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According to Margalef (1968), the theory of species succession within an
ecosystem plays the same role in ecology as does the evolutionary theory in
general biology. Several phenomena are associated with the succession of
species, such as increases in biomass, diversity, and homeostasis. These phenom-
ena have been summarized by Margalef (1968, 1974), Odum (1971), Frontier
(1977), and Gutierrez and Fey (1980). They are measurable and lead to an increase
in homeostasis and in information content of the ecosystem.

There is as yet no general model of succession integrating all these phenomena.
Therefore, it would be of help to ecologists if it were at least possible to describe
accurately and unambiguously the steps through which an ecosystem goes during
the process of ecological succession. It could also help in the modeling of succes-
sional events for management purposes.

The very idea that an ecological succession evolves in steps, instead of
smoothly, is well known to students of successional phenomena. It has been
clearly summarized in the ecological model described by Allen et al. (1977, pp.
1076, 1082) who state: ‘“There are structural forces intrinsic to the community,
and the community composition moves from one center of community structure
to another only by the intervention of intermittent shifts in environmental struc-
ture. . . . The model suggested . . . resembles a gently wobbling, scalloped surface
with a steel ball held in craters. Intermittently, a randomly directed magnetic force
moves the ball, sometimes into a new hollow.”’ (See also fig. 7.) Allen et al. (1977)
analyzed the first-difference vectors of weekly species occurrences, through prin-
cipal component analysis, to show this process operating in a real community,
while in this paper we will attempt to reveal it using another type of analysis,
based on the original data matrix.

The contribution of this paper lies in the development of a method to describe
disjunctions occurring during an ecological succession. Models emphasizing dis-
junction are useful for many kinds of analyses, while admittedly, succession may
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be viewed under its dual aspect of continuity, for other purposes. In this latter
case, another multivariate method, which can be considered to be complementary
to the one developed below, has been proposed by Orléci (1981) for uncovering
successional trends and separating them into monotonic and cyclic components.
On the other hand, the disjunction model may well not be applicable to all kinds of
successions. It has been found, however, to be adequate in many types of
communities and environments, and among them phytoplankton (Allen et al.
1977, cited above); zooplankton (Dessier and Laurec 1978; Sprules 1980); plant
seral stages with distinctive breeding bird species (Johnston and Odum 1956); and
transitional discontinuity between pioneer stage and building stage in a subtrop-
ical rain forest (Williams et al. 1969).

The ecological model described above becomes useful only if one can observe
disjunctions in real series of ecological samples. Empirical methods (like the usual
agglomerative clustering techniques, for instance) for doing so exist, but they
have the drawback that they always partition the samples into groups, without
providing indications as to the reality of these groups. Here we proceed the other
way around. A mathematical model is found which corresponds to the ecological
model of discrete successional steps, and this statistical model is imbedded in a
computer program capable of handling real and relatively large data sets. This
procedure is applied to two real data sets representing, respectively, seasonal
(within-year) and long-term successions. It is then compared with other methods
proposed in the literature.

More precisely, our objectives are the following: (1) to identify the discon-
tinuities in a time series of multispecies biological samples, collected at a single
station; (2) to take into account the time sequence of the sampling, this method
thus being different from the usual clustering techniques; (3) to make it possible to
eliminate singletons.

This last preoccupation with singletons, which might be thought of as ‘‘aberrant
samples,”” comes from the very nature of ecological data series. (1) In most
ecological data series, random events may temporarily perturb the sequence of
the succession. These random events include external forcings, such as perturbed
or missing strata in sediment cores, or temporary shifts of water masses at a fixed
station in an aquatic ecosystem, where it is far from certain that an ecologist will
always sample the same water mass. Also included under this heading are emigra-
tion and immigration phenomena, pertaining to another scale of perception than
the maturation of the succession under study. They can perturb the data series in
an unpredictable, temporary, and nonsignificant manner. (2) A singleton in a data
series may also be the result of an extreme stochastic variation within the range of
the given successional step. Indeed, the statistical criterion proposed in Appendix
C causes the rejection of the null hypothesis that says *‘this observation should be
included in the successional step,’”” with a probability of error «, accounting for
these extreme cases. (3) Finally, bizarre samples may be the result of improper
sampling or inadequate preservation of the samples.

These events may happen in any ecological data series, except when one is
sampling fixed organisms, long-lived relative to the sampling interval, from per-
manent and well-defined quadrats. These are found for instance in studies of trees,
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or of shallow-water sessile organisms that are observed without being removed.
Consequently, because our second objective imposes a time constraint on the
grouping of samples, we decided on the following compromise as ecologically
meaningful: a single sample, significantly different from those found immediately
before and after itself, should be considered temporarily aberrant by the al-
gorithm, in order to prevent it from interrupting a sequence of ecologically
homogeneous samples. This singleton can later be tried and fitted with other
sequences of the time series (in which case an external forcing may be hy-
pothesized). For this purpose, a switch has been included in our algorithm (fig. 2)
allowing the ecologist to have these singletons identified and removed from the
data series, if he so wishes. However, any group of samples longer than one will
be kept as representing a step in the succession.

METHODS

The bases of the chronological clustering method follow naturally from the
principles discussed above. One begins by computing a matrix of samples X
samples distance. The choice of a measure of resemblance appropriate to the data
and to the problem to be solved is discussed in Appendix B. This preliminary step
is illustrated in figure 1, and it is followed by the chronological clustering itself,
explained in some detail below with reference to figure 2.

After reading in the distance matrix (step 1 in fig. 2), clustering the samples is
carried out from the distance matrix using any method of agglomerative cluster-
ing, with the time contiguity constraint explained in the next paragraph. Propor-
tional-link linkage (Sneath 1966), used hereinafter (steps 2 to 5 in fig. 2), is an
agglomerative and hierarchical algorithm of intermediate linkage clustering. In
this clustering, the user specifies, out of the maximum number of links that can
form between any two clusters, the proportion of links that are necessary for
fusion of these two clusters into one. This proportion will be called Co (connect-
edness) and it is set by the user (step 1 in fig. 2).

Clustering with a constraint of contiguity has been proposed by several authors
in the past few years (time contiguity: Gordon and Birks 1972; Gordon 1973;
North 1977; space contiguity: Lefkovitch 1978, 1980; Monestiez 1978; Lebart
1978; Roche 1978). Time contiguity, in particular, means that only those samples
that are contiguous along the time series are allowed to cluster. This principle is
applied to the study of successions in our method (during step 2 in fig. 2). It is
modified by the identification and removal of singletons, as defined in the in-
troduction. This is a fundamental problem as far as ecological successions are
concerned, one that has yet to be tackled by any of the authors mentioned above.

A hierarchical clustering algorithm naturally produces a hierarchy. Since this
hierarchy has little bearing on the problem of succession (it must actually be
considered as a computational artifact), we will seek instead a single nonhierarchi-
cal final solution, corresponding somewhat to a broken vertical line through the
horizontal hierarchical tree. To achieve this, a statistical criterion of cluster fusion
must be developed (step 4 in fig. 2). This topic will occupy the next subsection.

After presenting the criterion of cluster fusion, the last subsections of the



260 THE AMERICAN NATURALIST

N species
- 52 samples in
:-S chronological order
P AE
2% £2| o
Eo| DATA |Sspnl 0
5.9 25| SYMMETRIC
~ £ E'» DISTANCE
00 32 MATRIX
< P (Y
< 0
/7
CHRONOLOGICAL
CLUSTERING
CLUSTERSCI T T T 1TOCI T I T3 SIdxCT T %
SAMPLES 1 2 3456 78 910n 46 474849505152

FiG. 1.—Summary of the chronological clustering procedure, for a series of 52 samples X n
species. The nonhierarchical clusters are symbolized by connected boxes. Stars are sin-
gletons.

METHODS Will be devoted, respectively, to the procedure for removing aberrant
samples (step 6 in fig. 2), the group expansion tests (step 7), the a posteriori testing
(step 8), and finally a summary of the chronological clustering method.

A test of cluster fusion (step 4 in fig. 2).—As mentioned in the introduction, the
ecological model upon which this chronological clustering is built says that suc-
cession evolves in steps, rather than smoothly. This implies that within a step, the
variation is small compared to the changes occurring between steps. This state-
ment, in turn, can be translated into the following terms: within a step, all the
time-ordered samples behave as if they resulted from randomly sampling the same
biological community. This formulation corresponds to the null hypothesis of the
statistical test of cluster fusion, described in more detail in Appendix C.

Removal of singletons (step 6 in fig. 2).—It has already been mentioned that we
wish to obtain a set of clusters that is not affected by singleton perturbations in the
sample series, as are frequently found in ecological data series (see the introduc-
tion). A procedure for identifying singletons naturally follows from the test of
significance described above. The intermediate linkage algorithm agglomerates
hierarchically from lower to higher distance levels. A singleton occurs when the
procedure comes to the point where a given sample is considered for clustering,
and it is found that this sample can cluster neither at its left nor at its right (except,
of course, for the first and last samples).

When a sample has been identified as a singleton, the procedure is immediately
interrupted. The singleton is marked (by a star, in our computer program) and the
clustering procedure is started again from the beginning after removing the sin-
gleton. This is made necessary by the reason illustrated in table 1: by its very
presence in the series, a singleton may prevent its neighbors from clustering with
one another, even though they are more alike than any other pair at that linkage
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Fic. 2.—Flow diagram of the chronological clustering algorithm. Circled numbers are
referred to in the text.

level (compare level D = 0.05 before and after removal of sample 5, in the table).
This phenomenon may well irreversibly alter the clustering topology right to the
end of the procedure, so that it is safer to start again from the beginning.
Group expansion tests and interval graphs (step 7 in fig. 2).—The clustering
algorithm was designed to produce a single set of nonoverlapping clusters.
Ecologically speaking, it is important to determine whether these clusters repre-
sent completely different and independent phenomena resulting, for instance,
from an external forcing or, rather, relatively stable subseries of events within a
continuous ecological succession. In the first case (independent phenomena), we
would expect, if we destroyed the clustering structure except for one cluster, that
this cluster will remain the same. In the second case (continuum), however, this
cluster could still ‘‘grow’’ a little, by incorporating some of the samples located
immediately at its left or right; in the chronological clustering procedure, these
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TABLE 1

EXAMPLE OF CLUSTER FORMATION BEFORE AND AFTER REMOVAL OF A SINGLETON (%)
(Synthetic distance matrix with eight samples)

SAMPLES
LEVELS 1 2 3 4 5 6 7 8
D= .02 A A
D = .04 A A A
D = .05 A A A B B
D = .06 A A A B B B
D = .09 A A A A B B
The singleton (sample 5) is removed?
D = .02 ... A A * ... .
D = .02 . A A * A .
D= .05 A A B B * B
D = .06 A A B B * B C C
D = .08 A A A A * A B B

Note.—Co = 50%, a = .25. Letters identify groups, from left to right.
T At this point, the probability of fusion of sample 5 was .20 on its left and .25 on its right.

samples have been prevented from joining the said cluster by the fact that they
were already members of other clusters. Taking alone, in turn, each of the
previously formed clusters and allowing it to expand along the time series (sin-
gletons removed) leads to the identification of overlapping clusters that can be
represented by the interval graphs of figures 3 and 5. It should be obvious that, as
a cluster expands, the test becomes more permissive and can accept more and
more heterogeneous samples, which is a desirable property in this case.

A posteriori tests (step 8 in fig. 2).—Recurrent biological events may be
identified from the results of the chronological clustering by testing a posteriori if
there are differences between clusters, independently from the time sequence. In
the same way, one can try to relate the singletons to distant clusters in the time
series, in which case they can be called satellites of these distant clusters. In figure
4, for instance, it seems that samples [56 to 66] represent a recurrence of the
cluster [1 to 3]. In the same way, singleton 35« is a satellite of cluster [29 to 41].
See also the last section of Appendix C for more comments on a posteriori testing.

Summary of the Chronological Clustering Algorithm

To summarize (fig. 2), a proportional-link linkage algorithm is used to agglomer-
ate neighboring samples hierarchically. It generates different pairs of samples or
groups of samples, in turn, to be candidates for clustering. The test for accepting
the fusion of two groups is a randomization test involving a contrast parameter y
(set at 50%) to classify the distances into high and low distances. The hypothesis
that the ratio

[ no. high D no. high D

total no. D :' between-group [ total no. D ] triangular
matrix matrix
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is tested, and if the probability of its being true is larger than a predetermined
significance level «, then the two groups under consideration are clustered.

Singletons are identified using the same test. When one is found, it is removed
from the series until the a posteriori tests, and the whole clustering procedure is
started again from the beginning.

At the end of the clustering proper, each group is allowed to expand at the
expense of its neighbors, in order to determine whether the successional structure
found represents relatively stable subseries of events within a continuum, or
different and independent phenomena succeeding one another. Furthermore, a
posteriori tests are carried out between nonneighboring clusters, as well as be-
tween singletons and each of the clusters, in order to determine their relation-
ships.

RESULTS USING NATURAL COMMUNITIES
Example 1: Mediterranean Zooplankton

As a first example of the behavior of chronological clustering, we used a series
of marine zooplankton samples collected at the entrance of Villefranche Bay
(Mediterranean, France: 7°15’' E, 43°41’ N) by vertical bottom-to-surface (75 m)
hauls of a Juday-Bogorov net (330 wm mesh) between 15 November 1966 and 14
May 1968. Data are counts of 13 groups of chaetognaths (7 species, 3 sexual
maturity levels being considered for each of the three most abundant species). The
first year of this data series has been analyzed for other purposes by Ibanez and
Dallot (1969) and by Ibanez (1972, 1974). In order to remove small-scale variabil-
ity, individual counts (3-11 samples per wk) were combined into 78 weekly
averages. This series is actually the beginning of a 6-yr series which will be
analyzed elsewhere. This segment was chosen to be short enough to be repre-
sented in an uninterrupted graph (fig. 3), yet long enough to illustrate the recur-
rence of seasonal zooplankton events (12 yr).

The data were subjected to the usual log (y + 1) transformation. For all the
variables so transformed, normality was not rejected at the 1% level (class zero
removed) by the Kolmogorov-Smirnov test of goodness-of-fit, as modified by
Lilliefors (1967).

The Mediterranean environment is known to be more mature and stable than
that of example 2 (below), for instance. Its maturity was confirmed by the shape
of the rank-frequency diagrams of the 78 samples. Since a type-1 coefficient of
distance is appropriate in this situation (see Appendix B), Whittaker’s index of
association was computed between all pairs of samples, and the chronological
clustering was run on this distance matrix.

In figure 3, each cluster of contiguous samples is represented by a horizontal
line segment, while discontinuities are represented by blanks. Four values of
connectedness are compared in figure 3a. The breakpoints seem fairly stable
throughout the various connectedness levels. Connectedness 25% is chosen for
the remainder of this example, although other levels could have been used and will
be mentioned later.
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As could be expected, the smallest o values in figure 35 produce fewer, more
encompassing groups. Indeed, looking at the nature of the test for cluster fusion in
Appendix C, one realizes that the test allows more fusions when a is small, which
leads to larger groups. Thus, varying o from 0.01 to 0.25 is equivalent to probing
the data series with increasing intensity, the larger a values allowing finer details
to emerge. In this respect, it is noticeable that singletons show up only at o = 0.20
and above. Indeed, well-detached singletons can be expected to be less ‘‘obvi-
ous’’ than the major breakpoints structuring the series, which can be found
through the whole scale of a values.

One may also wonder what is the interest of using a probability level of 20% or
larger. Actually, the test is used here mostly as a clustering intensity parameter,
although it is shown in Appendix C that a is equal to the probability of a Type I
error during the test. In the present case, it is more interesting to break the series
into pieces smaller than those obtained with a = 0.01. At a = 0.30, however, too
many small groups (17) are obtained, so that « = 0.20 or 0.25 produces more
interesting results. The following paragraphs are based on the 12 groups obtained
at o = 0.25.

It is, however, worth considering a whole set of levels. Indeed, looking at figure
3b, the most important breakpoints in the data series become obvious. They are
indicated by arrows on the figure and are found between samples 23 and 24, 28 and
29, and 55 and 56. The importance of these breakpoints is confirmed by the fact
that no group expansion covers them. Larger a-values allow the identification of
smaller steps within the main ones, which may give a truer picture of the ecolog-
ical reality (see DISCUSSION AND CONCLUSIONS).

The main breakpoints in the data series, marked by arrows in figure 35,
correspond to the major hydrological events positioned at the top of the figure by
circled numbers. The 23-24 breakpoint (end of April 1967) corresponds to the
formation of thermal stratification of the water mass, the vertical stratification
(measured by Ac, = the difference in water density between bottom and surface
water) changing suddenly from 0.27 (week 23) to 0.70 (week 24). The 28-29
breakpoint is the result of several days of strong mistral wind. This blew surface
waters away from the coast, and these were replaced by an upwelling of subsuper-
ficial water (Bougis 1968), with the consequence that the concentrations of epi-
planktonic species, usually found near the shore, were lowered. This perturbation
was followed by a typical summer community dominated by Sagitta setosa and
high numbers of young §. enflata in weeks 29 to 41, very different from the
preceding springtime community, poor in species. This transition is so abrupt that
sample 29* behaved as a singleton in one of the chronological clustering runs. The
last major breakpoint, between weeks 55 and 56 (December 1967), follows closely
the breakdown of thermal stratification (Ao, was 0.04 on week 54). The 2-wk delay
in the reaction of the zooplankton community may be attributed to the homeo-
static properties of the community.

Sample 35% also behaved as'a singleton in all clustering runs at « = 0.25.
Singletons may be appreciated correctly only by going back to the data, since
many causes may lead to the production of singletons (see introduction). Sample
35« is singled out because of a general increase in population densities that was
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irregular from one group to another. The peculiarities of this sample become
visible only at high a-values, which are known to bring up finer details. The a
posteriori tests show, however, that the probability of sample 35* belonging to the
group [29 to 41] is 1.00, after this group has completed its membership. Some of
the secondary breakpoints can also be attributed to hydrometeorological causes.

The groups formed by expansion follow in a striking way the main phases of the
hydrological cycle, mainly characterized by the vertical water stability variable
(Ao,) and the temperature. The two expanded groups [1 to 11] and [4 to 15]
correspond to the hydrological winter period, with low vertical stability and low
temperature; the corresponding period in 1967-1968 forms a single cluster, [56 to
66]. On the other hand, the expanded group [38 to 55] corresponds to the fall
period, beginning at maximum annual temperature and ending shortly after the
vertical stratification has disappeared; unfortunately, the 1968 data series in this
example does not extend far enough to cover this same period.

The a posteriori tests between groups, described in the METHODS, can be used to
investigate the assumption of recurrence of successional events from year to year.
The between-group tests with a probability higher than « are represented in figure
4, which is drawn in such a way as to preserve the temporal sequence on
successive lines while showing the between-group relationships as simply as
possible. As expected, this figure shows a major folding of the series corre-
sponding to the second year of sampling, with group 1 related to group 10
(wintertimes) and group 4 related to group 12 (springtimes). In computer runs with
a connectedness of 75% and 100% (not illustrated), another a posteriori link joined
group [12 to 14] with a group [64 to 66], thus strengthening the between-years
relationship. During the year 1967, a secondary fold is present in the data series
(links between groups 4 and 9, and between 8 and 12) relating the two springtime
communities with the fall community, even though these communities pertain to
different phases of the hydrological cycle. Interestingly, the same spring-fall
relationship will be seen in the freshwater community of a northern reservoir, in
the next example.

Example 2: Zooplankton in Freshwater Reservoir

In May 1977, the Société d’énergie de la baie James impounded a small
reservoir (7 km? approximate area) called Desaulniers, in northwestern Quebec
(77°32' W, 53°36' N). Several sampling stations were established and visited both
before and after the flooding. The deepest of these stations, G2-129 (maximum
depth 13 m), will be studied hereinafter for the evolution of its zooplankton
community (crustaceans and rotifers). The counts for the 33 species are in num-
bers of individuals per volume of water. Before the flooding, this station was
located in the riverbed, and only zooplankton animals drifting from lakes located
upstream could be found; thus, this is an example of primary succession. Its
evolution has been described in more detail elsewhere (Pinel-Alloul et al. 1982).

An important difference between this example and the Villefranche chaetognath
data is that the time lag between samples is anything but constant. This is due in
part to the difficulties of winter sampling in the northern regions. It also reflects
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F1c. 4.—Schematic representation of the chronological clustering of example 1, showing
the between-group relationships (p > «) indicated by the a posteriori tests. The boxed sample
is a singleton.

the a priori knowledge of biologists who expect the zooplankton communities to
evolve much more slowly during winter. This example will then serve to illustrate
that, contrary to time-series analysis, the chronological clustering method does
not require the data to be sampled at fixed intervals. Of course, differences in
sampling density along time will have to be given due attention when interpreting
the clustering results.

Prior to analysis, the 33 species were normalized by the log (y + 1) transforma-
tion, as in example 1. Only one of the variables so transformed was found not to
be normal at the 1% probability level (class zero removed), by the Kolmogorov-
Smirnov goodness-of-fit test, as modified by Lilliefors (1967). Since the beginning
of a primary succession forms by definition an immature community that is likely
to remain so for some time, especially in a northern environment, the Canberra
metric (a type-2 coefficient of distance, see Appendix B) was used to compute the
relationship between all pairs of samples.

At 75% and 100% connectedness, the chronological clustering of the Canberra
distance matrix gave exactly the same results as with Co = 50%. At 25% some
groups are fused (samples 20 to 28, with 25 as an in-group singleton; samples 39 to
44) without any change in the position of the breakpoints. Therefore, the connect-
edness will be fixed at 50% for the remainder of this example.

Figure 5 shows that, here again, smaller o values produce fewer but larger
clusters. The most important breakpoints in the series can be described at the
smallest a levels. The flooding of the reservoir (marked 1 at the top of the figure) at
the end of May 1977 makes a clear departure from the zooplankton population that
was present in the river in 1976, drifting from the lakes located upstream. This
event corresponds to an increase in the number of species from 2 to 8. In mid-July
1977, after rising above 139 m altitude, the water level began to drop and the
number of species increased from 13 to 19. In mid-August 1977, after a drop to the
137.5-m mark, the water level rose again, and the number of species increased
from 14 to 20. Between the October and December samplings, the water tempera-
ture fell below 4° C, the fall overturn took place, the ice cover was established,
and the number of species fell from 17 to 5 (more samples would have been
desirable during this transition period). Finally, at the end of May 1978, the rising
water temperature crossed above 4° C (spring overturn) and the number of species
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increased from 9 to 17. It is noticeable that no other break is produced by the a =
0.01 clustering. At o« = 0.05, another break appears in August 1978, corre-
sponding to the beginning of a drop in the water level, after it had almost reached
142 m.

Clustering at o« = 0.25 is also worth considering, since it results in smaller
groups which correspond better to the reduced-space ordination (fig. 6) obtained
by the nonmetric multidimensional scaling method, applied to the Canberra dis-
tance matrix. The most interesting feature is the presence of two singletons. The
first one (sample 25) is clearly isolated in figure 6 and corresponds to the point
where the water temperature drops below the 10° C mark, while the second one
(sample 38) corresponds to a major drop in species evenness which may indicate a
restructuring of the zooplankton community interactions, after the water tempera-
ture had passed the 10° C mark in its spring warm-up (hydrological event 5 in fig.
5). The 10° C transition seems relevant in freshwater zooplankton community
development (Jacobs and Bouwhuis 1979). Another feature of the o« = 0.25
clustering is the presence of a break in the series in the fall of 1978, some time after
the 10° C transition, accompanied by a drop from 16 to 8 in the number of species,
between samples 44 and 46. This delay in the reaction of the zooplankton commu-
nity to the beginning of the fall hydrological period was also observed in the
Mediterranean zooplankton series (example 1).

The interval graph resulting from the group expansion tests computed for the a
= 0.25 clustering is plotted in figure S. It confirms that the most important
breakpoints are those identified by clustering at the lower a values. The a poste-
riori tests for the two singletons show, above the level of o = 0.25, the existence
of possible relationships only with the three two-sample groups, with a probability
of 0.66667. As indicated in table C1, this value is the lowest probability that can be
found between a singleton and a two-sample group, so no meaning is attributed to
these findings.

Finally, the a posteriori tests between all pairs of groups are computed. Very
few show a probability larger than a. In a first group, the three small two-sample
groups [1-2], [15-16], and [20-21] show among them a probability of 0.33333.
Table C1 shows that, since y = 0.50, this value is also the smallest possible
probability of fusion obtainable from the exact test. Consequently, no attention is
to be paid to these results. Besides these, only two between-group relationships
are left, between groups [17-19] and [22-24], and between groups [35-37] and
[42-44], with a probability of fusion equal to 0.40000. They are drawn in figure 5
by double arrows.

From figures 5 and 6, we can draw the following description of the evolution of
zooplankton communities related to the impoundment of Reservoir Desaulniers.
In 1976, zooplankton were drifting at random from the small lakes located up-
stream; this is evidenced by low species numbers and highly fluctuating evenness,
which indicate that no stable community was present at station G2-129. After the
flooding of the reservoir, the community departs rapidly from the river status (fig.
6) and forms a fairly well developed assemblage with 13 to 20 species in the
summer of 1977, despite large chemical and water-level fluctuations (Pinel-Alloul
et al. 1982). The August [17-19] and September [22—-24] communities are suffi-
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Fic. 6.—Nonmetric multidimensional scaling of the Desaulniers zooplankton series, after
computation of the Canberra distance between samples. Line segments show the results of
the chronological clustering with Co = 50% and o = 0.25. Sectors of the graph correspond to
sampling years. Boxed samples are singletons.

ciently similar to be interconnected by an a posteriori link. After the fall overturn
and during the 1977-1978 winter period, the community moves away from the
previous summer’s status. When spring comes (sample 35), the community has
reached a zone of the multidimensional scaling graph (fig. 6) quite distinct from the
one it occupied in summer 1977. The faunal composition is now completely
dominated by rotifers, which increased from 70% to 87% in numbers and from
18% to 23% in biomass between 1977 and 1978, with a corresponding decrease for
the crustaceans, while the physical and chemical conditions are stabilizing (Pinel-
Alloul et al. 1982). It is noticeable that the early [35-37] and late [42—-44] steps in
the zooplankton succession of the summer 1978, identified by clustering with a =
0.25, are interconnected by an a posteriori link. When the succession is inter-
rupted by the overturn, in the fall of 1978, the last group [45-47] is found in figure
6 near the position of the previous winter’s samples [29-34], thus indicating that
the following year’s cycle might resemble the 1978 succession.
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This was an example of primary succession (the area was not previously
occupied by a lake) with large between-year variations, which is very different
from that of example 1. In Reservoir Desaulniers, the community was evolving
rapidly from a river to a lake condition, with none of the repetitions of previous
community structures that can be seen in the folds of figure 4 (chaetognaths).

DISCUSSION AND CONCLUSIONS
A. Comparison of Methods

The methods specifically designed for the identification of cycles in time or
space data series, such as periodograms, correlograms, or the various types of
spectral analysis, are not relevant to the study of succession, since we do not
hypothesize any constant periodicity, other than trivial (year), in a succession of
species. Other methods have been used in the past for this same kind of study,
however. They can be grouped under three headings.

1. Chernoff (1973) has proposed to use drawings of faces to delimit homoge-
neous time intervals in sediment cores. The core is subsampled at equal depth
intervals, thus forming a time series of discrete samples. Each sample is analyzed
for a given set of descriptors, and a face is drawn to represent it. In this face, each
characteristic (nose, mouth, and so on) corresponds to one of the descriptors and
varies in size or position according to the value of that descriptor in succeeding
samples. Our experience is that although faces may be an excellent method to
summarize and represent the results of a chronological clustering, faces alone do
not lead to the same breakpoints for different observers. More important, diver-
gences are produced when a given descriptor is coded by two ecologists into
different face characteristics.

2. Ordinations in reduced space have been used by several authors to represent
multispecies time series. In particular, various methods of factor analysis have
been used by Williams et al. (1969: vegetation, principal coordinates), by Levings
(1975: benthos, principal coordinates); by Allen et al. (1977: phytoplankton,
principal components of the first difference of species’ weekly occurrences); and
by Dessier and Laurec (1978: zooplankton, principal components and corre-
spondence analysis); Sprules (1980) used nonmetric multidimensional scaling on
zooplankton data. Reduced-space ordinations assume the independence of the
samples, in order to produce an ellipsoid-shaped dispersion of points. Conse-
quently, these authors expect their samples to form some sort of a circle in the
plane of the first two axes, since successive samples are more likely to fall close to
one another in the reduced-space ordination (Appendix D). Departures from a
regular distribution in a circular pattern are then interpreted as evidences of
subsets in the data series. Such subsets may indeed be observed in these projec-
tions (although not necessarily). A more or less circular pattern is found in the
ordinations published by Levings (1975), Allen et al. (1977), and Dessier and
Laurec (1978), mentioned above, who investigated 1-yr successional cycles. The
‘‘circles’’ are not closed in Sprules’ 7-mo study, nor in the pioneering succession
study of Williams et al. (12 samples gathered over 7 yr).
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When used alone, these methods are left with two major drawbacks. (a) The
distances to those objects which are, in some particular way, different from the
main between-group variability are likely to be expressed by some minor principal
axis, orthogonal to the main projection plane. Consequently, these objects may
well be projected, in the reduced-space ordination, within a group from which
they are quite distant. Moreover, we have noticed that the ‘‘circle’’ of samples
may be deformed in a spoon-shape, so that in one part of the two-dimensional
ordination graph, groups that are distinct in a third or higher dimension may well
be packed together. These problems are common to all methods of ordination
when used alone for a purpose of clustering, but much less so in the case of
nonmetric multidimensional scaling. This is the reason why in numerical taxon-
omy, several authors including Gower and Ross (1969), Rohlf (1970), Schnell
(1970), and Jackson and Crovello (1971) have proposed, independently, to take
advantage of both the clustering and the ordination methods, associating them on
the same graph, as did Allen et al. (1977) (with hierarchical complete linkage
clustering) for the study of phytoplankton succession in Lake Wingra. See also
our figure 6. (b) The second drawback is the lack of criteria for assigning samples
to groups from an ordination diagram alone, so that the published diagrams often
seem arbitrary. Rather than relying on unwritten and changing rules, one may
prefer to state the rules clearly. Such a set of rules of sample assignment to groups
is called a clustering algorithm.

With our data, the ordination diagram of figure 6 (nonmetric multidimensional
scaling) is helpful as a complement to the clustering results, because we deal with
a primary succession, with very little recurrence of community structure in the
segment under study. Such was not the case, however, with the data of example 1.
Although several ordination methods (not published here) were tried on these
data, the results were always vague and not useful for the interpretation. The
reason becomes clear when looking at figure 4: with a series longer than 1 yrin a
stabilized temperate-climate environment, and when the series shows such com-
plex between-group relationships, it is unlikely that the time sequence of sampling
would help to recognize homogeneous groups of samples in the reduced space,
without knowing beforehand the clustering structure and the between-group links.

These remarks lead to the following recommendations: an ordination alone
(preferably by nonmetric multidimensional scaling of a carefully chosen resem-
blance matrix) may be sufficient to uncover the structure of a small series of
samples, representing either a short time period or a pioneering community
loosely sampled over several years. Ordinations are also a helpful support for
clustering results in 1-yr studies (under temperate-climate latitudes, where annual
cycles are present), as well as in longer-lasting studies of pioneering communities,
as long as the successional trend occupies more variance than the within-year
differences. Finally, climax communities showing year-to-year recurrence (possi-
bly identifiable as species associations) are best represented by chronological
clustering, as in figure 4.

3. Hawkins and Merriam (1974) have proposed a method for segmenting a
multivariate data series into homogeneous units, by minimizing variability within
segments. This method was advocated by F. Ibanez (1984) for the study of
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successional steps. A first problem with this method is that the user must deter-
mine the number of segments, using as an indication the increase in explained
variation relative to the increase in the number of segments. In ecology, a second
and more important problem is that strings of multiple zeros in the multivariate
series (often the case with species abundance data) are likely to cause the forma-
tion of segments based on species absences. A third drawback comes from the
fact that the method assumes each group to be drawn from a multivariate normal
distribution, and it is sensitive to departures from this condition, which is rarely
met by ecological data. There are, however, two similarities to our method: the
multidimensional series is partitioned into homogeneous groups using an objective
criterion, and this partitioning is made with a constraint of contiguity within the
series, as was explained in the METHODS.

The results obtained by Hawkins and Merriam’s partitioning algorithm are
compared in table 2 with those obtained from chronological clustering, for the log-
transformed Desaulniers zooplankton data. Comparisons of these 10 partitions
using Rajski’s metric (1961) or the symmetric uncertainty coefficient (Nie et al.
1975) show that in most instances a chronological clustering resembles most the
Hawkins and Merriam’s partition into the same number of groups, thus showing
the correspondence between the two partitioning methods. Similar results were
obtained with the Mediterranean zooplankton data. These symmetric uncertainty
coefficients have values around 80%, which indicates some degree of difference
between the two methods—but not larger, perhaps, than between two chronolog-
ical clustering partitions obtained from different distance functions. Hawkins and
Merriam’s method does not, however, provide the ecologist with indications of
when to stop the partitioning process. Furthermore, it is likely to produce cuts
where singletons are identified by chronological clustering, as is the case in the
results of Ibanez (1984); this author used Hawkins & Merriam’s partitioning
method on the same Mediterranean zooplankton data as in our example 1, and he
obtained a break in the series before sample 35.

4. Unconstrained clustering has also been applied to our example data sets,
with varying degrees of success. In order to make the results as closely compara-
ble as possible, proportional-link linkage clustering was applied to the same
distance matrices as chronological clustering, with the same value of connected-
ness. For the Desaulniers zooplankton data, which form a series in rapid primary
succession showing few bridges between distant groups, the results are the follow-
ing (representing the hierarchical structure by nested sets of parentheses, and
basic groups in square brackets): (((([1-8, 32] [29-33])[9-11])[34, 45-47])[35-44])
([12-16] [17-28])). The main groupings obtained by unconstrained hierarchical
clustering do correspond to the three main regions of the multidimensional scaling
graph (fig. 6), in this case, although some mistakes are produced in the time
sequence. At finer levels, relationships become blurred, including the relation-
ships [17-19]-[21-24] and [35-37]-[42—44] that had been identified by the a poste-
riori tests of the chronological clustering method (fig. ).

The results of unconstrained clustering obtained from the Mediterranean zoo-
plankton data are not as easy to represent, because the sampling sequence is often
completely broken down. The longest sequences still recognizable are made of



TABLE 2

CoMPARISON OF RESULTS FROM CHRONOLOGICAL CLUSTERING AND FROM HAWKINS AND MERRIAM’S

SEGMENTATION, FOR THE LOG-TRANSFORMED DESAULNIERS ZOOPLANKTON ABUNDANCE DATA

CHRONOLOGICAL CLUSTERING

a-LEVEL
.01 .05 15 .20 .25 HAWKINS & MERRIAM

SAMPLE GrouP NUMBER Groupr NUMBER

No. 6 7 9 14 16 6 7 9 14 16
1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1
3 1 1 2 2 2 1 1 1 1 1
4 1 1 2 2 2 1 1 1 1 1
S 1 1 2 2 2 1 1 1 1 1
6 1 1 2 2 2 1 1 1 1 1
7 1 1 2 2 2 1 1 1 2 2
8 1 1 2 2 2 1 1 1 2 2
9 2 2 3 3 3 1 1 2 2 2
10 2 2 3 3 3 2 2 2 3 3
11 2 2 3 3 3 2 2 2 3 3
12 2 2 4 4 4 2 2 2 3 4
13 2 2 4 4 4 2 2 3 4 4
14 2 2 4 4 4 2 2 3 4 4
15 3 3 S S 5 2 2 3 4 S
16 3 3 S S S 2 2 3 4 S
17 3 3 6 6 6 3 3 4 S 6
18 3 3 6 6 6 3 3 4 5 6
19 3 3 6 6 6 3 3 4 S 6
20 4 4 7 7 7 3 3 4 6 7
21 4 4 7 7 7 3 3 _4 6 7
22 4 4 7 8 8 3 3 S 6 7
23 4 4 7 8 8 3 3 5 7 8
24 4 4 7 8 8 3 3 S 7 8
25 4 4 7 9 9 3 3 5 7 8
26 4 4 7 9 10 3 3 S 7 8
27 4 4 7 9 10 4 4 6 8 9
28 4 4 7 9 10 4 4 6 8 9
29 S S 8 10 11 4 4 6 9 10
30 S S 8 10 11 4 4 6 9 10
31 5 S 8 10 11 4 5 7 10 11
32 S 5 8 10 11 S S 7 10 11
33 5 S 8 10 11 S S 7 10 11
34 S S 8 10 11 5 5 7 11 12
35 6 6 9 11 12 S S 7 11 12
36 6 6 9 11 12 S 6 8 12 13
37 6 6 9 11 12 6 6 8 12 13
38 6 6 9 11 13 6 6 8 12 14
39 6 6 9 12 14 6 6 8 13 14
40 6 6 9 12 14 6 6 8 13 15
41 6 6 9 12 14 6 6 8 13 15
42 6 7 9 13 15 6 6 8 13 15
43 6 7 9 13 15 6 7 9 14 16
44 6 7 9 13 15 6 7 9 14 16
45 6 7 9 14 16 6 7 9 14 16
46 6 7 9 14 16 6 7 9 14 16
47 6 7 9 14 16 6 7 9 14 16

Note.—Left: group numbers obtained in fig. S for various a-levels. Right: partitions obtained with

the same numbers of groups. Horizontal lines represent group breaks.
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five samples: they are [7-11] and [24-28]. This is due in part to the between-group
relationships illustrated in figure 6, and also to the fact that single samples from a
group often manage to cluster with neighboring groups. The high degree of
sampling variability found in ecological data makes it desirable to cluster with a
constraint of time contiguity, especially when recurrence in community structure
is present, as can be identified by between-group a posteriori testing.

B. Ecological Significance

*“The analysis of succession in complex communities typically takes the form of
a bulky statistical or verbal description’ (Lewis 1978, p. 401). The method
expounded here is a contribution to the simplification of graphical results, as well
as to the mathematical modeling of successional phenomena. It is based on the
assumption that succession is discontinuous, at least in many types of com-
munities. This concept is well documented in the literature (Allen et al. 1977,
Lewis 1978, and others). On the other hand, the method takes advantage of the
major tools available for the analysis of multidimensional data, namely clustering
and ordination, which had been tried with varying success in the study of succes-
sions. The addition of a time constraint and of an exact statistical test of cluster
fusion produces an algorithm that models (mimics) efficiently the thought pro-
cesses of ecologists who are looking for successional steps and breaks. The
algorithm itself is summarized in the last section of the METHODs and in figure 2. It
does not require the data in the series to be equidistant in time.

The type of results to be obtained by this method depends to a large extent on
the choice of an appropriate measure of the affinity or resemblance between
samples. This choice may be based on the nature of the data (binary or quantita-
tive) as well as on known mathematical properties of the coefficients available in
the literature. A final choice between results obtained from seemingly equivalent
coefficients could be made using independent criteria (such as the hydrological
events in the examples above), or other dependent indicators of successional
events, such as the Jassby-Goldman succession-rate index (Jassby and Goldman
1974), the summed-difference succession-rate index (Lewis 1978), or Goodall’s
(1966) deviant index. Obviously, the use of different but equally desirable indices
may bring complementary information about the data series.

The algorithm proposed for chronological clustering requires the user to set two
parameters at the start of the computer run: the type of agglomerative clustering
(set by the value of connectedness of the intermediate linkage clustering, in our
own program), and the probability level (a) of the cluster-fusion criterion. It was
found that the connectedness parameter did not have much influence on the
results. One should simply stay away from single linkage which seems undesirable
in succession studies. On the other hand, complementary information was derived
from various a levels of clustering. The smallest a values show where the most
important breakpoints in the data series lie, while larger « levels bring out the finer
structure of the successional events.

Increasing o acts as a probe into the finer details of the series, so that the
simultaneous use of several partitions obtained with various « values is recom-
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Fic. 7.—Ecological model: biological community succession proceeds in steps, which in
turn may contain a sere of smaller steps. Larger a-values of the chronological clustering
method make it possible to bring out these finer steps.

mended. The implicit model is that of figure 7, where main succession steps can be
divided into smaller steps when the appropriate investigation tool is applied
(larger o), up to the limit set by the sampling interval. This model can be applied to
series of events in any system where periods of stability are followed by periods of
instability (it is equivalent to Gould and Eldredge’s [1977] model of punctuated
equilibria, applicable to paleontological series), when the sampling interval and
the length of the data series make it possible to identify two or more of these
periods of relative stability. When extended in time, this model has the advantage
of showing succession as an ever-evolving process, a given sere leading to a
climax that is itself only a step in a succession operating on a much longer time
scale. A classical example in this respect is a lake filling with silt, that changes
gradually from a deep to a shallow lake, then to a marsh, and beyond this to a dry-
land forest (Whittaker 1970), with many stable states being reached and broken
along this path.

We have shown furthermore that the proposed algorithm makes it possible to
apply this model to real communities exhibiting very different types of succes-
sional phenomena. In the first example, the series exhibited within-year succes-
sion coupled with recurrence between years, as can be expected from the
Mediterranean marine environment. On the other hand, the data from Reservoir
Desaulniers show both within-year and between-year succession after impound-
ment, with very little recurrence of community structure in the first 2 yr of its
existence. The method of chronological clustering performed equally well in these
two situations, although the data imposed the choice of different distance mea-
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sures. Chronological clustering has recently been applied to study the succes-
sional dynamics of bacteria in sewage treatment lagoons (Legendre et al. 1984).
Work now in progress includes applications of the method to sediment cores, and
to horizontal transects of community samples across a discontinuous environ-
ment, both representing spatial series.

SUMMARY

A clustering method is presented to describe the discontinuities in a multi-
variate (multispecies) series of biological samples, obtained from a single station
at successive times. The method takes into account the sequence of sampling
(time contiguity constraint) and makes it possible to eliminate singletons. Such
singletons can be found in most ecological series, due to random components or to
external forcings such as a temporary shift of water masses or immigration and
emigration at a fixed station.

The clustering proceeds from a sample X sample association matrix, built with
an appropriately chosen similarity or distance coefficient. Agglomerative cluster-
ing is applied with the time constraint, and a randomization test is performed to
verify whether the fusion is valid. This test compares the number of ‘‘high”’
distances in the between-group matrix to that in the fusion matrix of the two
groups tested. When a singleton is discovered, with this same test, it is temporar-
ily removed from the study and the clustering is started again from the beginning.
This procedure is used because a singleton can well disturb the whole clustering
geometry, as a result of the contiguity constraint.

The end result is a nonhierarchical partition of the series into nonoverlapping
homogeneous groups, which are the steps of the ecological succession. Interval
graph tests and a posteriori tests help to understand the relationships between the
groups, as well as the origin of the singletons.

Examples are presented of a 78-wk Mediterranean zooplankton (chaetognaths)
series and also of a 28-mo series of the zooplankton community in a freshwater
reservoir. The results are compared to those obtained with several other methods
of analyzing succession data. In the Appendixes we discuss various mathematical
aspects of the work.
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APPENDIX A
CoMPUTER PROGRAM

An efficient computer program for the chronological clustering method has been written
in the PASCAL language, for a CDC CYBER computer, by Alain Vaudor, computer
analyst, Département de sciences biologiques, Université de Montréal. Program listings
and documentation are available free of charge from P. Legendre. On our Control Data
CYBER 173 operating under NOS/BE, it took 228 CP seconds to run the 78 samples of
example 1, and 28 CP seconds to run the 47 samples of example 2. Only 10% to 20% of this
time was taken by the clustering procedure itself, the rest being used by the group
expansion and the a posteriori tests.

APPENDIX B
THE CHOICE OF A DISTANCE MEASURE

Choosing among the many indices of similarity or distance available in the literature is a
critical task, since different measures of resemblance may lead to different clustering
results. Elements of a rationale to guide this choice have been published recently by
Legendre and Legendre (1983, 1984), Bloom (1981), Hajdu (1981), and Wolda (1981), while
measures of resemblance have recently been reviewed by Gower (1984) and by Legendre
and Legendre (1983, 1984). Another aspect of the decision process is developed here.

Let us assume that the raw species-abundance distributions have been made normal by
some appropriate transformation. The chronological clustering method itself does not
require normality of the data. Since normalized variables are not skewed, however (since
skewness is the result of populations occasionally showing exponential growth within the
community), differences in normalized abundances are more likely to have the same
ecological meaning throughout the range of the abundance scale. Furthermore, normality
gives access to a larger number of distance functions that are well adapted to the problem
under study.

Among the coefficients of resemblance that are adapted to species-abundance data
(coefficients for quantitative measurements, excluding double absences from the compari-
son), three main types may be recognized.

Type 1.—All resemblance coefficients compare the abundances found in two samples,
for each of the species present in either one. Let us assume that a given difference is found,
between the 2 samples, for an abundant species and also for a rare species. In the
coefficients of the first type, a difference found between 2 samples for an abundant species
contributes the same to the distance as the same difference found between these samples
for rarer species. Whittaker’s index of association (1952) pertains to this group. It is a sum
of differences of percentages between 2 samples, 1 and 2:

n
D, _ 1 Yin Vi

2 4 n n
i=1
Z yin Z Yi2
i=1 i=1
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where n is the number of species. From the following simple example:

Species: 1 2

sample 1 90 10
sample 2 80 20

it is easy to verify that the difference of 10 for the abundant species 1 contributes 0.1 to the
sum, while the same difference for the rare species 2 also contributes 0.1. A similar result
would be obtained with unequal sample sizes. Steinhaus’ coefficient, whose 1-complement
(1 — coefficient) is also known as Odum’s (1950) percentage difference or as the coefficient
of Bray and Curtis (1957), pertains to this same type.

Type 2a.—In coefficients of this type, a difference found between 2 samples for an
abundant species contributes less to the distance (more to the similarity) than the same
difference found between these samples for rarer species. The Canberra metric (Lance and
Williams 1967) between two samples, 1 and 2, belongs to this group:

S lyit = yal
D.= y 272
; (yi1 + yi2)
where # is the number of species. Related forms, such as Clark’s coefficient of divergence
(1952), are found in the literature. Computing the simple example above gives (10/170 + 10/
30): the abundant species 1 contributes 10/170 to the distance, while the rare species 2
contributes 10/30.

Type 2b.—In this type are found the distances for which an equal difference receives a
weight inversely proportional to the variability of the species in the whole set of samples
under study. This is the case with the 1-complement of Gower’s (1971) similarity coeffi-
cient, where the measure of variability is the range of variation of each species in all
samples. The 1-complement of the similarity of Legendre and Chodorowski (1977) also
pertains to this group since the spread parameter k of the partial similarity function
imbedded in this coefficient is usually made proportional to each species’ variability. In this
respect, coefficients of type 2b behave much as those of type 2a. The difference resides in
the fact that with type-2a coefficients, the weight of a species varies depending upon the
pair of samples being compared, while with type 2b, the variability of a species (and its
weight) is the same for all pairs of sample comparisons.

A decision about the choice of the type of coefficient most appropriate to a particular
case can be made by adding ecological criteria to these mathematical considerations. For a
biological sample, a vector of species abundances can be written, from which one may plot
a species rank-frequency diagram for this sample. The shape of this diagram indicates the
degree of maturity of the community, as explained by Frontier (1976) and by Legendre
(1983). The argument is based on the fact that rare species are generally not well sampled,
and consequently the comparison of dominant or intermediate-density species is more
meaningful. In immature communities, most of the species are rare while only a few are
well sampled. In such communities, one may prefer to give more weight to the few well-
sampled species in assessing the similarity, which can be done by using type-2 coefficients.
On the other hand, more of the species in mature ecosystems are of high or intermediate
density, so that type-1 coefficients may be adequate to describe the resemblance relation-
ships.

APPENDIX C
THE RANDOMIZATION TEST OF CLUSTER FuUSION

Following the METHODS section, let us assume that a symmetric distance matrix has been
computed between all pairs of samples, ordered according to the time of sampling (as in
figs. 1, C1, C2). Distance is used here as synonymous with dissimilarity. Let us suppose
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GROUP 1 GROUP 2

D{ 5 6 7 8 9 D| 5 6 7 8 9
51 0 5

Y =50% T = 10 distances
6102 O S6l.0 Z lonson
7104 07 0 = 5 high dist.
8/06 0.501 O
910.7 0.8 03 0.6 O

Fic. C1.—Application of a contrast value y = 50% to a hypothetical distance matrix, made
of 2 contiguous groups of chronological samples. The 2 groups are candidates for fusion.

further that the intermediate linkage algorithm (fig. 2, step 3) points to the two contiguous
groups of figure C1 as the next candidates for clustering. The problem to be tested may be
formulated as follows. If the 2 groups represent in fact a single cluster, then the presence of
2 groups is merely an artifact of the hierarchical agglomerative algorithm of intermediate
linkage. In this case, the highest distances found in this distance matrix should be distrib-
uted at random in the joint triangular distance matrix of these two groups (with T = 10
distances in fig. C1) and not only in the between-group matrix (shaded, with B = 6
distances, in fig. C1). This is the null hypothesis (Hy). The alternative hypothesis (H;) is
that, if these two groups do pertain to different successional steps, significantly more high
distances will be found in the between-group matrix than in the fusion matrix of these two
groups. Is the actual distribution of the highest distances far enough from random to reject
this null hypothesis (Hy) of random distribution?

It would be possible to formulate the fusion criterion (below) in terms of the distribution
of actual distances. We felt, however, that it would be more appropriate to the present
problem to look at distances as being simply high or low. Indeed, given the importance of
random components in the sampling itself (for instance, 1 liter from a lake, orasea. . .), we
cannot attach undue importance to small variations in the distance between 2 samples, so
that the result of the chronological clustering may be expected to be more robust if the
statistical criterion is very contrasting. On the other hand, if actual distances were used, the
fusion criterion would be formulated in terms of ‘‘sums of distances’’ rather than ‘‘numbers
of high distances,’’ with 2 drawbacks. First, 2 distance coefficients that behave monotoni-
cally but not linearly could lead to different results, which renders even more delicate the
choice of the resemblance coefficient to be used. Second, if a distance coefficient does not
have the same efficiency at measuring differences over its whole range (if the difference
between 0.1 and 0.2 does not mean the same thing as the difference between distance 0.9
and distance 1.0) then the criterion should include a weighting by the magnitude of the
distances to be tested. This phenomenon is extremely difficult to evaluate, for lack of a
unique reference, so that we feel that there would be no way of preserving the same power
for the criterion throughout the full range of distances.

For these reasons, we looked for a way of dividing the T distances of the triangular
matrix joining 2 groups into 2 subsets. These 2 subsets are called the high and the low
distances, so defined that the statistical test would make sense for between-group matrices
of any size, or shape (square or elongated). The criterion we chose is a contrast parameter,
called y (gamma), determining what proportion of the T distances are to be called high
distances. The number of high distances among the T distances is called H, computed by:

H = |yT]

where [yT] means the largest integer contained in y7T. In figure C1, for instance, where
there are T = 10 distances, setting vy to 50% means that H = 10 X 50% = 5 high distances.
Then we identify the 5 highest distances, in the triangular matrix, and replace them by
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Samples in chronological order ——» -

D |« p,samples . < p,samples R
T
Triangular distance matrix
with # high distances among T
o T=(Pl+P1)(Pl+P1'1)
S 2
H=LYT)
£ Y:
8
Samples in
chronological
order
¢ Y 7,
3 Between-group matrix
° with B=p,x p: distances.
s / K high distances are
bl counted among B.
Y
! | // //

Fi6. C2.—Definition of the parameters T, H, B, and K used in the test of fusion of 2
contiguous groups.

ones. All the T-H other (low) distances are replaced by zeros. Finally, we look at the
between-group matrix containing B distances, and count how many (K) among them are
high distances, or ones (fig. C2). K is then a random variable, which opens the way to a test
of statistical significance. For the example in figure Cl1, there are K = 4 high distances
among the B = 6. The fusion of pairs of samples at the beginning of the agglomerative
procedure is performed automatically, even though this is the limit case where the test
collapses, H being equal to 0.

The random variable K, computed after setting vy to a given value (see below), is then
tested for statistical significance using an exact test.

Computing Procedure

A step-by-step exposition of the procedure will make it clear.

1. The null hypothesis H, to be tested is the following: the between-group matrix
contains the same proportion of high distances as the triangular matrix, allowing for
statistical variation. The alternative hypothesis (H;) is that significantly more high dis-
tances are found in the between-group matrix than in the fusion matrix of these two groups.
In other words,

Hy:(K/B) = (HIT) H,:(K/B) > (HIT).
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It should be noted that the test is one-tailed. Indeed, if (K/B) < (H/T), this is no reason to
reject the hypothesis of clustering homogeneity.

2. The test is based upon the following question: for the given triangular matrix contain-
ing T distances, what is the probability of finding a between-group matrix of B distances
containing at least the same number K of high distances?

3. Set a probability level a for rejecting Hy (ex., a = .05, .10, .25, .. .).

4. Look into the given triangular matrix of T distances, among which H = |yT] are high.
An exact reference distribution may be obtained by randomization. This method, from R.
A. Fisher, is expounded in Box et al. (1978) and in Sokal and Rohlf (1981), among others.
The procedure in the present case goes as follows. (a) Hy: there is no difference between
the 2 groups. () Accordingly, any one observation could have been a member of either of
the two groups. (¢) Change the labels of the objects in a random manner; what value of the
test statistic (K) is obtained? (d) Make all the possible groupings of these objects into 2
groups of the same sizes as the groups tested, in order to obtain the sampling distribution of
the statistic K for this particular pair of matrices. There are N possible rearrangements of
these objects into 2 groups.

S. Count how many (M) of these (N) have a number of high distances larger than or
equal to K.

6. If (M/N) > o, H,is accepted and so is the fusion of the 2 groups under consideration.
On the other hand, if (M/N) < o, Hy must be rejected at significance level « and we turn to
the alternative hypothesis that these 2 groups should not cluster for reason of a significant
difference in the distribution of the high distances. The meaning of the a-level is further
discussed in a separate section below. In both cases, the algorithm turns to the intermediate
linkage clustering procedure in order to find out which pair of groups is to be tested next.

Looking at all the possible between-group matrices is relatively easy with small matrices
(for instance, for 2 groups of 2 objects each, there are only 6 possible between-group
matrices of size 2 X 2). This is not the case with larger matrices, however. For instance,
with 2 groups of 10 objects each, there are 184,756 possible between-group matrices of size
10 x 10. In such cases, it becomes impractical to examine them all, so that our computer
program (see Appendix A) proceeds by a sampled randomization test, as follows: if there
are no more than 10,000 possible between-group matrices, then we examine all of them. If
there are more, then we sample at random and examine 1,000 of them. A comparison
between the complete and the sampling methods, in cases ranging from 18,564 to 352,716
possible between-group matrices, showed that the probability obtained was the same, at
least up to the third decimal place.

Selection of an Optimal Value of Contrast vy

It is obvious that the test will gain in power if there are enough, but not too many, high
distances. Indeed, if there are too many or too few, it might be difficult to decide whether
the between-group matrix is different from the triangular matrix, as illustrated in figure C3.
The impression left by this figure was formalized by computing the probability of Hy under
a whole range of values for the contrast parameter vy, using some real matrices where H,
was obviously to be rejected. These computations showed that H, is more efficiently
rejected (small probability) around the middle of the range of y. For this reason, y was set
at 50%. This places the breakpoint between high and low distances at the median of the
array of distances.

Meaning of the a-Level

One might argue that testing only between groups that have already been formed by
clustering increases the chances of finding a significant difference (biased test). This
problem can be answered both theoretically, and practically through simulation.

The theoretical justification is 3-fold:

1. Since the two groups have been obtained after clustering with the contiguity con-
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straint, they are unlikely to be optimal. This consideration lessens the problem without
eliminating it totally.

2. Actually, one would like to test all the breakpoints of all possible pairs of groups. It is
only because this cannot be done (for computing time reasons), on real data sets, that only
the breakpoints singled out by the agglomerative procedure are tested. Even though the
agglomerative structure is, in and of itself, only a computational artifact, one may suppose
that if the breakpoint that has been singled out by the agglomerative clustering algorithm
(among all the possible breakpoints that should be tested) is nonsignificant, then the null
hypothesis of ecological stability for the 2 groups combined should verify itself at any of the
other possible breakpoints within the combination of these 2 groups.

3. We only seek a fusion criterion, even though this criterion does not have all the
properties of a statistical test. As Jambu (1978) puts it, tests by simulation are helpful to
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provide stopping criteria during clustering, since statistical tests are ill adapted to the task.
Perruchet (1983) has reviewed the various types of significance tests for clustering.

A Monte Carlo simulation was run in order to assess the true probability of a Type I error
for various a values used in the computation algorithm (fig. 2). In order to simulate the
situation described above as the null hypothesis, 30 objects were positioned at random in a
30-dimensional unit cube, for each simulation. The ‘‘chronological order of sampling’’ was
set to be the order of the objects in the random list. The Euclidean distance was computed
for all pairs of objects, and the chronological clustering program was run after setting o to a
given value. Since there is no structure other than random in the objects, the probability of
finding breaks in the data set should be equal to . The following statistic was calculated for
each simulation run:

How many times H, is rejected

RATIO = .
How many tests are performed

Thirty such data sets were generated, and each one was run with an a-value (called
ALPHA hereafter) of 2%, 25%, and 40%. A regression of RATIO as a function of ALPHA,
for these 90 experimental points, gave the following linear equation:

RATIO = -0.00924 + 1.01481 ALPHA.

The 95% confidence interval was [—0.0603, 0.0418] for the intercept and [0.8299, 1.1997]
for the slope. This result confirms the expectation that ALPHA equals RATIO in situations
corresponding to the null hypothesis and supports the theoretical arguments of the previous
paragraph.

The a-Level in A Posteriori Tests

One should be careful when performing a posteriori tests on singletons. One should not
simply take a probability value higher than « as an indication of relationship, without due

TABLE Cl

LowEST PossIBLE PROBABILITY OF FUSION (pmin) OF TWo GROUPS
WITH p; AND p, OBJECTS, RESPECTIVELY

P2
D1 1 2 3 4 5

2. 66667 .33333

K N .25000 .10000 .10000

4......... .20000 .06667 .02857 .02857

S .16667 .04762 .01786 .00794 .00794

[ .14286 .03571 .01190 .00476 .00217

T .12500 .02778 .00833 .00303 .00126

8.t 1111 102222 .00666 .00202 .00078

9. .10000 01818 .00455 .00140 .00050
10......... .09091 01515 .00350 .00100 .00033
... .08333 .01282 .00275 .00073 .00023
12......... .07692 .01099 .00220 .00055 .00016
13......... .07143 .00952 .00179 .00042 .00012
4......... .06667 .00833 .00147 .00033 .00009
1S......... .06250 .00735 .00123 .00026 .00006
16......... .05882 .00654 .00103 .00021 .00005
7. .00...... .05556 .00585 .00088 .00017 .00004
18......... .05263 .00526 .00075 .00014 .00003
19......... .05000 .00476 .00065 .00011 .00002

20 .04762 .00433 .00056 .00009 .00002
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consideration of the number of objects in these groups. Indeed, simple computations with
the randomization test show that the probability of a singleton fusing, for example, with a
three-sample group can never be less than 0.25, when v is fixed at 0.50. In general, it can be
shown that the lowest probability that can be taken by the randomization test, for the
fusion of two groups with p; and p, objects, respectively, is (When y = 0.50)

pi! p2!
(py + p)!

except when p; equals p,, or when p; = 2 and p, = 1, in which cases this formula must be
doubled. When p; = p, = 1, the test cannot be performed because there is no high
distance. Some values are presented in table C1. Thus, one could base a correct interpreta-
tion of the singletons on a value Ap, taken as the difference between the computed
probability of fusion, minus the lowest possible probability, shown in column ‘‘p, = 1”” of
table C1. This table also shows that this effect becomes less important as the number of
objects in the groups increases.

Pmin =

APPENDIX D
A NuLL-HYPOTHESIS MODEL FOR SUCCESSION BY STEPS

Although the authors (mentioned in the main text) who used reduced-space ordination
methods to study annual successions did assume that they would get a more or less circular
distribution of sample points in reduced space, this assumption has never been shown to be

TABLE D1
DaTa TABLE REPRESENTING A SMOOTH SPECIES Succession (10 species x 10
samples)
SAMPLES

SPECIES 1 2 3 4 S
1 sin(36°) sin(72°) sin(108°) sin(144°) sin(180°)
2 sin(72°) sin(108°) sin(144°) sin(180°) sin(216°)
3 sin(108°) sin(144°) sin(180°) sin(216°) sin(252°)
4 sin(144°) sin(180°) sin(216°) sin(252°) sin(288°)
S sin(180°) sin(216°) sin(252°) sin(288°) sin(324°)
6 sin(216°) sin(252°) sin(288°) sin(324°) sin(360°)
7 sin(252°) sin(288°) sin(324°) sin(360°) sin(36°)
8 sin(288°) sin(324°) sin(360°) sin(36°) sin(72°)
9 sin(324°) sin(360°) sin(36°) sin(72°) sin(108°)
10 sin(360°) sin(36°) sin(72°) sin(108°) sin(144°)

6 7 8 9 10
1 sin(216°) sin(252°) sin(288°) sin(324°) sin(360°)
2 sin(252°) sin(288°) sin(324°) sin(360°) sin(36°)
3 sin(288°) sin(324°) sin(360°) sin(36°) sin(72°)
4 sin(324°) sin(360°) sin(36°) sin(72°) sin(108°)
S sin(360°) sin(36°) sin(72°) sin(108°) sin(144°)
6 sin(36°) sin(72°) sin(108°) sin(144°) sin(180°)
7 sin(72°) sin(108°) sin(144°) sin(180°) sin(216°)
8 sin(108°) sin(144°) sin(180°) sin(216°) sin(252°)
9 sin(144°) sin(180°) sin(216°) sin(252°) sin(288°)
10 sin(180°) sin(216°) sin(252°) sin(288°) sin(324°)
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legitimate. We will show here that the underlying ecological model does indeed lead to such
an arrangement of the points in reduced space.

The ecological model sought to represent a community evolving smoothly should have
the following characteristics: (1) it should be multidimensional, in order to represent the
interaction of many species; (2) each species should vary through time; (3) in order to form
a structure without steps, each species’ variation should be smooth, while the sum of all
species abundances should be constant; (4) for the series of points to form a closed shape,
each species should come back, at the end of the cycle, to a value close to its starting value;
(5) the samples should be equi-spaced through time.

Table D1 represents one of the possible data sets obeying these conditions. It could be
expanded at will to as many species or samples as necessary. Each species is represented
by a sine function. The species are lagged by one-tenth of a circle, relative to the previous
one, and they all have the same amplitude, in order to make the column sums equal.

A principal component analysis of table D1 produces only 2 eigenvalues, each account-
ing for 50% of the total variance. In the reduced space, the samples are positioned at equal
distances along a perfect circle. This result was expected, since the data table is built in
such a way that the Euclidean distances between successive samples are equal. This is to
say that other data sets could be built to represent a smooth species succession. The
conditions are: same distance between all neighboring points, this distance being smaller
than that between points farther apart; same weight to all points, provided by equal column
sums.

Accordingly, the circle can be used as a null hypothesis for the study of sharp transitions
during succession, as was done by the authors mentioned in the Comparison of Methods
section.
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