables. The technique will allow researchers to base analyses on measures of association
(distance measures) that are ecologically relevant. In addition, unlike other distance-based
hypothesis-testing techniques, this method allows tests of significance of interaction terms
in a linear model. The technique uses the existing method of redundancy analysis (RDA)
but allows the analysis to be based on Bray-Curtis or other ecologically meaningful measures
through the use of principal coordinate analysis (PCoA). Steps in the procedure include:
(1) calculating a matrix of distances among replicates using a distance measure of choice
(e.g., Bray-Curtis); (2) determining the principal coordinates (including a correction for
negative eigenvalues, if necessary), which preserve these distances; (3) creating a matrix
of dummy variables corresponding to the design of the experiment (i.e., individual terms
in a linear model); (4) analyzing the relationship between the principal coordinates (species
data) and the dummy variables (model) using RDA; and (5) implementing a test by per-
mutation for particular statistics corresponding to the particular terms in the model. This
method has certain advantages not shared by other multivariate testing procedures. We
demonstrate the use of this technique with experimental ecological data from intertidal
assemblages and show how the presence of significant multivariate interactions can be
interpreted. It is our view that distance-based RDA will be extremely useful to ecologists
measuring multispecies responses to structured multifactorial experimental designs.

Key words: experimental ecology; interaction terms in multifactorial ANOVA; intertidal estuarine
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INTRODUCTION

The use of structured experiments for testing hy-
potheses is essential to the science of ecology (Connell
1972, Hurlbert 1984, Underwood 1990, 1997). Eco-
logical experiments often have complex, multifactorial
designs. In this context, statistical methods, such as
analysis of variance (ANOVA), providing formal tests
of hypotheses of individual terms in a complex linear
model, are extremely useful.

Tests of interactions among factors form a very im-
portant component of multifactorial experiments. In-
formation concerning the interaction of factors is not
obtained by single-factor experiments. A significant in-
teraction between two factors indicates that the effects
of one of the factors are not consistent across the levels
of the other factor. For example, tests of interactions
provide a means to test the generality of treatment ef-
fects, in space or time (e.g., Hilborn and Stearns 1982,
Underwood and Petraitis 1993, Beck 1997). In addi-
tion, interactions in multifactorial experiments are the
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basis for detecting ecological impacts (Green 1979, Un-
derwood 1991, 1992). The individual importance of
single factors may be difficult or even impossible to
isolate or interpret in a system where interactions are
present (Hilborn and Stearns 1982, Underwood 1997).

Some ecological hypotheses make predictions con-
cerning changes of an entire assemblage of species in
response to factors. The appropriate analysis to use for
tests of interactions with multiple response variables
is not as straightforward as applying a linear model to
univariate data. Parametric multivariate analysis of
variance (MANOVA) requires multivariate normality
and homogeneity of covariance matrices. These as-
sumptions are unlikely to be met by many kinds of
multivariate ecological data where species are the vari-
ables (Legendre and Legendre 1983). Although MAN-
OVA is relatively robust to violations of its assump-
tions (Olson 1974), the presence of many zeros in a
data matrix, caused by rarer species being only occa-
sionally present, will violate the normality assumption,
causing problems for these multivariate tests. In ad-
dition, the traditional MANOVA statistics are limited
by the number of variables they can handle for a given
number of replicates. Data sets where there are more
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species than replicates are common in ecological re-
search. Methodologically, there is a great need for mul-
tivariate hypothesis-testing techniques that can be re-
alistically applied in ecology.

In recent years, several nonparametric multivariate
statistical methods have emerged (e.g., Mantel 1967,
Smith et al. 1990, Clarke 1993). These can be used in
an analysis-of-variance approach, but they use per-
mutation tests and thus are free of the assumption of
multivariate normality required by parametric MAN-
OVA. Their primary assumption is less stringent, al-
though still important to note: that the data are inde-
pendently and identically distributed (exchangeability
of replicates). Applications of these methods in the
ecological literature include (among many others) Hu-
don and Lamarche (1989), Legendre and Fortin (1989)
and Fortin and Gurevitch (1993) (using Mantel’s test)
and Gray et al. (1988), Anderson and Underwood
(1994) and Quinn et al. (1996) (using ANOSIM [Clarke
1993]). These methods are able to test the same kind
of null hypothesis as in MANOVA, that is, that assem-
blages from different treatments (or groups) are no
more different than could be expected due to random
chance, at a given level of probability.

The statistics used by these methods are based on
matrices of distances (or similarities) calculated among
replicates. The experimenter has the flexibility to
choose a measure of association that is appropriate for
the particular data as the basis of the test, rather than
being required to rely on a straight-line Euclidean dis-
tance as in classical MANOVA. Being based on a dis-
tance matrix adds to the usefulness of these nonpara-
metric tests for community ecology, where species may
often have nonlinear responses along environmental
gradients or to other species or effects (e.g., ter Braak
1987). For many ecological applications, the measure
of association used for abundances of species is one
that has been proposed independently at least three
times—by Steinhaus (in Motyka 1947), Odum (1950),
and Bray and Curtis (1957). Here, we refer to this as
the ‘‘Bray-Curtis’’ measure. It has semi-metric (non-
Euclidean) properties but is generally acknowledged to
be a good measure of ecological distance for species
abundances (Faith et al. 1987, Legendre and Legendre
1998). Alternatives to this coefficient are available in
the literature; some, like the coefficient of Kulczynski,
are semi-metric, whereas others, like Whittaker’s index
of association, the Canberra metric, Clark’s coefficient
of divergence, and the chi-square metric, have metric
properties (Legendre and Legendre 1983, 1998).

Despite their appeal and usefulness in ecological
studies, these nonparametric methods have the draw-
back of not generally allowing tests of multivariate
interactions between factors in an ANOVA design. In
particular, these methods are not designed to differ-
entiate components of multivariate variation in a struc-
tured model. The reason for this is twofold. First, the
distances used may not be metric, so a linear model

cannot be applied directly. The second problem is their
reliance on permutation testing. From a strictly math-
ematical point of view, Edgington (1980) stated that
one cannot have an exact permutation test for an in-
teraction term. The reason for this is that the null hy-
pothesis (which generally may be expressed as H0:
m11 2 m12 5 m21 2 m22) cannot be articulated in terms
of the exchangeability of the original replicates. This
problem also occurs in permutation tests of interaction
for multivariate data carried out using distance-based
statistics (Clarke 1993); so it appears that multivariate
interaction terms cannot be tested using distance ma-
trices. A test of interaction can only be performed in
a model-based context (e.g., ter Braak 1992), using a
model that takes into account the main effects. Model-
based permutation tests are not strictly exact, however,
but only asymptotically exact. Another problem en-
countered when fitting a model to distance matrices is
that many of the distances used by ecologists, such as
the Bray-Curtis distance, do not have metric properties;
a linear model cannot be directly applied to such dis-
tances. This raises the general problem: How can one
test for interactions between factors in multivariate data
using distance-based tests?

Partitioning of multivariate sums of squares in a mul-
tifactorial linear model, which replaces traditional
squared straight-line distances with squared dissimi-
larities, has been described by Pillar and Orlóci (1996).
These authors caution, however, that their approach is
restricted to the use of dissimilarity measures that have
Euclidean metric properties. Unfortunately, many of
the dissimilarity measures of greatest relevance to ecol-
ogists (including the measure described by Bray and
Curtis [1957]), are nonmetric or semi-metric and do
not fulfill all of these properties. In addition, for the
test of any interaction term in a multifactorial model
(with no nested factors included), Pillar and Orlóci
(1996) used unrestricted permutation of original rep-
licate vectors, making no mention of the concerns
raised by Edgington (1980) on the subject of the null
hypothesis.

Here, we describe a new approach, distance-based
redundancy analysis (db-RDA). This method is appli-
cable to situations where an ecologist wishes to base
the test on the distance measure of his/her own choice,
with emphasis on situations where the chosen measure
is semi-metric (such as the Bray-Curtis measure),
which may lead to non-Euclidean representations. Like
ANOSIM or the Mantel test, the db-RDA method is
based on a matrix of distances or dissimilarities. The
special advantages of db-RDA are that (1) it can be
used with distance measures that are non-Euclidean,
(2) it can be used to test interaction terms, or any other
term in a structured ANOVA model, and (3) it uses
nonparametric permutation methods which do not rely
on assumptions of multivariate normality.

The purpose of this paper is to describe the db-RDA
method (Fig. 1) and to show: (1) the use of principal
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FIG. 1. Graphic outline of the technique for testing multivariate hypotheses in structured experimental designs using
distance-based redundancy analysis (db-RDA). Tests of hypotheses concerning effects for single-factor experiments can be
done using a single X matrix. Tests of interaction terms (or other terms) in a complex multifactorial model require the use
of (1) an additional matrix XC containing covariables, (2) partial redundancy analysis, and (3) a special method of permutation
for tests of individual terms under the full model (see Description of the technique for details).

coordinate analysis (PCoA) to place nonmetric or semi-
metric distances into Euclidean space, so that a linear
ANOVA model can be applied; (2) the correspondence
between the multivariate RDA statistic and the uni-
variate analysis-of-variance F ratio, based on the linear
model for multiple regression; and (3) that RDA can
be used to test for interactions in multifactorial exper-
imental designs using permutations.

Two examples from experiments on intertidal estu-
arine assemblages colonizing hard substrata will be
used to illustrate the meaning, interpretation, and use-
fulness of the new technique in ecological applications.

DESCRIPTION OF THE TECHNIQUE

Distance-based redundancy analysis (db-RDA) be-
gins with the calculation of dissimilarities (distances)
among replicates, followed by principal coordinate

analysis (PCoA), followed by redundancy analysis
(RDA), where the X matrix (independent variables)
contains dummy variables in an ANOVA model and
the Y matrix (response variables) consists of the prin-
cipal coordinates. An outline of the method is shown
in Fig. 1. The measure of association chosen to cal-
culate distances among replicates in the first instance
is of great importance. This choice will greatly influ-
ence results and should be justified by the experimenter
according to the nature of the data at hand. For a dis-
cussion of the many kinds of measures of association
that can be used, see Legendre and Legendre (1983,
1998) and Gower and Legendre (1986). We emphasize
that the method we propose involving corrections to
principal coordinates (in order to place them into a
linear Euclidean system) is directed to situations where
the ecologist wishes to base the analysis on a non-
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Euclidean distance measure. If only the ranks of the
distance measure are of interest, or a Euclidean or met-
ric distance is deemed suitable after an appropriate
transformation of the data, then other partitioning
methodologies can be used (e.g., Clarke 1993, Ed-
gington 1995, Pillar and Orlóci 1996, Manly 1997).

First, we describe the technique of db-RDA, step by
step, for one-factor multivariate tests. We then show
how it can be used for tests of interactions.

Principal coordinate analysis (PCoA)

Principal coordinate analysis (PCoA, also called
‘‘metric multidimensional scaling’’) was described by
Gower (1966). PCoA takes a symmetric matrix of dis-
tances of any type among replicates and produces cor-
responding Cartesian (Euclidean) coordinates for each
replicate which, in the full-dimensional principal co-
ordinate space, preserve the original distances calcu-
lated among replicates (Gower 1966). The procedure
of PCoA is briefly summarized here (after Legendre
and Legendre 1983, 1998) because intermediate steps
will be needed to understand the methods of adjustment
for negative eigenvalues (below):

1) Transform the symmetric matrix of distances D
of elements {dij}, i 5 1, . . . , N and j 5 1, . . . , N,
where N 5 total number of replicates, into a new matrix
A of elements {aij} by means of the following equation:

1
2a 5 2 d . (1)ij ij2

2) Center the values in matrix A by its rows and
columns, transforming it into matrix D1 of elements
{dij} by means of the following equation:

dij 5 aij 2 āi 2 āj 1 ā (2)

where āi 5 average of row i, āj 5 average of column
j and ā 5 average of entire matrix A.

3) Compute the eigenvalues and eigenvectors of ma-
trix D1.

4) To obtain principal coordinate axes, scale the ei-
genvectors to the square root of their respective eigen-
values.

There are, at most, (N 2 1) axes required to represent
N points in Euclidean space (where N 5 the total num-
ber of replicates). More than one zero eigenvalue may
occur, however, so that, in general, the number of axes
resulting from a principal coordinate analysis will be
less than or equal to (N 2 1). The number of principal
coordinates depends not only on the number of repli-
cates, but also on the number of variables in the original
data matrix Y and on the distance measure that has
been computed. For the special case of the Euclidean
distance, if there are fewer variables (species) than
there are replicates in Y, then (1) the maximum number
of principal coordinates is the number of variables in
the original matrix, and (2) the principal coordinates
are the same as principal components. Other distance

measures may generate more axes than the number of
original variables.

For metric distance measures (such as Euclidean or
chi-square distances), axes determined using PCoA
will preserve all of the original distances, D. For non-
metric or semi-metric measures such as Bray-Curtis,
the PCoA will only embed the Euclidean part of the
distance matrix, with the remainder being given as neg-
ative eigenvalues, for which no real axes exist (Gower
1982, 1985). These negative eigenvalues correspond to
the variation in the distance matrix that cannot be rep-
resented in Euclidean space (Legendre and Legendre
1998). If the principal coordinates corresponding only
to the positive eigenvalues were used for the ensuing
RDA, the RDA statistic would be a biased estimator
of the fraction of the variation of the original data ex-
plained by the model matrix, X.

Whereas principal coordinate analysis has histori-
cally been used for ordination of replicates in a reduced
space (i.e., to represent as large a proportion of the
variation in the species data as possible, but in a re-
duced number of dimensions), our use of the method
is to retain all of the information in the species data
for purposes of hypothesis testing. All axes obtained
from these analyses (including after correction for neg-
ative eigenvalues, see below) are retained for the test.

Correcting for negative eigenvalues

The original distance matrix can be adjusted to cor-
rect for its non-Euclidean portion in the manner shown
by Gower and Legendre (1986). Two equally valid yet
different solutions exist. We restate here Theorem 7 of
Gower and Legendre (1986:10–11), identifying these
two methods:

1) A constant, c1, can be used to correct the squared
distances, giving rise to new distances 5 ( 1 2c1)0.52d9 dij ij

for i ± j. The value of c1 is equal to the absolute value
of the largest negative eigenvalue of matrix D1 (Gower
and Legendre [1986]; this correction was derived from
the earlier work of Lingoes [1971]). The constant c1 is
the smallest value that will produce Euclidean coor-
dinates; any value larger than c1 will also eliminate all
negative eigenvalues and make the system fully Eu-
clidean.

2) A constant, c2, can be added to all terms dij of
matrix D giving rise to new distances 5 dij 1 c2 ford 0ij
i ± j. The value of c2 is equal to the largest eigenvalue
of the asymmetric matrix:

0 2D1[ ]2I 24D2

where D2 is defined as for D1 but with elements 2½dij

rather than 2½ (Cailliez 1983, Gower and Legendre2dij

1986). The constant c2 is the smallest value that will
produce Euclidean coordinates; any value larger than
c2 will also eliminate all negative eigenvalues and make
the system fully Euclidean (see Fig. 2).

(This description corrects two misprints in Theorem
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FIG. 2. Distances (D) among four points. (a) Distances are constructed in such a way that the system cannot be represented
in Euclidean space because the three lines going toward point x4 do not meet. (b) By adding a constant to all distances (c2

5 0.2 in the present case), correction method 2 makes the system Euclidean; in this example, the distances can be associated
with a representation of the points in two-dimensional space. (c) When increasing the distances further (adding again 0.2 to
each distance in the present case), the system remains Euclidean but requires more dimensions for representation (three
dimensions in this example).

TABLE 1. Results of simulations to determine values of cor-
rection constants required to correct for negative eigen-
values in principal coordinate analysis for ecological data
sets, using the Bray-Curtis measure of dissimilarity. Data
were generated randomly using the standardized log-nor-
mal distribution, and species weights were generated ran-
domly from a uniform distribution.

No. of
simulations

No. of
sites

No. of
species

Mean values of
correction constants

Method 1 Method 2

100 30 5 0.16098 0.47448
100 30 10 0.11235 0.37907
100 30 20 0.07682 0.27073
100 30 30 0.05401 0.19160
100 30 50 0.02578 0.09094
50 30 60 0.01440 0.05077

100 30 75 0.00437 0.01535
100 30 100 0.00003 0.00012
50 50 5 0.23441 0.59650
50 50 10 0.16444 0.48815
50 50 20 0.11434 0.38365

100 50 50 0.06225 0.21562
50 50 100 0.01901 0.06602
25 60 3 0.40780 0.73999
50 75 75 0.06535 0.22632
50 75 100 0.04891 0.16925
25 80 4 0.40654 0.79220
25 100 5 0.42778 0.83223
25 100 10 0.25388 0.64015
25 100 20 0.16977 0.51156
25 100 30 0.13871 0.44765
25 100 50 0.10667 0.36096
25 100 75 0.08415 0.28816
25 100 100 0.06842 0.23574
25 100 200 0.02529 0.08677
25 200 10 0.39630 0.82469

7 as described by Gower and Legendre [1986]). For
each of these correction methods, the values along the
diagonal of the matrices A or D are not changed, but
remain as zeros (i.e., the distance between any replicate
and itself is zero). Principal coordinate analysis com-
puted on the corrected distance matrix, using either
method 1 or method 2, produces a fully Euclidean rep-
resentation of the replicates without negative eigen-
values or imaginary axes. These axes are then perfectly

suitable to apply the linear model of analysis of vari-
ance using RDA (or other MANOVA statistic).

As an added note, in some cases (i.e., for certain
dissimilarity measures), negative eigenvalues can be
eliminated by other kinds of transformations. For ex-
ample (method 3), all negative eigenvalues are elimi-
nated from a PCoA using the Bray-Curtis measure if
the original distances are transformed by taking their
square roots (M. J. Anderson, unpublished simulation
results). Although this result has not yet been proven
mathematically, it has been shown that the widely used
coefficient of Sørensen, which is the binary form of
the Bray-Curtis coefficient, is not Euclidean, while its
square root is (Gower and Legendre 1986).

These corrections, although supported by mathe-
matical theorems, may appear quite abstract and even
suspect to the practicing ecologist. Four essential ques-
tions arise. First, how big are the constants c1 and c2

for typical Bray-Curtis distance matrices computed
from species abundance data? Second, in what way are
the original Bray-Curtis (or other) distances modified
by these corrections? Third, what is the influence of
making these corrections on the outcome of the F# test
described below? Finally, which of the three possible
corrections (in the case of Bray-Curtis distances)
should be used? We are most concerned that the thought
that goes in to choosing an appropriate ecological dis-
tance measure is not sabotaged by any correction, but
actually forms the fundamental basis for the ensuing
analysis.

We addressed the first question using simulations.
Data simulating species abundances were generated
randomly using the standardized log-normal distribu-
tion. Species weights were obtained randomly from a
uniform distribution. After computing Bray-Curtis dis-
tances, whose values are between 0 and 1, the correc-
tions (c1 for method 1, c2 for method 2) increased nearly
linearly with the ratio of the number of replicates to
the number of species (Table 1). In extremely species-
poor ecosystems, corrections were the largest. For in-
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FIG. 3. Plots showing the relationship (ordinary least
squares regression) between the original Bray-Curtis dis-
tances and the Euclidean distances in principal coordinate
space with no correction for negative eigenvalues, using only
the axes corresponding to the positive eigenvalues (top), cor-
rection of negative eigenvalues using method 1 (middle), or
correction of negative eigenvalues using method 2 (bottom)
(see Correcting for negative eigenvalues for methods). The
data are from assemblages on experimental panels in intertidal
estuaries in each of three times and three treatments (see
Ecological examples of the technique: Example 1 . . . for de-
tails). There were N 5 72 replicates in the data and thus
N(N 2 1)/2 5 2556 distances among replicates per plot (dis-
tances along the diagonal are all equal to zero and were not
included).

stance, with a ratio of 20:1 (e.g., 200 replicates, 10
species), c1 was near 0.4 and c2 was near 0.8. When
the ratio was 1:1 (i.e., equal numbers of replicates and
species), c1 was about 0.06 and c2 was about 0.2. In
species-rich ecosystems, corrections were small, be-
coming smaller as the species richness increased, for
a constant number of replicates (Table 1). With a ratio
of 1:2 (e.g., 100 replicates, 200 species), c1 was near
0.02 and c2 was about 0.1. Results also depended to a
small extent on the data-generation parameters.

The second question was addressed directly by com-
paring (1) the distances in the original Bray-Curtis (or
other) distance matrix D and (2) the Euclidean dis-
tances between replicates described by the new prin-
cipal coordinate axes. Plots of the relationship between
the original Bray-Curtis distances (on the x-axis) and
the Euclidean distances obtained in the new principal
coordinate space (on separate y-axes) are shown in Fig.
3 for data on the effects of gastropod grazers at different
times (25 species, 72 replicates), discussed in more
detail in Example 1, below. The top graph shows the
relationship when no correction for negative eigenval-
ues has been done. The imaginary axes corresponding
to negative eigenvalues have been left out of the cal-
culations. Obviously the fit is not good; the deviation
of points from the ordinary linear regression line in-
dicates the non-Euclidean portion of the Bray-Curtis
distances which cannot be embedded directly by the
PCoA analysis.

The second plot (middle) shows the relationship
when correction method 1 (above) for negative eigen-
values has been used. This correction creates a much
smoother line with less scatter, and a concave up re-
lationship with the original distances. A difference in
distance at the low end of the scale in the original Bray-
Curtis matrix is not as large as the same difference in
distance at the high end of the scale. In addition, the
entire range of distances has been compressed overall
using this method of correction (note the change in
scale of the y-axis: the coefficient of x in the linear
equation is 0.4592). The apparent quadratic relation-
ship is not surprising, given the fact that this method
creates corrected distances 5 ( 1 2c1)0.5 for i ±2d9 dij ij

j. For these data, the second-order polynomial gives an
almost perfect fit (R2 5 0.9997; y 5 0.5525x2 1 0.0898x
1 0.6182).

When the second method of correction is used (d 0ij
5 dij 1 c2 for i ± j), the result is a direct linear rela-
tionship between the original Bray-Curtis distances and
the Euclidean distances in the corrected principal co-
ordinate space (Fig. 3, bottom, R2 5 1.0000). The only
thing that has been done is the addition of a constant
to the original distances (except the diagonal); this is
also clearly seen in the linear equation for the rela-
tionship, showing a slope coefficient of 1 for x. By
using method 3, taking square roots of Bray-Curtis dis-
tances, all distances will be compressed; the relation-
ship with the original distances is simply concave down
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(dispersion diagram not shown) rather than concave up,
as in correction method 1.

These results are not peculiarities of the particular
data used, but are general properties of the use of these
correction methods for PCoA of dissimilarity matrices
(Gower and Legendre 1986).

The third question concerns the effect of correction
methods on the F# test of significance described below
(Eqs. 5 and 18). Simulations were used to address this
question and the results are contained in Appendix A.
We found that, for all methods of correction, the F#

statistic was altered in such a way that, under permu-
tation, values were compressed to be closer to 1.0. That
is, relative distances among replicates became less dis-
tinct, regardless of the correction method used (Ap-
pendix A, Fig. A1).

For correction method 1, in which the change in
distances is essentially proportional to their square, all
changes to the F# statistic are monotonic across all
permutations (Appendix A, Fig. A2, and Appendix B).
Thus, all probabilities, obtained after correction meth-
od 1 is applied, are identical to those obtained for tests
on the original distances. Consequently, Type I error
and power are unchanged by applying correction meth-
od 1 (Appendix A, Tables A1 and A2, and Appendix
B).

In contrast, the compression of the distribution of
the F# statistic under permutation was not monotonic
for correction methods 2 and 3 (Appendix A, Fig. A2).
The reference values of F# appeared too large relative
to the compressed permutational distributions. Thus, P
values were too small, resulting in inflated Type I error
and artificial increases in power with the use of these
two methods of correction. These problems were more
severe for correction method 3 than for correction
method 2, but neither method of correction can be con-
sidered appropriate to use with the F# statistic and test
by permutation.

In summary, PCoA, together with the correction for
negative eigenvalues, is an integral part of the proposed
db-RDA scheme. This procedure allows the calculation
of the positions of replicates in Euclidean space, which
preserves the original distances computed using any
chosen distance measure. This makes the data suitable
for analysis using a linear model, such as ANOVA. In
answer to our final question, when a correction for
negative eigenvalues is needed, method 1 described
above is the only suitable method. This correction has
no effect on the probabilities for the F# statistic ob-
tained by permutation. A proof of this theorem is pro-
vided in Appendix B.

Redundancy Analysis (RDA)

Redundancy Analysis (RDA) was originally de-
scribed by Rao (1964, 1973) and popularized by Van
den Wollenberg (1977). Referring to redundancy as a
quantity, Gittins (1985: 40) defined it as: ‘‘. . . the pro-
portion of the total variance of a measurement domain

predictable from a linear composite of the other do-
main. . . . The term redundancy is therefore synony-
mous with explained variance.’’ RDA has normally
been used in ecology for ordination by direct gradient
analysis, where a matrix of species variables, Y (‘‘mea-
surement domain’’), is analyzed with regard to a cor-
responding matrix of environmental variables, X (‘‘oth-
er domain’’) (e.g., ter Braak 1987, 1990, Roy et al.
1994). This has been the primary use of RDA, which
can be done using the computer program CANOCO
(ter Braak 1988, 1990). There are, however, examples
of the use of RDA in the framework of multivariate
hypothesis-testing (Sabatier et al. 1989, ter Braak and
Wiertz 1994, Verdonschot and ter Braak 1994). For
these applications, instead of a matrix of environmental
variables, the ‘‘other domain’’ consisted of a matrix of
dummy variables describing factors in an experiment.
In order to appreciate the use of RDA as a multivariate
statistic, it is necessary to understand the multiple re-
gression approach to analysis of variance (see Appen-
dix C).

Canonical eigenvalues and the F# statistic

We will now show the correspondence between the
elements comprising a univariate F statistic in analysis
of variance and the multivariate F# statistic used in
redundancy analysis. The correspondence can be un-
derstood by reference to (1) the equivalence between
univariate analysis of variance and regression using
dummy variables (see Appendix C) and (2) an under-
standing of the algebra of RDA as a series of multiple
regressions.

RDA can be described as a series of multiple re-
gressions followed by a principal component analysis
(Davies and Tso 1982, ter Braak and Looman 1994,
Legendre and Legendre 1998). Here, instead of one
vector for one variable, y, we are analyzing a data
matrix with many variables, Y. Each vector variable,
y, is regressed on the matrix of dummy variables cor-
responding to the experimental treatments, X. The
least-squares estimates of the regression coefficients
can be found by solving the equation B 5 [X9X]21X9Y.
Using the regression coefficients, one can compute a
new matrix, Ŷ, of fitted values of the multiple regres-
sions:

Ŷ 5 XB or Ŷ 5 X[X9X]21X9Y. (3)

Computing the principal components of the matrix of
fitted values, Ŷ, corresponds to solving the following
eigenvalue problem:

(SŶ 2 lhI)uh 5 0 (4)

where SŶ is the covariance matrix of the fitted values
Ŷ. Eigenvalues (l’s) obtained by this expression are
the canonical eigenvalues. The number of nonzero ca-
nonical eigenvalues (h) is equal to the minimum num-
ber of vectors (variables) of either Y or X.

Note that canonical eigenvalues, as referred to here
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and by ter Braak (1987), differ from eigenvalues ob-
tained from unrestricted ordination techniques (such as
principal component analysis). Canonical ordination
techniques restrict the ordination axes in some way—
e.g., to maximize dispersion among groups of replicates
(canonical variate analysis), to maximize the relation-
ship between two sets of variables (canonical corre-
lation analysis), to be a linear combination of explan-
atory variables (RDA), or to be a linear combination
of explanatory variables that maximizes dispersion of
species scores along a gradient (canonical correspon-
dence analysis) (ter Braak 1987).

The sum of the canonical eigenvalues produced by
RDA equals the amount of variation in Y explained by
the model matrix X. Depending on the computer pro-
gram used, the eigenvalues may be expressed in units
corresponding to the total sum of squares in matrix Y,
the total variation in Y, or as a fraction of the total
variation in Y. The statistic used for testing hypotheses
with RDA has been described by ter Braak (1990), as
follows:

trace/q
#F 5 (5)

RSS/(N 2 q 21)

where trace 5 the sum of the canonical eigenvalues as
obtained by Eq. 4, RSS 5 the residual sum of squares
(not explained by the canonical eigenvalues), q 5 the
number of variables in matrix X. The residual sum of
squares is calculated as RSS 5 (sum of all unconstrained
eigenvalues 2 trace). The sum of all unconstrained
eigenvalues is the sum of all of the eigenvalues of the
Y matrix. This is equivalent to the total sum-of-squares
variation in the data. We will use the ‘‘#’’ to distinguish
the analogous multivariate statistics from the univariate
sums of squares, mean squares, or F statistics.

With the use of Monte Carlo permutations to provide
P values associated with the F# statistic, we note that
an equivalent statistic is obtained by removing all mul-
tiplicative constants, such as degrees of freedom. These
remain constant across all permutations for a single
data set and thus do not affect the outcome of proba-
bilities obtained (e.g., Edgington 1995, Manly 1997).

In the context of RDA as it is used for direct ca-
nonical ordination (‘‘direct gradient analysis’’ in ter
Braak [1987]), the purpose of the analysis is, for in-
stance, to relate biological species variables (the Y ma-
trix) to environmental variables (X). In that application,
the null hypothesis is that there is no significant rela-
tionship between variation in the species data and some
linear combination of the environmental variables (i.e.,
that the environmental variables do not explain a sig-
nificant proportion of the species data). For present
purposes, with structured ecological experiments, the
X matrix does not contain the values of environmental
variables, but rather contains the dummy variables cor-
responding to the levels of factors in an experiment.

The correspondence between the individual com-
ponents of the univariate F statistic in ANOVA and

components of ter Braak’s multivariate F# statistic,
when the X matrix contains dummy variables in an
experimental design, is shown in Table 2. It is important
to note that when RDA is used to analyze results of a
structured experiment, as in the present description and
application, the number (q) of variables in matrix X is
equal to the number of linearly independent dummy
variables (columns) required for the calculation of the
multiple regression (see Appendix C). This is also
equal to the number of degrees of freedom for that
factor in the model.

The consequence of the correspondence of elements
in the construction of the RDA statistic and the uni-
variate F statistic, as shown in Table 2, is that a mul-
tivariate statistic (F#), analogous to the univariate F
ratio, can be calculated to analyze data for a given term
in any ANOVA model, according to the hypothesis
being tested. This is illustrated for tests of interaction
terms in particular examples below.

The matrix containing the dummy variables coding
for the design of the experiment, X, does not change
in going from the univariate (vector y) to the multi-
variate case (matrix Y). The sum of squares for a single
factor (i) in the univariate case corresponds to the sum
of canonical eigenvalues (tracei) from the RDA of Y
on only those variables (columns) in X coding for that
particular factor (Table 2). The value of q in Table 2
for any factor (i) is the number of degrees of freedom
for that factor (dfi) in the model and this will be equal
to the number of columns in the X matrix used to code
for that factor.

Thus, a multivariate analog of the univariate mean
square for any factor, A, is

traceA#MS 5 . (6)A dfA

A multivariate analog of the univariate residual sum of
squares is

h
#SS 5 (sum of all eigenvalues in Y) 2 trace (7)ORes i

i51

where h 5 the number of terms (i.e., main effects and
interactions) in the model. This is equal to the sum of
the univariate residual sums of squares across all spe-
cies. Also, a multivariate analog for the degrees of
freedom for the residual in a complex model will be
the same as the univariate residual degrees of freedom
for that model, namely,

h

df 5 N 2 df 2 1 . (8)ORes i1 2i51

Thus, a multivariate analog for the residual mean
square will be

5 /dfRes
# #MS SSRes Res (9)

and the null hypothesis of no effect of factor A can be
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TABLE 2. Correspondence between the various components of the univariate F statistic and the multivariate F# statistic in
the one-factor case. Symbols are as in the text.

Univariate ANOVA Multivariate RDA statistic

Total sum of squares → sum of all eigenvalues of Y

Treatment sum of squares, SSTr → trace 5 sum of canonical eigenvalues of Y on X

Treatment degrees of freedom, dfTr → q

Residual sum of squares, SSRes → 5 RSS 5 sum of all eigenvalues 2 trace#SSRes

Residual degrees of freedom 5 dfRes → dfRes 5 N 2 q 2 1

Treatment mean square 5 SSTr/dfTr 5 MSTr → 5 trace/q#MS

Residual mean square 5 SSRes/dfRes 5 MSRes → 5 RSS/(N 2 q 2 1)#MSRes

F 5
MSTr

MSRes

→ F# 5
trace/q

RSS/(N 2 q 2 1)

Notes: RDA 5 redundancy analysis, Tr 5 treatment, Y 5 matrix of dependent variables (whose variation is to be explained),
X 5 matrix of explanatory variables, q 5 number of variables in matrix X, RSS 5 residual sum of squares, N 5 total number
of observations.

tested in the multivariate case using the following sta-
tistic:

#MSA#F 5 . (10)A #MSRes

The statistic used by RDA carried out on the raw
data, with the model matrix composed of dummy vari-
ables describing the levels of an experimental factor,
is similar to the univariate F statistic. It was called a
‘‘stacked’’ F statistic by Verdonschot and ter Braak
(1994). We consider it a ‘‘pseudo’’ F statistic; it con-
sists of (1) the sums of squares for the factor added up
across all species (divided by appropriate df ) as its
numerator and (2) the residual sums of squares added
up across all species (again divided by proper df ) as
its denominator. The RDA statistic in this form assumes
a linear model for the relationships between the species
data and the ordination axes (Verdonschot and ter Braak
1994).

In this form, it is difficult to see any real advantage
for ecologists of using the regression approach and the
RDA statistic over standard MANOVA statistics, apart
from the use of permutational testing procedures, which
can be used for either method in any event—both use
standard linear models and preserve Euclidean dis-
tances among replicates. There are, however, certain
clear advantages for using the RDA statistic with mul-
tivariate ecological data. First of all, if the data matrix
Y is replaced with a matrix of principal coordinates
that preserve Bray-Curtis distances (or other ecologi-
cally relevant distances) among replicates, then it is
clear that an RDA analysis on this matrix will be more
appropriate, theoretically, than any linear analysis on
the raw data. Corrections of coordinates to eliminate
negative eigenvalues using method 1 (described in Cor-
recting for negative eigenvalues, above) will have no
effect on permutational probabilities, provided the
RDA F# statistic is used. Another argument in favor of
RDA is that MANOVA is limited to a number of vari-

ables smaller than the total number of replicates,
whereas RDA does not suffer such a limitation.

TESTS OF INTERACTIONS USING DISTANCE-BASED

RDA (DB-RDA)

There are excellent texts that include full discussions
of the construction of F ratios for multifactorial designs
in univariate ANOVA (e.g., Snedecor and Cochran
1989, Winer et al. 1991, Sokal and Rohlf 1995, Neter
et al. 1996, Underwood 1997). We include here only
the information relevant for the explanation of how db-
RDA can be used to test multivariate interaction terms.
For this, we restrict our discussion to the two-way
crossed design. This is done in consideration of what
has been stated above and in Appendix C, concerning
the relationship between ANOVA and multiple regres-
sion using dummy variables, and the information in
Table 2.

When an experiment includes two orthogonal
(crossed) factors, A and B, and a single response vari-
able, univariate analysis of variance can be used to
construct F ratios to test each of three null hypotheses:

H01: There is no interaction between factor A and
factor B;

H02: Given that there is independence between
any effects of A and B (i.e., no interaction),
then there are no differences among levels
of factor A;

H03: Given that there is independence between
any effects of A and B (i.e., no interaction),
then there are no differences among levels
of factor B.

The first null hypothesis, stated another way, is that
the effect of either factor (if it exists) is not affected
by it occurring in different levels of the other factor.
Before considering the null hypotheses H02 or H03, we
must first investigate whether there is any significant
interaction between the two factors.
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TABLE 3. Two-way crossed ANOVA designs. Symbols are as in the text.

Source
Mean
square

Expected mean
square† F ratio

a) Two fixed factors
Among levels of A MSA s 1 bnK2 2

e A MSA/MSRes

Among levels of B MSB s 1 anK2 2
e B MSB/MSRes

Interaction A 3 B MSAB s 1 nK2 2
e AB MSAB/MSRes

Residual MSRes s2
e

b) One fixed, one random factor
Among levels of A (fixed) MSA s 1 ns 1 bnK2 2 2

e AB A MSA/MSAB

Among levels of B (random) MSB s 1 ans2 2
e B MSB/MSRes

Interaction A 3 B MSAB s 1 ns2 2
e AB MSAB/MSRes

Residual MSRes s2
e

c) Two random factors
Among levels of A MSA s 1 ns 1 bns2 2 2

e AB A MSA/MSAB

Among levels of B MSB s 1 ns 1 ans2 2 2
e AB B MSB/MSAB

Interaction A 3 B MSAB s 1 ns2 2
e AB MSAB/MSRes

Residual MSRes s2
e

† In the expected mean square expressions, a 5 the number of levels in factor A, b 5 the
number of levels in factor B, and n 5 the number of replicates in each group of the balanced
design. K 2 is defined by Eq. 11.

First, we will consider the linear ANOVA model as
it applies when the two factors are fixed, then when
one factor is fixed and the other is random (a ‘‘mixed
model’’), and finally when the two factors are random.
We define the variance of the main effect of any fixed
factor, A, in a univariate analysis as

a
2¯(A 2 A)O i

i512K 5 (11)A (a 2 1)

where Ā is the mean across all levels of factor A, a is
the number of levels of factor A, and Ai is the effect
of the ith level of factor A. Also, for fixed factors, we
assume

a

A 5 0 . (12)O i
i51

In addition, we define the estimated variance attrib-
utable to a random factor, B, as . Similarly, residual2sB

error variance is designated by . In general, a fixed2se

factor is a factor for which all of the possible levels of
the factor (or at least, all of the possible levels of in-
terest for the study) are included in the experiment. By
contrast, a random factor is a factor whose levels are
a random subset of all possible levels from a population
of levels that could have been included in the study.
For a more complete discussion of the distinction be-
tween fixed and random factors in biological applica-
tions, see Underwood (1981, 1997), Winer et al.
(1991), and Sokal and Rohlf (1995).

For the multivariate extension, Eqs. 6–9 concerning
calculations of mean squares are true for any term in
any ANOVA model. As in the one-way case, the X
matrix does not change in going from the univariate to
the multivariate extension. The dummy variable coding
for interaction terms is described in Appendix C. In
brief, dummy variables for interaction terms are simply

the direct products of the variables coding for the main
effects.

Two fixed factors

The expected mean squares and F ratios for the mod-
el when both factors are fixed are given in Table 3a.
For a multivariate analog to the F ratio to test for the
effect of an interaction term, H01, the RDA statistic is
constructed as

#MSAB#F 5 (13)AB #MSRes

where is determined from dfAB, which is the num-#MSAB

ber of columns coding for the interaction in matrix X,
and , the sum of canonical eigenvalues of an RDA#SSAB

of Y on a subset of matrix X, say XA3B, which includes
only those dummy variables coding for the interaction
term.

If the interaction term is found to be nonsignificant
and the main effects are to be investigated, their cor-
responding statistics, according to their expected mean
squares (Table 3a), are calculated as follows. For a test
of the null hypothesis H02 above, where there are two
fixed factors, the RDA statistic is

#MSA#F 5 (14)A #MSRes

and for the test of the null hypothesis H03, the RDA
statistic is

#MSB#F 5 . (15)B #MSRes

The mixed model: one fixed and one random factor

When the experimental design has one fixed factor
(A) and one random factor (B), the calculated mean
squares in ANOVA for the sources of variation in the
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model are different from the case where there are two
fixed factors. These expected mean squares and F ratios
are shown in Table 3b. The primary distinction in this
model, when compared with the model having two
fixed factors, is the change in the expected mean square
for factor A when B is random. It contains a component
of variation attributable to the interaction term, n ,2sAB

where n is the number of replicates in each group. For
a more complete discussion of mixed-model designs in
analysis of variance and pooling procedures when the
interaction term can reasonably be considered to be
zero, see Underwood (1981, 1997) or Sokal and Rohlf
(1995).

For tests of multivariate hypotheses using RDA in
such an experiment, all of the codings for dummy vari-
ables are exactly the same for random factors and for
interaction terms involving fixed and random factors
as they were for the case with two fixed factors. In
addition, the construction of the F# statistics to test the
interaction term (H01) and the main effect of the random
factor B (H03), discussed above, are also exactly the
same (Eqs. 13 and 15). The F# statistic for a test of the
main effect A (H02) is, however, not equivalent to Eq.
14 and should be constructed as

#MSA#F 5 (16)A #MSAB

in accordance with the expected mean square for this
term in univariate ANOVA shown in Table 3b.

Two random factors

When there are two random factors in an orthogonal
design, the resulting expected mean squares and F ra-
tios in the univariate ANOVA for the different terms
in the model are shown in Table 3c. In this case, the
component of variation attributable to the interaction
term in the model, n , appears in the expected mean2sAB

squares for each of the main effects, A or B. Thus, the
corresponding F# statistic for the multivariate analog
of H02 is the same as in Eq. 16. The F# statistic to test
H03, however, should be constructed as

#MSB#F 5 . (17)B #MSAB

PERFORMING THE CALCULATIONS

When using RDA for tests of multivariate hypotheses
in multifactorial models, care must be taken in speci-
fying the denominator mean square of any test. Any
test in a structured experiment must reflect the null
hypothesis as it is articulated under the full linear anal-
ysis-of-variance model (e.g., see Searle 1971).

In the computer package CANOCO, the value of the
sum of canonical eigenvalues given by the program
(tracei) will be correct for any particular factor or term
in the model (i), so long as the only variables in the
X matrix (called the ‘‘environmental’’ matrix by the
program) are those coding for this term alone. The

value of RSS in CANOCO, however, is calculated for
RDA by subtracting the sum of the canonical eigen-
values (due to X) from the total sum of squares in Y
(see Table 2). In a two-factor experiment, this will not
be equal to the if the only variables in the X#MSRes

matrix are those that code for the interaction term; the
residual will be calculated without taking into account
the other terms in the model. This means the FRDA sta-
tistic constructed by the program will not be correct
for the test, in circumstances where there are other
terms in the model.

In normal multiple-regression problems, the effects
of a single variable or group of variables in a linear
model can be assessed by partialling out the effects of
other variables in the model. This is equivalent to treat-
ing these ‘‘partialled-out’’ effects as covariables in the
analysis. The same is true for the application of mul-
tivariate RDA to a linear ANOVA model. Care must
be taken, however, to ensure that the calculation of a
test statistic for a term in a complex ANOVA model
corresponds to what is required given expected mean
squares and the logic of the experimental design.

In practice, the CANOCO computer program can be
used to create the test statistics in situations where the
denominator mean square is the residual (e.g., Eqs. 13,
14, and 15). This is so because the program has been
written to take into account any designated covariables
in the analysis. The actual equation for FRDA given by
ter Braak (1990), which had been simplified in Eq. 3
to demonstrate its correspondence with ANOVA for
Table 2, is, in fact,

trace/q
F 5 (18)RDA

RSS/(N 2 p 2 q 2 1)

where p 5 the number of covariables in the analysis.
For any term in the model that has in the denom-#MSRes

inator of its F# statistic (as for the two-way interaction
term), CANOCO can be used to calculate the correct
value of F# for that term, provided that: (1) the variables
in the X matrix corresponding to the term in the model
being tested are separated from the variables coding
for all other terms in the model, the latter being placed
into a separate matrix, XC; and (2) the RDA is done
using X as the matrix of ‘‘environmental variables’’
and using XC as the matrix of ‘‘covariables,’’ according
to the terminology used by CANOCO. Subtraction of
p in Eq. 18 corrects the degrees of freedom for the
residual, so and F# will be correctly calculated.#MSRes

For example, in Eq. 14 could be calculated by#FA

putting the variables coding for factor A in the matrix
X and putting the variables coding for factor B and for
the interaction term in matrix XC, to be treated as co-
variables. The correct value of p in a structured ex-
periment, as in the present application, is calculated in
a way similar to that of q. It will be the number of
orthogonal vectors in the matrix, XC, which is equal to
the sum of the degrees of freedom for factors being
coded by the XC matrix. The permutation test in CAN-
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OCO, described in the next section, provides the per-
mutational probability associated with the FRDA statis-
tic. To test for factor B or for the interaction A3B,
matrices X and XC would have to be constructed in a
way similar to what we have just described for factor
A and new CANOCO runs performed.

In contrast, for tests where the denominator mean
square is not the residual (e.g., Eqs. 16 and 17), one
must reconstruct the proper value of F# from separate
analyses that give correct sums of squares (traces) for
each of the mean squares required for the test. For
example, for a test of the term shown in Eq. 16, one
would proceed as follows:

1) Do an RDA of Y on a matrix, XA, which contains
only the dummy variable vectors coding for factor A
in the model. The sum of canonical eigenvalues from
this analysis is equal to the sums of squares ( ) at-#SSA

tributable to factor A.
2) Do an RDA of Y on a matrix XA3B, which contains

only the dummy variable vectors coding for the inter-
action between factor A and factor B. The sum of ca-
nonical eigenvalues from this analysis is equal to the
sums of squares ( ) attributable to the interaction.#SSA3B

3) Calculate the mean squares and by# #MS MSA A3B

dividing each of the above SS# by their degrees of free-
dom, respectively. The degrees of freedom will be
equal to the number of orthogonal dummy variables
used to code for each of these terms.

4) Calculate the in Eq. 16.#FA

Although we can compute the correct value of ,#FA

this value cannot be tested for significance directly us-
ing presently available versions of the CANOCO pro-
gram. One alternative is to use Edgington’s method of
restricted randomization (Edgington 1995).

As an added note, with RDA the output of CANOCO
scales the results of analyses so that the total sums of
squares in Y is 1.00. To obtain true values of the sums
of squares for any factor or term, one must multiply
the result by the real value of the total sums of squares
in Y, which is also given as output by the program.
Due to the fact that the value of F# is a ratio of two
mean squares, this extra multiplication step is not nec-
essary for computing these statistics.

PERMUTATION TECHNIQUES

The above description has been concerned with the
construction of appropriate multivariate statistics for
testing particular null hypotheses in two-way crossed
designs. The distribution of any of these statistics, with
or without any distributional assumptions of individual
variables in Y, is unknown. Thus, tests of significance
of these statistics require the use of permutations. In-
deed, the use of permutations, where no specific as-
sumptions are made concerning the particular distri-
bution of the individual variables or of the statistics
themselves, is a major advantage to the use of this
proposed technique. This is especially relevant when
a correction has been made to eliminate negative ei-

genvalues for the PCoA (principal coordinate analysis).
The permutations, however, may also be restricted ac-
cording to the null hypothesis and the particular design
of the experiment. The theory of permutation/random-
ization tests and considerations under various experi-
mental designs and models are given in detail by Ed-
gington (1995) and Manly (1997).

In the case of the two-way orthogonal design, wheth-
er with fixed or random factors, there has been, how-
ever, some difference in opinion concerning the way
in which permutations should be done for tests of in-
teractions. Manly (1997) has suggested that random
permutations across all replicates can be done, because
the null hypothesis of no significant interaction makes
no statement concerning the main effects in the model.
Edgington (1980), in contrast, stated that no test of
interaction could be done by permuting raw data in this
way (see Introduction, above).

In consideration of this problem, ter Braak (1992)
has constructed a methodology of permutations for test-
ing interaction terms, based on the randomization mod-
el proposed by Kempthorne (1952) and similar to the
bootstrap Monte Carlo tests proposed by Hall and Tit-
terington (1989). By this method, permutations are
done of the residuals of the variables in the Y matrix,
after fitting covariables and variables in the X matrix.
It is stated by ter Braak (1990, 1992) that the advan-
tages of using such a permutation method are that
(1) interaction terms can be tested, (2) the correlation
structure of the X and XC matrices are unchanged dur-
ing the permutations, and (3) there is more power for
the analysis of permuted residuals under the full model
(Hall and Titterington 1989). This method of permu-
tation is the default method used by the program CAN-
OCO (version 3.10 and later).

Empirical results from simulations have shown that
ter Braak’s method of permutation (1992) generally
maintains Type I error at chosen significance levels,
and has power under alternative hypotheses that is
asymptotically equivalent to other methods for multiple
regression (Anderson and Legendre, 1999). Although
more simulations are required in the context of ANO-
VA, ter Braak’s method of permutation can test inter-
action terms and was the method we used here. It is
also referred to as ‘‘permutations under the alternative
hypothesis’’ or ‘‘permutations under the full model’’
(ter Braak 1992). For a discussion of alternative per-
mutational procedures, see Anderson and Legendre
(1999).

If an interaction is found to be nonsignificant and
one wishes to test the significance of main effects, there
are two primary alternatives. One approach is to use
model-based permutation techniques (e.g., Freedman
and Lane 1983, ter Braak 1992, Kennedy 1995); the
other is to use design-based permutation techniques
(e.g., Clarke 1993, Edgington 1995). The design-based
approach permutes original data vectors (Y) and tests
the significance of an individual factor (A), indepen-
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dently of another factor (B), by restricting the per-
mutations to occur within levels of factor B. The mod-
el-based permutation methods, on the other hand, per-
mute residuals and can be calculated using CANOCO
for tests of F# statistics where the denominator mean
square is the residual (e.g., Eqs. 13, 14, and 15).

Some simulations have been done to determine the
error rates associated with using permutation of orig-
inal replicate vectors vs. permutation of some form of
residuals in ANOVA (e.g., Manly 1997). More research
in this area is required and is being done (M. J. An-
derson and C. J. F. ter Braak, unpublished manuscript).
Designed-based permutation methods, where it is pos-
sible to apply them, have an associated Type I error
that is ensured to be the significance level chosen for
the test (e.g., Edgington 1995). Permutations of resid-
uals may not always maintain exact Type I error, but
may have greater power and flexibility for testing some
terms in complex designs. To date, however, no radical
differences have been found in terms of Type I or Type
II error using these two approaches in ANOVA for
testing main effects (Manly 1997, M. J. Anderson and
C. J. F. ter Braak, unpublished manuscript).

ECOLOGICAL EXAMPLES OF THE TECHNIQUE

We shall outline experiments for which the technique
of db-RDA was used for tests of multivariate ecological
hypotheses for assemblages colonizing intertidal oyster
leases in estuaries in New South Wales, Australia.
These assemblages, consisting primarily of oysters,
barnacles, polychaetes, algae, and other invertebrates,
have been studied in detail and are described elsewhere
(Anderson and Underwood 1994, Underwood and An-
derson 1994, Anderson 1996b). Experiments have been
done that were designed to test hypotheses about the
effects of gastropod grazers on the recruitment and suc-
cession of the invertebrates and algae in these assem-
blages (Anderson and Underwood 1997). There were
two aspects of that research that we use here to illustrate
the potential usefulness of db-RDA: (1) a test of the
consistency of the multivariate effects of grazers at
different times and (2) a test for potential indirect ef-
fects of grazers. For a more complete description of
these experiments, see Anderson (1996a) and Anderson
and Underwood (1997).

Example 1: a mixed model— consistency through time

Experiments were done at a commercial oyster farm
in Quibray Bay (348019 S, 1518119E), part of Botany
Bay, south of Sydney, Australia. Experimental panels
made of concrete (10 3 10 cm2) were used for sampling
recruitment. Four panels were attached to sticks, which
were then attached to the existing oyster farmers’ tim-
ber structures at a tidal level of ;0.5 m (see details in
Anderson and Underwood [1997]). The effects of the
grazing snails, Austrocochlea porcata and Bembicium
auratum, were tested by three treatments: (1) caged
sticks, excluding grazers; (2) open sticks, subject to

normal grazing; and (3) cage control sticks, where
sticks were caged, but grazers were put inside the cages
at their natural densities. This latter treatment was a
control for the effects of cages not caused by the re-
moval of snails. There were always at least two sticks
(eight panels) per treatment. This experiment was done
three times, each over a period of 6 mo: October 1993
to April 1994 (Time 1), January to July 1994 (Time
2), and October 1994 to April 1995 (Time 3).

There were two primary factors in this design: Graz-
ers (fixed, 3 levels: open, caged, or cage controls) and
Time (random, 3 levels, crossed with the factor of Graz-
ers). Time was considered a random factor: the three
levels were the initial times at which each experiment
was initiated and these were a subset of many possible
times the experiment could have been done. In partic-
ular, we wished to test the hypothesis that, if the grazers
were affecting the assemblages (or not), their effects
(or lack of effect) were consistent at each of the three
times investigated. In other words, we wished to test
for the significance of the multivariate interaction term:
Grazers 3 Time.

For all multivariate analyses described here, the raw
data (25 variables altogether, of which 18 were inver-
tebrates and 7 were macroscopic algae) were first trans-
formed to y9 5 y 0.25, and distances among replicates
were calculated using the Bray-Curtis coefficient, as
has been done in previous work on these assemblages
(Anderson and Underwood 1994, 1997). A visual as-
sessment of a potential multivariate interaction was
achieved using nonmetric multidimensional scaling
(nMDS) to create an ordination of the replicates (Krus-
kal and Wish 1978). To test the multivariate interaction
term, we used db-RDA (distance-based redundancy
analysis). The CANOCO computer program was used
where: X 5 matrix of dummy variables coding for the
interaction term, XC 5 matrix of dummy variables cod-
ing for the main effects, and Y 5 matrix of principal
coordinates obtained from a principal coordinate anal-
ysis (PCoA) of the Bray-Curtis distance matrix and
corrected for negative eigenvalues as outlined above
(method 1 in Correcting for negative eigenvalues).

Four panels from Time 3 in the treatment where pan-
els were caged were missing from the data set because
one of the experimental sticks was broken and lost.
Principal coordinates were computed for all the non-
missing panels. To create a balanced design, the four
missing replicate vectors were each replaced with the
mean vector of the principal coordinates of the re-
maining four replicates in that cell (caged panels, Time
3). By using the average values of existing replicates
for the missing replicates there is no effect of these
‘‘dummy’’ replicates on the estimated average or vari-
ance of that combination of treatments for the F test
(Underwood 1997).

Fig. 4 shows the nMDS plot for these data. The po-
sitioning of the replicates on the ordination corresponds
to the ranked distances among replicates. There ap-
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FIG. 4. Two-factor nonmetric multidimensional scaling
(nMDS) plot of assemblages on experimental panels in an
intertidal estuary showing effects of time and grazing, with
each replicate represented by two labels: a number for the
time of the experiment (1 5 Time 1, 2 5 Time 2, and 3 5
Time 3) and a symbol for the grazing treatment (n 5 open
panels; m 5 caged, no grazers; v 5 cage controls containing
grazers). ‘‘Stress’’ is a measure of the disagreement between
the inter-point distances on the nMDS plot vs. those distances
in the original distance matrix. If stress is relatively low (e.g.,
, 0.20 [Clarke 1993]), then the plot gives a reasonable rep-
resentation of the original distances.

peared to be no effect of cages alone in this experiment:
open panels (triangles) and cage controls (circles) are
quite well mixed in the diagram. The panels that were
caged (squares) had quite distinct assemblages, how-
ever, forming a distinct separate clump on the plot.
Also, the organisms colonizing at different times
formed three clear groups: the 2’s are located across
the top, the 1’s in the middle and right, and the 3’s at
the bottom and left of the plot. Multiple one-way AN-
OSIM tests (Clarke 1993) comparing the different graz-
ing treatments showed that the three treatments were
significantly different from one another at each of the
three times (Anderson and Underwood 1997). Al-
though the multiple one-way tests did not suggest any
particular interaction between the factors (indeed, a
nonsignificant interaction was implied by Anderson
and Underwood 1997), there was some variability in
the pattern on the nMDS plot. For example, the dif-
ference between caged and open (or control) panels
was apparently greater during Times 2 and 3 compared
to Time 1. A significant multivariate interaction was
detected by the db-RDA test (F# 5 1.358, P 5 0.001,
999 permutations).

It was expected that these results could have been
obtained (i.e., a significant effect of grazers at each
time) purely because grazers were removing algae.
Thus, these analyses were redone with algal species
omitted. This was to examine the effects of grazers,
whether direct or indirect, on other organisms in the
assemblage. The nMDS plot showed a similar pattern
(see Anderson and Underwood 1997) and the db-RDA
was again significant for the interaction term (F# 5
1.271 and P 5 0.001, 999 permutations). This means,

ecologically, that the nature of the effects of grazers
was somewhat inconsistent through time and was not
due purely to their effects on algae alone. This inter-
action was not readily discernible from multiple one-
way tests and thus was not so interpreted by Anderson
and Underwood (1997).

Example 2: distinguishing direct from indirect effects

The above results suggested that the effects of graz-
ers on non-algal species, although perhaps variable in
time, did occur, but it was not known whether effects
were direct (e.g., by grazers ingesting recently settled
larvae or by leaving a mucus trail for other organisms
to settle on, etc.) or largely indirect, simply due to
grazers removing algae and organisms responding in
turn to the loss of algae (e.g., by clearing space or by
removing a species that facilitated others, etc.). This
idea was empirically tested in the third run of the ex-
periment (October 1994 to April 1995). To test for the
presence of an indirect vs. a direct effect, the following
two factors in a crossed design (as a minimum) are
required: (1) Grazers (fixed, 2 levels, present or ab-
sent); and (2) Algae (fixed, 2 levels, present or absent).
Algae were removed by spraying an industrial herbi-
cide (Reglone [ICI Crop Care, Melbourne, Australia])
on experimental panels, which blocks photosynthesis,
affecting microscopic and macroscopic algae, but does
not affect other biological tissue.

If there are effects of the presence of grazers that
are separate from their effects of removing algae, then
there should not be a significant multivariate interac-
tion between these two factors. Alternatively, if grazers
are primarily having an indirect effect on assemblages
by their removal of algae, then we would expect that
assemblages in the following treatments—(1Grazers,
1Algae), (1Grazers, 2Algae), and (2Grazers, 2Al-
gae)—would all be similar and would all differ from
assemblages in the treatment of (2Grazers, 1Algae).
That is to say, in any treatments where grazers are
present or algae are removed, the assemblages are the
same and these would all be different than where graz-
ers are removed and algae are left to grow. This is one
example of how detection of a significant interaction
can be ecologically important in a test for indirect ef-
fects. The statistical analyses for this experiment were
done without including algal species, because these
were directly manipulated.

Recall the four missing panels referred to above (see
Example 1) for Time 3; they are also used in the present
example. For the test of this hypothesis, these replicates
are now missing from the treatment combination (2Graz-
ers, 1Algae). The same strategy was used as described
above to replace them for purposes of this analysis.

The nMDS plot of these treatments is shown in Fig.
5. Although each group of replicates corresponding to
a particular combination of the two factors forms a
rather distinct clump, it is clear that the white triangles
(2Grazers, 1Algae) separate out on their own much
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FIG. 5. Two-factor nonmetric multidimensional scaling
(nMDS) plot of assemblages on experimental panels in an
intertidal estuary showing effects of removal of grazers and
effects of removal of algae. Here, each replicate is identified
by two characteristics: (1) squares indicate grazers are pres-
ent, while triangles indicate grazers are absent; and (2) open
symbols indicate algae are present, while solid symbols in-
dicate algae are absent.

further from the other treatments. This is what we
would predict if an interaction had occurred. The db-
RDA supports this observation, indicating a highly sig-
nificant multivariate interaction between the two fac-
tors (F# 5 1.831, P 5 0.001, 999 permutations). Mul-
tiple one-way pairwise ANOSIM analyses further con-
firmed these results (Anderson 1996b). Thus, the bi-
ological interpretation of the significant multivariate
interaction obtained by db-RDA was, in this case, that
the effects of grazers on the assemblage of species were
largely indirect, caused by their removal of algae (An-
derson 1996b).

DISCUSSION

Distance-based RDA, as it is presented here for the
first time, offers special advantages to ecological re-
searchers not shared by any other single multivariate
method. These are:

1) The researcher has the flexibility to choose an
appropriate dissimilarity measure, including those with
semi-metric or nonmetric qualities, such as the Bray-
Curtis measure.

2) PCoA (principal coordinate analysis) puts the in-
formation on dissimilarities among replicates into a
Euclidean framework, which can then be assessed using
linear models.

3) A correction for negative eigenvalues in the
PCoA, if needed, can be done so that probabilities ob-
tained by a permutation test using the RDA F# statistic
are unaffected (correction method 1).

4) By using the multiple-regression approach to
analysis of variance, with dummy variables coding for
the experimental design, RDA can be used to determine
the components of variation attributable to individual
factors and interaction terms in a linear model for mul-
tivariate data.

5) Multivariate test statistics for any term in a linear

model can be calculated, with regard to analogous uni-
variate expected mean squares.

6) Statistical tests of multivariate hypotheses using
RDA statistics are based on permutations, meaning that
there is no assumption of multinormality of the re-
sponse variables in the analysis. Also, there are no
restrictions to the number of variables that can be in-
cluded in RDA.

7) Permutations of residuals using the method of ter
Braak (1992) allows the permutation test to be struc-
tured precisely to the hypothesis and the full linear
model of the design under consideration.

8) The significance of multivariate interaction terms
can be tested.

Related forms of the kind of technique described here
can be found in ter Braak (1992), who described ‘‘con-
strained principal coordinate analysis,’’ and McArdle
(1990), who noted that the trace of the regression sum-
of-squares matrix can be written in the form of a Mantel
statistic.

An alternative to db-RDA is canonical correspon-
dence analysis (CCA; ter Braak 1987). The chi-square
distance is the distance preserved among replicates in
correspondence analysis (CA) and CCA; it is one of
the distances that may be appropriate for species pres-
ence–absence or abundance data. If one is satisfied with
using this distance measure for a particular application,
CCA can be used to test the significance of individual
terms in a multifactorial analysis-of-variance model for
multispecies data. CCA shares characteristics 4 through
8 with db-RDA. The difference between CCA on the
one hand, and db-RDA using the chi-square distance
on the other, only resides in the row sums of matrix
Y, which are used as weights in CCA and not in RDA
(ter Braak 1987, Legendre and Legendre 1998).

Traditional parametric methods, such as MANOVA,
share characteristics 4, 5, and 8 with the proposed tech-
nique. The use of RDA alone shares characteristics 4,
5, 6, 7, and 8 with the proposed method. Other non-
parametric techniques based on distance matrices, such
as ANOSIM and the Mantel test, share characteristics
1 and 6 with the proposed technique. With the intro-
duction of the use of PCoA and an appropriate correc-
tion for negative eigenvalues, distance-based RDA
bridges the gap between the traditional approach of
linear models in statistics on the one hand, and the
need for realistic non-Euclidean measures of associa-
tion for ecological data on the other.

The use of a correction for negative eigenvalues aris-
ing from PCoA on semi-metric distance measures, such
as the Bray-Curtis measure, is a unique and valid so-
lution to the problem of applying a linear model to an
intrinsically nonlinear ecological system.

Another possible approach, not dissimilar to db-
RDA, would be to do MANOVA on the principal co-
ordinates (including correction) obtained from the ma-
trix of distances among replicates. Indeed, the MAN-
OVA statistics of Hotelling’s trace or Pillai’s trace
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should give probabilities equivalent to those obtained
using db-RDA (if the coordinates satisfy the distribu-
tional assumptions of parametric MANOVA). This is
because RDA, as it is used here, can be considered to
be a form of straight linear MANOVA: it uses a pseudo
F statistic consisting of the trace of the among-group
sum-of-squares matrix, divided by the trace of the with-
in-group sum-of-squares matrix, multiplied by an ap-
propriate ratio of degrees of freedom. The advantages
of using db-RDA for ecological data are its use of
permutation testing, compatibility with a correction
done on principal coordinates to eliminate negative ei-
genvalues, leaving probabilities unaltered, and ability
to handle large numbers of species variables. The use
of Wilks’ lambda or other MANOVA statistics may be
desirable in certain applications, and permutation-test-
ing procedures can be applied to these statistics (see
examples in Manly [1997] and Edgington [1995]).
Note, however, that the corrections for negative eigen-
values will have varying and as yet unknown effects
on permutation tests with these other multivariate sta-
tistics. For some comparisons of various parametric
MANOVA statistics and their properties, see Johnson
and Field (1993) and Olson (1974, 1976).

The generalized method of db-RDA can be applied
to test the significance of individual terms for any com-
plex multifactorial experimental design. Although not
outlined here in detail, we suggest that more complex
designs will require care with regard to (1) the con-
struction of the multivariate statistic and (2) the per-
mutational procedure used for the test. These should
each be tailored to the null hypothesis being tested.
Readers are advised to consult Table 2 and Underwood
(1981, 1997) for construction of an appropriate F# sta-
tistic (based on univariate ANOVA models) and ter
Braak (1992), Edgington (1995), Kennedy (1995), and
Manly (1997) concerning permutational procedures for
complex experimental designs.

In the form presented here, db-RDA should not be
applied to analyze unbalanced data, which are not un-
common for ecological experiments. When the unbal-
ance results from missing or lost values, missing data
may be replaced, in principle, by mean vectors, as was
done in Example 2 above. In some situations, however,
there may not be enough replicates per cell to justify
using vectors of mean coordinates to replace missing
replicates. In other instances, whole levels of factors
may be missing from a design; this prevents the esti-
mation of a mean response vector.

The method described in this paper for coding lin-
early independent vectors for factors in the X matrix
does not result in orthogonal vectors for unbalanced
data. Just as standard parametric ANOVA must be
modified to accommodate unbalanced designs (e.g.,
Searle 1987, Shaw and Mitchell-Olds 1993), so would
db-RDA. In particular, the dummy variable codings for
the X matrix would need to be constructed according
to Type III or Type IV sums of squares (depending on

the nature and degree of missing values). Although not
described in detail here, the use of such codings will
result in valid multivariate tests using db-RDA for un-
balanced data. For a discussion of constructing the X
matrix for linear models with unbalanced data, see
Searle (1987). For a discussion of permutation proce-
dures with unbalanced data, see Edgington (1995).

The method proposed here is not intended to be a
panacea for analyzing data from all multivariate ex-
periments. Along with the use of a structured linear
model (and the use of ter Braak’s permutational strat-
egy) with db-RDA comes the assumption of additivity.
This may not be warranted for particular data and is
viewed by some as being invalid for a purely non-
parametric approach (Edgington 1995).

As an additional note of caution, the db-RDA sta-
tistic will be sensitive to heterogeneity of within-group
dispersions of the groups. Clarke (1993) discussed this
issue with regard to the ANOSIM statistic. Groups may
be found to be significantly different on the basis of
differences in their dispersions as opposed to differ-
ences in their centroids, or central locations. This is
the classical Behrens-Fisher problem (Robinson 1982).
Traditional parametric MANOVA assumes homoge-
neity of variance–covariance matrices within groups.
Nonparametric statistics using permutation tests do not
make this assumption, but in fact the null hypothesis
under test with these methods will contain two parts:
(1) there are no differences among the central locations
(centroids) of the groups and (2) there are no differ-
ences in the within-group dispersions. Thus, should the
null hypothesis be rejected for these nonparametric
multivariate tests, there can be no certainty that this is
due purely to differences in centroids. A separate non-
parametric permutation test for heterogeneity of mul-
tivariate dispersions within groups has been developed
(M. J. Anderson, P. Dutilleul, F.-J. Lapointe, and P.
Legendre, unpublished manuscript).

Nevertheless, db-RDA has the potential to become
a valuable resource and tool to ecologists who pose
multivariate hypotheses and design structured multi-
factorial experiments to test them. Importantly, it offers
a realistic manner whereby the significance of multi-
variate interaction terms can be tested.
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piled versions for Macintosh and DOS) is available to carry
out principal coordinate analysis, including the three correc-
tions for negative eigenvalues described in this paper in ESA’s
Electronic Data Archive: Ecological Archives M069-001.
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The program offers the option of calculating the principal
coordinates from a pre-computed distance matrix, or com-
puting first one of five distance functions from a table of raw
data, with or without preliminary data transformation.
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APPENDIX A

TESTS OF METHODS OF CORRECTING FOR NEGATIVE EIGENVALUES

Rationale

This Appendix describes results of simulations done to test
for the effect of three different methods of transformation to
correct for negative eigenvalues (see Description of the tech-
nique: Correcting for negative eigenvalues) on the F# statistic
and test by permutation. It is not possible to calculate the F#

statistic directly from Bray-Curtis distances in order to com-
pare this with the value of F# obtained from the principal
coordinates after a correction. (If this were possible, principal
coordinates would not be necessary in the use of db-RDA.)
It is possible, however, to examine the effect of each of the
three methods of transformation by comparing the F# statistic

from raw data (calculated using normal Euclidean distances)
vs. the F# statistic as calculated from those data but where a
correction method has been used to transform the Euclidean
distances to new distances, as follows:

1) Method 1: d9 5 (d2 1 2c1)0.5

2) Method 2: d0 5 (d 1 c2)
3) Method 3: d- 5 (d)0.5.

Methods

Empirical probabilities of Type I error and power were
obtained using data simulations. All combinations of the fol-
lowing parameters were used in the generation of data: 1, 5,
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TABLE A1. Results of simulations to investigate the effects of three methods of correcting for negative eigenvalues on the
Type I error of the multivariate F# test. Values given are the empirical probabilities of Type I error at the nominal 5%
level, calculated from 500 simulations for each combination of parameters; probabilities were obtained using 999 random
permutations for each simulation.

No. of
variables

No. of
groups

No. of
replicates
per group

No change,
d

Method 1†
(d2 1 2c1)0.5

Method 2, d 1 c2

c2 5 0.1 c2 5 0.2 c2 5 0.5 c2 5 0.9
Method 3,

d 0.5

1 2 4 0.052 0.052 0.052 0.052 0.052 0.052 0.052
1 2 7 0.048 0.048 0.050 0.052 0.068 0.076 0.108
1 2 10 0.038 0.038 0.046 0.054 0.066 0.064 0.106
1 5 4 0.088 0.088 0.010 0.106 0.114 0.116 0.132
1 5 7 0.072 0.072 0.092 0.108 0.132 0.156 0.192
1 5 10 0.066 0.066 0.078 0.092 0.144 0.186 0.292

5 2 4 0.042 0.042 0.044 0.044 0.046 0.046 0.058
5 2 7 0.070 0.070 0.076 0.076 0.088 0.100 0.126
5 2 10 0.042 0.042 0.054 0.058 0.070 0.076 0.134
5 5 4 0.076 0.076 0.080 0.086 0.096 0.114 0.142
5 5 7 0.056 0.056 0.072 0.084 0.102 0.122 0.194
5 5 10 0.072 0.072 0.094 0.114 0.164 0.226 0.362

10 2 4 0.022 0.022 0.026 0.026 0.034 0.034 0.034
10 2 7 0.032 0.032 0.030 0.030 0.028 0.026 0.028
10 2 10 0.052 0.052 0.054 0.054 0.056 0.058 0.062
10 5 4 0.058 0,058 0.060 0.062 0.064 0.070 0.078
10 5 7 0.058 0.058 0.058 0.060 0.064 0.068 0.070
10 5 10 0.046 0.046 0.052 0.058 0.068 0.074 0.094

† Regardless of the value of the correction constant, c1 5 {0.05, 0.10, 0.25, 0.45}, tests on distances after correction using
method 1 gave the same probabilities and the same Type 1 errors under permutation as tests of the original distances (d).

or 10 variables; 2 or 5 groups; and 4, 7, or 10 replicates per
group. For tests of power, centroids for each group were first
generated randomly from a uniform distribution on the in-
terval (0, 1) for each variable. This ensured the null hypoth-
esis of equal centroids was false. These centroids then became
the mean vectors for the generation of multivariate normal
data. Replicates within each group were generated randomly
from a multivariate normal distribution, with all covariance
matrices consisting of zero covariances and variances equal
to (SD)2. We set the standard deviation of the normal data
generator to be SD 5 0.2 for data sets with 1 variable, SD 5
0.4 for 5 variables, and SD 5 0.7 for 10 variables. These
values of SD were chosen so that power could be measured
(i.e., so that power was .10% and ,100%).

For tests of Type I error, data were generated randomly
from a multivariate normal distribution, with mean vectors
for all groups set at the origin and covariance matrices con-
sisting of zero covariances and variances equal to (SD)2, as
described above. For consistency, values of SD were kept the
same as indicated above for tests of power, even though this
value is of little consequence when the null is true. The same
parameters of numbers of groups, variables, and replicates
were used for generation of data in obtaining Type I error as
were used for investigating power.

After generating data, Euclidean distances were calculated
between replicates, then scaled between 0 and 1, so as to
conform to the scaling of the Bray-Curtis distance measure.
The F# statistic was calculated on these distances as a basis
of comparison with different correction methods. Each of
correction methods 1, 2, and 3 was applied, and then the F#

statistic for each was calculated from the corrected distances.
A procedure for computing the F# statistic directly from dis-
tances was derived from Theorem 1 of Appendix B. For cor-
rection methods 1 and 2 the values of correction constants
were chosen given the values of constants found in earlier
simulations of ecological data (see Table 1). They were:
c1 5 {0.05, 0.1, 0.25, 0.45} and c2 5 {0.1, 0.2, 0.5, 0.9}.

For measuring each of Type I error and power, 500 sets of

data were simulated for each set of parameters. For each
simulation, F# statistics were calculated for the uncorrected
data and also for the data after each of correction methods
1, 2, and 3 had been applied, and P values were obtained by
999 permutations of the original replicates. Type I error was
calculated as the number of rejections of the (true) null hy-
pothesis at a 5 0.05 (i.e., the number of P values less than
0.05), divided by 500 (the number of simulations). Power
was calculated as the number of rejections of the (false) null
hypothesis at a 5 0.05, divided by 500. Type II error is equal
to 1 minus the power.

Results

The Type I error was maintained close to nominal a using
redundancy analysis (RDA) either with no correction or when
correction method 1 was used (Table A1). Type I errors for
correction method 1 with increasing values of c1 are not
shown in Table A1, because identical values to those obtained
without correction were obtained, regardless of the value of
c1. For correction method 2 or 3, however, the Type I error
became inflated with increases in the number of groups (Table
A1). Also, the Type I error increased with increases in the
value of the correction constant for correction method 2 (Ta-
ble A1). Correction method 3 had the largest Type I error of
all at the nominal 5% level, reaching 36.2% with 5 groups,
5 variables, and 10 replicates.

In addition to the inflation of Type I error, the power of
the test was artificially increased by the use of correction
method 2 or 3 (Table A2). This gain in power can hardly be
viewed as an advantage with these methods of correction,
since Type I error is sacrificed when the null hypothesis is
true. In contrast, there was no effect on P values and, there-
fore, there was no effect on probabilities of Type I error or
power using correction method 1 (Tables A1 and A2).

Discussion

We briefly outline likely reasons for the above results. Con-
sider the distribution of the F# statistic under permutation. In
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TABLE A2. Results of simulations to investigate the effects of methods of correcting for negative eigenvalues on the power
of the multivariate F# test. Values given are the power (5 1 minus the empirical probability of Type II error at the nominal
5% level) calculated from 500 simulations for each combination of parameters; probabilities were obtained using 999
random permutations for each simulation.

No. of
variables

No. of
groups

No. of
replicates
per group

No change,
d

Method 1†
(d2 1 2c1)0.5

Method 2, d 1 c2

c2 5 0.1 c2 5 0.2 c2 5 0.5 c2 5 0.9
Method 3,

d 0.5

1 2 4 0.192 0.192 0.192 0.192 0.192 0.192 0.192
1 2 7 0.374 0.374 0.380 0.392 0.406 0.410 0.414
1 2 10 0.482 0.482 0.506 0.518 0.542 0.546 0.574
1 5 4 0.214 0.214 0.236 0.248 0.280 0.294 0.322
1 5 7 0.356 0.356 0.402 0.424 0.486 0.530 0.602
1 5 10 0.504 0.504 0.566 0.610 0.704 0.740 0.796
5 2 4 0.280 0.280 0.296 0.298 0.306 0.310 0.320
5 2 7 0.556 0.556 0.572 0.576 0.602 0.622 0.656
5 2 10 0.732 0.732 0.744 0.760 0.778 0.796 0.834
5 5 4 0.416 0.416 0.438 0.456 0.494 0.516 0.560
5 5 7 0.716 0.716 0.766 0.794 0.824 0.850 0.898
5 5 10 0.852 0.852 0.894 0.912 0.954 0.962 0.978

10 2 4 0.214 0.214 0.216 0.216 0.214 0.210 0.212
10 2 7 0.444 0.444 0.444 0.444 0.454 0.468 0.490
10 2 10 0.672 0.672 0.680 0.684 0.690 0.696 0.714
10 5 4 0.414 0.414 0.420 0.428 0.428 0.440 0.460
10 5 7 0.790 0.790 0.798 0.806 0.816 0.824 0.846
10 5 10 0.944 0.944 0.948 0.952 0.954 0.960 0.970

† Regardless of the value of the correction constant, c1 5 {0.05, 0.10, 0.25, 0.45}, tests on distances after correction using
method 1 gave the same probabilities and the same power under permutation as tests of the original distances (d).

FIG. A1. Frequency distributions of values of the F# sta-
tistic under permutation for one of the data sets generated for
measuring power, with one variable, two groups, and 10 rep-
licates per group (see Appendix A: Methods for details of
data simulation). The distribution of F# under permutation is
compressed around values near 1.0 with increases in the value
of the correction constant for either correction method 1 (top)
or method 2 (bottom).

all three methods of correction, the distances become less
variable as a consequence of the transformations. For cor-
rection method 1, the distances are increased by an amount
basically in proportion to their squares (Fig. 3: middle panel).
By reference to the original space, although distances are
larger in size, they are compressed into a smaller range. For
correction method 2, all distances are increased by a constant,
meaning the small and large distances are treated equally.
Once the new distances are squared in the calculation of sums
of squares for the F# statistic, this correction will have a
tendency to decrease the overall separation of points, since
the relative increase in small distances (after squaring) is
greater than that for large distances. This phenomenon is
exacerbated even more with correction method 3, where, by
taking square roots of values between 0 and 1.0 (as for the
Bray-Curtis measure), all distances are increased in size, but
small distances are especially affected, becoming more like
the larger distances.

This overall compression of differences between small and
large distances is seen in the distribution of the F# statistic
under permutation (Fig. A1). The value of F# is much less
variable after corrections. With increases in the correction
constant of either method 1 or method 2, the distribution of
values of F# is condensed into a narrower distribution, closely
surrounding the value 1.0 (Fig. A1).

For all methods of correction, the F# ratio itself changes
in value (Table A3). Why is it that the P value for the F#

ratio under permutation is unchanged for method 1, but is
decreased for methods 2 and 3 (i.e., resulting in a greater
number of rejections: P # 0.05)?

Recall that the F# statistic in RDA, like its univariate coun-
terpart, consists of a sum of squared Euclidean distances in
each of the numerator and denominator, multiplied by an
appropriate ratio of degrees of freedom. The degrees of free-
dom remain unchanged throughout the permutations, so the
ratio of the sums of squares can be considered as an equivalent
test statistic. In the case of correction method 1, we note that
sums of squares of transformed distances will result in sums
of the quantities (d 2 1 2c1). The numerator of the F# ratio
for the original distances will thus differ from the numerator
of the F# ratio after transformation by the addition of a con-
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TABLE A3. F# statistics and P values associated with a single
simulated data set for different methods of correction of
negative eigenvalues. The data set had 1 variable, 2 groups,
and 10 replicates per group, and the null hypothesis was
false.

Method of
correction

Value of
constant F# statistic P value†

No correction 3.364 0.088
Method 1 c1 5 0.05 2.037 0.088

c1 5 0.10 1.664 0.088
c1 5 0.25 1.319 0.088
c1 5 0.45 1.189 0.088

Method 2 c2 5 0.10 2.992 0.066
c2 5 0.20 2.649 0.053
c2 5 0.50 2.030 0.039
c2 5 0.90 1.670 0.035

Method 3 2.771 0.025

† Using 999 permutations.

FIG. A2. Values of F# under permutation for corrected
distances vs. those values for original distances, for the same
data set as described in Fig. A1. (Top) F# statistics calculated
after using correction method 1 on distances have a clear
monotonic relationship with original F# statistics under per-
mutation. (Bottom) The relationship is not monotonic for cor-
rection method 2.

TABLE A4. Results of simulations to investigate the effects of correction method 1 on the
Type I error of the multivariate F# test when permutation of residuals was used. Values given
are the empirical probabilities of Type I error at the nominal 5% level, calculated from 500
simulations for each combination of parameters; probabilities were obtained using 999 ran-
dom permutations of residuals under the full model for each simulation. There were 10
replicates per group for each data set.

No. of
variables

No. of
groups

No change,
d

Method 1, (d2 1 2c1)0.5

c1 5 0.05 c1 5 0.01 c1 5 0.25 c1 5 0.45

1 2 0.050 0.054 0.058 0.060 0.056
1 5 0.058 0.066 0.068 0.066 0.060
5 2 0.046 0.046 0.046 0.046 0.046
5 5 0.044 0.046 0.046 0.042 0.042

10 2 0.038 0.038 0.038 0.038 0.034
10 5 0.074 0.074 0.072 0.064 0.054

stant. Similarly, the denominator of the F# ratio after trans-
formation using method 1 will also differ from the original
only by the addition of a constant. Consequently, although
the value of the F# statistic will change after applying method
1 for correcting negative eigenvalues, the effect on the F#

ratio is monotonic across all permutations, with the constants
remaining the same, giving equivalent probabilities for the
test (Fig. A2, Table A3). These properties are stated in Ap-
pendix B in the form of a theorem.

Therefore, correction method 1 for negative eigenvalues
applied to Bray-Curtis distances and used with the F# statistic
in RDA will give the same probabilities under permutation
as those that would have been obtained with the original
distances (Table A3). For method 2 (and method 3), neither
the F# statistic nor the probabilities under permutation are
equivalent to those that would be obtained with the original
distances. These transformations are not monotonic with re-
gard to the F# statistic across all permutations (Fig. A2). P
values obtained under permutation are consistently lower than
those that would have been obtained with original distances
(Table A3).

These simulations show that correction method 1 is the
best and only appropriate method to use to correct for negative
eigenvalues for permutation tests using the F# statistic. We
note that the probabilities obtained under permutation using
correction method 1 will no longer be equivalent to uncor-
rected data when permuting residuals for the test (e.g., using
ter Braak’s [1992] method of permutation under the full model
for tests of interaction terms). It is already known that, even
without any corrections to distances, exact equivalence is not
maintained in comparing permutation of raw data, permuta-

tion of residuals under the reduced model, or permutation of
residuals under the full model for ordinary least-squares re-
gression or ANOVA (e.g., Kennedy 1995, Manly 1997, An-
derson and Legendre 1999).

In further simulations we found, however, that when per-
muting residuals under the full model (ter Braak 1992) as op-
posed to raw data, the monotonic transformation of the F# sta-
tistic using correction method 1 does not result in any particular
bias in Type I error for purposes of the test (Table A4). The
parameters used for this simulation study were as outlined above.
Results are shown only for the larger sample size (n 5 10 rep-
licates). Empirical probabilities were much less consistent (with
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or without the application of a correction) when small sample
sizes were used (results not shown). This is a feature of model-
based tests. The method of permutation of residuals is not as

reliable with very small sample sizes, because the estimates
obtained under the model are less accurate with small numbers
of replicates (Anderson and Legendre, 1999).

APPENDIX B

PROPERTIES OF PERMUTATION TESTS AFTER CORRECTION METHOD 1

This Appendix contains a proof showing that, with cor-
rection method 1, the addition of a constant, c1, does not
change the test of significance of the analysis-of-variance
statistic when using permutation of raw data, although the
value of the F# statistic is changed. The demonstration that
follows uses theorem 1, which shows how a multivariate linear
sum of squares can be calculated directly from a matrix of
Euclidean distances. A proof of this theorem for the univariate
case is found in Kendall and Stuart (1963: paragraph 2.22).

Theorem 1
Given matrix Y 5 {yim}, i 5 1, . . . , n and m 5 1, . . . , p,

a set of n points in p-dimensional Euclidean space. The sum
of squares of the distances to the centroid of the group of
points is equal to the sum of squared distances among the n
points, in the half-matrix of distances D, divided by n. That
is,

p pn n21 n1
2 2(y 2 ȳ ) 5 (y 2 y ) (B.1)O O O O Oim m im jmnm51 i51 m51 i51 j5i11

with
n

yO im
i51ȳ 5 .m n

Notation.—Let there be g groups and nk replicates per group
(k 5 1, . . . , g); nk are not necessarily equal; S nk 5 N. Let
SSTot0, SSGr0, and SSRes0 be the total, among-group and between-
group (i.e., residual) sums of squares, respectively, for the
original distances. Let SSTot2c, SSGr2c and SSRes2c be the analo-
gous sums of squares for the distances corrected by addition
of a constant c1 5 c, in the manner of method 1. The mul-
tivariate F# statistic is: F0 5 [SSGr0 /(g 2 1)]/[SSRes0 /(N 2 g)].
Values of statistics under permutation will be indicated by
an asterisk (e.g., .F*)0

Lemma.—For corrected distances, sums of squares in an
analysis-of-variance framework may be computed using
theorem 1. From Eq. B.1, SS Tot0 5 (1/N ) S ; therefore,2d ij

for the corrected distances 5 Ï 1 2c, we have2d9 dij ij

[N(N 2 1)/2] 3 2c
SS 5 SS 1Tot2c Tot0 N

5 SS 1 (N 2 1)c (B.2)Tot0

and similarly,
g [n (n 2 1)/2] 3 2ck k

SS 5 SS 1 ORes2c Res0 5 6nk51 k

5 SS 1 (N 2 g)c (B.3)Res0

SS 5 SS 2 SS 5 SS 1 (g 2 1)c. (B.4)Gr2c Tot2c Res2c Gr0

Theorem 2

Using permutation of the raw data, the F# test based upon
distances dij is equivalent to an F# test based upon
distances 5 , which is correction method 1.2d9 Ïd 1 2cij ij

Proof.—The F# statistic, after correction, is

SS /(g 2 1)Gr2c
F 5 . (B.5)2c

SS /(N 2 g)Res2c

Substituting from Eqs. B.3 and B.4, we have

[SS 1 (g 2 1)c]/(g 2 1)Gr0
F 52c

[SS 1 (N 2 g)c]/(N 2 g)Res0

[SS /(g 2 1)] 1 cGr0
5 . (B.6)

[SS /(N 2 g)] 1 cRes0

It is clear from Eq. B.6 that when F0 5 1, then F2c 5 F0;
when F0 , 1, then F0 , F2c; and when F0 . 1, then F0 .
F2c. This explains the compression of permuted values around
the value 1 when correction method 1 is used, as observed
in Fig. A1 (top).

Now, across all permutations of the raw data (i.e., random-
izations of the N replicates), the degrees of freedom remain
constant, so F2c is monotonically related to SSGr2c/SSRes2c. Also,
SSTot2c remains constant across all permutations, therefore
SSGr2c and SSRes2c are monotonically related to one another,
varying inversely, and are thus each equivalent test statistics
to the F2c statistic under permutation. The same holds for the
F0 statistic without correction; either SSGr0 or SSRes0 is an equiv-
alent test statistic to F0 under raw data permutation, since
SSTot0 remains constant. Such equivalent statistics for ANOVA
in randomization tests were shown by Edgington (1995).

Importantly, we can see from Eq. B.4 that SSGr0 and SSGr2c

are themselves monotonically related. Thus, . F2c if andF*2c

only if SS . SSGr2c, which occurs if and only if SS .* *
Gr2c Gr0

SSGr0, but SS . SSGr0 if and only if F . F0; therefore the* *
Gr0 0

test of F2c under raw data permutation is equivalent to (i.e.,
yields the same probability as) the test of F0.

Note that these strict monotonic relationships between the
sums of squares and their associated F# statistics do not hold
if residuals are permuted as opposed to raw data, because
SSTot0 (and similarly SSTot2c) do not stay constant across all
permutations. Although not equivalent to permutation of raw
data, permutation of residuals is asymptotically unbiased
(Freedman and Lane 1983, ter Braak 1992).

APPENDIX C

ANOVA AS A MULTIPLE-REGRESSION LINEAR MODEL

The first step in the demonstration of the relationship of RDA
with ANOVA is to show the equivalence of the ANOVA F ratio
with the F ratio produced from a multiple regression of dummy
variables corresponding to particular treatments (levels of a fac-
tor) in an experiment. There are many statistical texts that de-
scribe analysis of variance as a linear model, but more complete
descriptions of the specific use of dummy variables in the re-

gression approach to ANOVA are found in Searle (1971), Draper
and Smith (1981) and Neter et al. (1996).

In multiple regression, where yi are i 5 1, . . . , N inde-
pendent random variables (response), the familiar linear mod-
el is

yi 5 b0 1 b1xi1 1 b2xi2 1 . . . 1 bkxik 1 «i (C.1)
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where xij’s (k predictor variables) are known constants, b0,
b1, . . . , bk are unknown parameters, and «i’s are independent
normal random variables. In matrix notation, the model is
written as y 5 Xb 1 «, with matrices

y 1 x · · x   1 11 1k

y 1 x · · x2 21 2k   · · · ·
y 5 X 5   

· · · ·

· · · ·   
y 1 x · · xN N1 Nk   

« 1
b 0

«2
b1    ·

b 5 · « 5 .   
·

·  · bk 
«N 

The least-squares estimates b of the parameters b are obtained
by the normal equations

X9Xb 5 X9y (C.2)

and taking the inverse of X9X, we have
b 5 [X9X]21[X9y]. (C.3)

In a similar fashion, consider the linear model for a one-
way ANOVA:

yij 5 m 1 ti 1 «ij (C.4)
where yij is the value of the jth replicate in the ith treatment,
m is the overall parametric mean, ti is the effect of the ith
treatment, and «ij is the random normal error associated with
that replicate. The model for the expectation of y in any
particular treatment is

E(yi) 5 m 1 ti. (C.5)
If there were, for example, three treatments, the model could
be written as

E(y) 5 mX0 1 t1X1 1 t2X2 1 t3X3. (C.6)

The values of Xi required to reproduce the model E(yi) 5
m 1 ti for a given yi, using equation C.6, are

X 5 10

1 if the ith treatment is applied,
X 5 .i 50 otherwise

This can be expressed by the following matrices:
y 1 1 0 0   11

· 1 1 0 0

· 1 1 0 0

y 1 1 0 01j

y 1 0 1 0 m 21     · 1 0 1 0 t1
y 5 X 5 b 5     

· 1 0 1 0 t2 
y 1 0 1 0 t2j 3 

y 1 0 0 131

· 1 0 0 1

· 1 0 0 1   
y 1 0 0 13j   

where the columns of the matrix X correspond to X0, X1, X2,
and X3, respectively. A least-squares solution may again be
obtained by the equation

X9Xb 5 X9y. (C.7)

The above X matrix has column dependencies, each binary
variable coding for the factor being a linear combination of
all the others. This causes X9X to be singular, with no inverse
and thus no unique solution for b. Thus, the ANOVA model
is said to be ‘‘overparameterized.’’ What is required is a ma-
trix equivalent to X but that has linearly independent (or-
thogonal) columns (see the following section, as well as Dra-
per and Smith [1981]).

The regression sum of squares (and mean square) calcu-
lated from the above least-squares solution for b is exactly
the same as the treatment sum of squares (and mean square)
that would be calculated in the normal fashion in an ANOVA
(Draper and Smith 1981, Legendre 1993). In multiple re-
gression we refer to an ‘‘explained’’ sum of squares, or the
amount of total variation in y that can be explained by X.
The multiple-regression approach to ANOVA similarly de-
termines the amount of variation in y explained by the model
X matrix, that is, by our ANOVA model.

Coding of orthogonal dummy variables

A few comments concerning the use of dummy variables
are appropriate. When more than one factor is considered in
an analysis, it is most efficient to use vectors of dummy
variables that are orthogonal. See Draper and Smith (1981)
for a discussion of the importance of orthogonality in the use
of dummy variables. A general pattern of coding that can be
used routinely to obtain orthogonal vectors for balanced ex-
periments (i.e., experiments with the same number of repli-
cates in each group) is succinctly outlined by the following
matrices:

2 levels, 3 levels, 4 levels, 5 levels,
1 vector 2 vectors 3 vectors 4 vectors

14 0 0 0 
13 0 0 

12 0 21 13 0 0    11 21 12 0 
21 11 21 21 12 0     [ ]21 21 21 11 
21 21 21 21 21 11    21 21 21 

21 21 21 21 
etc.

In each case, the number of vectors (columns, dummy vari-
ables) required is one less than the number of levels of the
factor (5 df for the factor). The rows correspond to the codes
for each level in the experiment. The method of coding en-
sures orthogonality, as can be verified by computing cross
products among the columns of the example matrices above.
This pattern of coding produces correct sums of squares for
given individual factors in an analysis-of-variance model.
Other coding methods, involving particular contrasts, can be
implemented, but the above methodology is easy to use and
will provide valid tests for the total explained variation of
particular factors for the present application.

Coding for multifactorial designs

We restrict detailed discussion to the example of a two-
way crossed design. The linear model for the two-way crossed
design is

yijk 5 m 1 Ai 1 Bj 1 (AB)ij 1 «ijk (C.8)

where yijk 5 the value of the kth replicate of the ith level of
factor A and the jth level of factor B; m 5 the parametric
mean; Ai 5 the effect of the ith level of factor A; Bj 5 the
effect of the jth level of factor B; (AB)ij 5 the interaction
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effect of the ith level of factor A with the jth level of factor
B; and «ijk 5 the random error associated with that replicate.
For what follows, let r 5 (a 2 1) where a is the number of
levels in factor A and s 5 (b 2 1) where b is the number of
levels in factor B. The expectation of yijk under the full mul-
tiple-regression model can be written as

E(y) 5 mX 1 t X 1 . . . 1 t X 1 t X0 A1 A1 Ar Ar B1 B1

1 . . . 1 t X 1 t X 1 . . . 1 t X (C.9)Bs Bs AB1 AB1 ABrs ABrs

where the t’s are individual regression coefficients corre-
sponding to particular orthogonal vectors (X’s), as shown in
the one-way example above. The subscripts A1, . . . , Ar de-
note orthogonal vectors 1, . . . , r coding for factor A, sub-
scripts B1, . . . , Bs denote orthogonal vectors 1, . . . , s coding
for factor B and subscripts AB1, . . . , ABrs denote orthogonal
vectors 1, . . . , rs coding for the interaction between factors
A and B.

As an example, consider a univariate two-factor orthogonal
experiment in which there are three levels of factor A and
two levels of factor B; n which is the number of replicates
within each combination of levels of the two factors, is 3 in
this case. The multiple-regression approach uses the follow-
ing matrices:
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Note that the first column of matrix X, X0, has been omitted
here. It consists of a column of 1’s and corresponds to the
centering of the data around the overall mean (i.e., for the
estimation of m in the multiple-regression model). This col-
umn is automatically added by the regression programs of
statistical packages, unless the user specifies that the model
must have an intercept of zero. So, in practice, this first col-
umn does not have to be written explicitly as one of the
dummy variables.

The six different cells corresponding to the six combina-
tions of levels of factor A and factor B are separated by
horizontal solid lines. The vertical dotted lines in the X matrix
separate the dummy variables coding for different terms in
the model. The first two columns, XA1 and XA2, are orthogonal
vectors that code for factor A (three levels) and the third
column, XB1, codes for factor B (two levels). The last two
columns code for the interaction term.

The columns of dummy values for interaction terms consist
of the direct products of each of the orthogonal columns
coding for one factor times each of the orthogonal columns
coding for the other factor in the interaction (see Draper and
Smith 1981). Before combining them into interaction dummy
variables, it is essential that the variables used for any single
main effect be linearly independent orthogonal vectors (Dra-
per and Smith 1981).

This is a very efficient way to obtain dummy variables for
the interaction term that are linearly independent of the vari-
ables coding for each of the main effects. The interaction
term must not explain any portion of the variation in Y that
is already explained by the main effects; it is on this basis
that the interaction in an orthogonal (crossed) design is de-
fined (e.g., Neter et al. 1996). In addition, by this method the
number of orthogonal vectors required to code for the dummy
variables corresponding to the interaction term is clearly
equal to the number of degrees of freedom for that term in
the model. Thus, in our example, XAB11 5 XA1XB1 (column 4
in X) and XAB21 5 XA2XB1 (column 5 in X). Similarly, for
designs involving three or more factors, dummy variables
coding for interaction terms can be obtained by this approach
as the direct products of orthogonal dummy variables coding
for each of the factors involved in the interaction.

As a final note, the above coding schemes for orthogonal
vectors cannot be used with unbalanced data. Orthogonal vec-
tors coding for least squares solutions using Type III or Type
IV sums of squares would be appropriate for unbalanced de-
signs (Searle 1987, Shaw and Mitchell-Olds 1993).


