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Proposed by marine ecologist Glenn De’ath in 2002, multivariate regression tree analysis (MRT) is 
an extension of Classification and regression tree analysis (CART) to multivariate response data. 
The method analyses a response data matrix as a function of a matrix of explanatory variables, like 
the asymmetric methods of canonical analysis (RDA and CCA). The method tries to identify 
discontinuities in the response data, e.g. community composition, and associate these discontinuities 
to specific values of the explanatory data, e.g. environmental. 

1. The mathematics of MRT analysis 

At each division step, as the tree develops, a single variable from X is chosen, the one that 
minimizes the sum of within-group sums-of-squares (SSwithin). This is equivalent to finding, at each 
step, the division that maximizes the among-group sum-of-squares (SSamong). As in analysis of 
variance, SStotal = SSwithin + SSamong, where SStotal is the total sum-of-squares of the response data 
matrix Y. SStotal is simply the sum of the total sums-of-squares of all response variables in Y. SStotal 
is a constant for any row permutation or division of matrix Y, so that minimizing SSwithin is 
equivalent to maximizing SSamong. 

Figure 1a shows a simple example, with a multivariate response data set Y on the left and a matrix 
of explanatory variables X on the right. There are three explanatory variables in X: x1 and x2 are 
quantitative in this example, whereas x3 is qualitative with three levels or states: A, B and C.  

For the first split, the analysis will search for the best partition of Y in two groups, constrained by 
each variable x in turn. 
• For variable x1, imagine that the rows of the two data sets, Y and X, are ordered following the 
increasing values of x1, as shown in the figure; the actual programming may differ from the 
description that follows. The function tries in turn all possible cut-points along variable x1. For each 
cut-point between successive (but non-identical) values of x1, imagine a line drawn across Y (dashed 
line in Figure 1a); it divides Y in two groups. SSgr=1 is the within-group sums-of squares (also called 
the squared error) for the top group (gr=1) and SSgr=2 is the within-group sums-of squares for the 
bottom group (gr=2). So the total within-group sum-of-squares (SSwithin), or total error E2, for that 
split of the objects is E2 = SSgr=1 + SSgr=2. As shown in the Numerical ecology book (Legendre & 
Legendre 2012, eqs. 8.5 and 8.6), the squared error can be computed either from a raw data file Y or 
from a distance matrix D derived from Y through an appropriate dissimilarity coefficient. 
• The function tries in turn all possible cut-points along x1, making no cut between identical (tied) 
values, and it computes E2[x1]. It notes the position of the cut where E2 is minimum for variable x1 
as well as the value of E2[x1] at that point.  

• The process is repeated for variable x2: the rows of the two data matrices are reordered in such a 
way that the values of x2 are in increasing order, all possible cut points between non-identical values 
are tried in turn, and the cut that produces the smallest value of E2[x2] is noted. 
• The third variable in Figure 1a is a qualitative variable, or anova factor. All possible combinations 
of factor levels are tried in turn. In this example, three solutions need to be studied: the group 
defined by state A versus the other objects, the group defined by state B, and finally the group 
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defined by state C. The combination that produces the smallest value of E2[x3] is noted. (In the 
example, the second split separates the rows with level B from those with levels A and C.) 
• All values of E2[xj] (there are three variables, hence three values in this illustration) are compared: 
E2[x1], E2[x2], and E2[x3]. The smallest of these values is used to draw the first split of the regression 
tree in Figure 1b (top split), which is the first partition of data set Y in two groups. 

• Each branch of the tree is then analysed separately; a branch is a group formed by a split. The 
search for a meaningful split is first done for the left branch of the tree. All explanatory variables in 
X are tried in turn and the variable that produces the split with the smallest value of E2[xj] is used for 
the next split on the left-hand side of the tree. Similarly, the search is carried out for the objects in 
the right-hand branch of the tree and the variable of X that produces the split with the smallest value 
of E2[xj] is used for that split. Any variable may be used for several splits. Figure 1b shows a tree 
produced for a data set Y with 3 species; the data in Y and X shown in Appendix 1. 
The process could go on until the tree is fully resolved and individual objects form the terminal 
leaves of the tree. Users, however, are usually not interested in the fully resolved tree, but instead in 
a tree that presents informative partitions. That shorter tree is found by pruning the tree, an 
operation that consists in removing the smallest branches.  

The optimal size of the tree is decided by a resampling analysis called cross-validation. How the 
cross-validation is used to determine the size of the final tree is described in section 2. 

MRT belongs to the family of Euclidean methods because it is based on sums of squared deviations 
from the means, like anova and K-means partitioning. The appropriateness of MRT analysis for the 
analysis of species data matrices containing many zeros may be highly enhanced by transforming 
the species abundances with transformations like the chord, Hellinger and log-chord 
transformations. Data transformation could greatly improve the interpretability and usefulness of the 
trees as explanatory models of community response data. 

2. A full example of MRT analysis: the spider data 

De’ath (2002) reanalysed the hunting spider data of Aart & Smeenk-Enserink (1975), using the 
spider and environmental data transformed and recoded by ter Braak (1986, Table 3); ter Braak had 
used these data to illustrate canonical correspondence analysis in his seminal paper. The recoded 
data are available in a data file of package {mvpart} (De’ath, 2011): 28 sites, 12 species and 6 
environmental variables (water, sand, moss, light reflection, twigs, and herbs, transformed into 
classes from 0 to 9).  

Following De’ath (2002), the species data were transformed by dividing each abundance value by its 
column mean, then by the row mean recomputed on the resulting file. The size of the tree was 
selected after cross-validation: the minimum value of the cross-validation error (CV Error = 0.483) 
was used to decide on the size of the tree (4 groups, Figure 2). The R-square of that tree (1 – relative 
error) was 0.788. The first split separated a group of 8 sites that harboured more twigs (≥ 8) than the 
other sites; that group had higher abundances of species 2 and 7 than the other sites. The second split 
isolated a group of 6 sites found on dryer ground (water < 2.5); it had higher abundances of the last 
two species. The last split separated two groups (n = 6 and 8 respectively) according to soil humidity 
(water < 5.5 versus ≥ 5.5); the group of 6 sites is dominated by species 9, while its sister group, 
containing 8 sites, is the only one to show substantial abundances of species 1, 4, 5 and 6. An 
identical partition of the spider data sites into four groups was obtained by applying MRT to the chi-
square transformed spider data. 
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3. MRT as a form of space- or time-constrained clustering 

The multivariate regression tree method can be used as a form of spatially-constrained or time-
constrained cluster analysis. This idea was first proposed by Borcard et al. (2011, section 4.11.5) 
and Legendre & Legendre (2012, section 12.6.5), and illustrated by the analysis of the fish 
community composition along a river. The river course was considered to be a curved spatial 
transect. The constraining variable may be the site numbers or, in the script in Appendix 3, the 
variable “dfs” (distance from the source) in data frame “env”. 

A constrained clustering solution is obtained by analysing a multivariate response matrix Y using a 
single quantitative or rank-ordered variable x representing the sampling sequence through space or 
time. The difference with Figure 1 is that matrix X only contains a single explanatory variable x, 
which serves as the constraint in the cluster analysis. Y may contain community composition data 
transformed in an appropriate way. For a weekly time series over a year, for example, the 
constraining variable x may be a vector containing the sampling dates counted from January 1st, or 
the week order numbers from 1 to 52; the results will be identical since MRT segments Y at cutting 
points along the explanatory, or constraining, variable x. The observations do not have to be 
equispaced along x. For spatial transects, the constraining variable may be the ordered sequence of 
site numbers along the transect or some order variable ordering the sites following their 
geographical order, as it is the case with variable ‘dfs’ (distance from the source of the river) in the 
example developed in the next section.  

MRT is a least-squares algorithm. In the present application, it segments matrix Y in such a way that 
the sum of the multivariate within-group sums of squares is minimum, with the constraint that the 
sampling dates within each group be adjacent along the sampling sequence. MRT can be used to 
segment spatial series, e.g. transect data as shown in the following ecological application, as well as 
time series. 

4. An example of space-constrained clustering by MRT: the Doubs River fish data 

The example describes the space-constrained clustering of 29 sites along the course of Doubs River, 
in eastern France, computed for the fish community composition data.  

The R code in Appendix 3 produces a space-constrained clustering of the Doubs River fish 
community data by MRT. The fish abundance data were Hellinger-transformed for this example. 
The regression tree is shown in Figure 3. — Pre-treatment of the fish data by the chord 
transformation also produced 5 groups (shown in the script in Appendix 3), which only differed in 
minor details from the 5 groups obtained from Hellinger-transformed data and shown in Figure 3. 

A schematic map of the sites along the Doubs River, showing the partition into the 5 spatially-
constrained groups, is presented in Figure 4. The “pick” graph showed that the partition into 9 
groups had the minimum CV Error, but the most parsimonious partition within the confidence 
interval of the minimum CV Error was in 2 groups. Five groups, located mid-way between these 
two solutions, produced a map that could be interpreted in terms of differences in species 
composition among the groups. 
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Figure 1 – Schematic description of MRT analysis.  

(a) Data: Y is the response data set. There are three explanatory variables in X; x1 and x2 are 
quantitative in this example, and x3 is qualitative, with three factor levels (or qualitative states). The 
dashed horizontal line indicates a cut-point along the values of x1. The line is extended across Y, 
which is thus divided in two groups. The data used for this analysis are shown in Appendix 1. 

(b) Multivariate regression tree computed by function mvpart() of the {mvpart} package; there were 
three “species” in Y; these variables are shown in Appendix 1. Variable x1 controls the first split 
(the split occurs at the position of the dashed line in panel a). Variable x3 controls the second split; 
the objects with level B are in the left-hand group, those with levels A and C are in the right-hand 
group. Variable x1 was used again for the third split. The number of objects in each group is shown 
underneath each leaf (terminal group) of the tree, together with a histogram showing the relative 
abundances of the three species in that group in matrix Y. Figure from Legendre & Legendre (2012, 
Fig. 8.22), with permission from the authors. 
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Figure 2 – Multivariate regression tree for the hunting spider data analysed by De’ath (2002). The 
tree shown has k = 4 leaves (or clusters). The relative abundances of the 12 species are shown in 
histograms positioned at the tips of the branches, with the species in the same order as in the Y input 
file; the species names are shown in the upper-left portion of the plot as they appear in the Y data 
file. Under each histogram, n is the number of sites in the leaf (group); the value before n is the sum 
of squared errors for the group, i.e. the SSgr statistic.  
Statistics shown underneath the plot  

• Error is the total relative error of the tree with the chosen size (this figure shows the tree with k = 3 
leaves); the relative error statistics are represented by green dots in the “pick” graph (not shown 
here). The R-square of the tree model is (1 – Error).  
• CV Error is the cross-validation error of the selected tree. SE is the standard error of the cross-
validation statistic for the selected tree. Run the analysis from the Examples section of the function 
documentation file and examine the first graph obtained when requesting xv="pick". The minimum 
value of the cross-validation error (the red dot in that graph) indicates the best-fitting tree model. 
One may also choose a good-fitting model that is more parsimonious than the one with the smallest 
CV Error, i.e. a tree with fewer splits and leaves. For that purpose, authors are recommending to 
select a tree whose CV Error is within one standard error (SE, vertical blue lines) of the smallest CV 
Error value (horizontal red line). The smallest tree meeting this condition is indicated by an orange 
dot in the “pick” graph. 
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Figure 3 – Space-constrained clustering by MRT of the Doubs River fish community data, 29 sites. 
The constraining variable is ‘dfs’, the distance of the sites from the river source. 

 
Figure 4 – Schematic map of the sites along Doubs River. The symbols and colours represent the 
five spatially-constrained groups of sites. Sites 1 and 2 are on top of each other in the plot. 

0 50 100 150

0
20

40
60

80
10
0

12
0

Space-constrained Doubs fish groups, MRT

x coordinate (km)

y 
co

or
di

na
te

 (k
m

)

Upstream

Downstream

12
34
5

67

9

10

11
12

13
1415

16
17

18
1920

21
22

23
24

25
26

27

28

2930

Group 1
Group 2
Group 3
Group 4
Group 5



 7 

 
References 
Aart, P. J. M. (van der) & N. Smeenk-Enserink. 1975. Correlations between distributions of hunting 

spiders (Lycosidae, Ctenidae) and environmental characteristics in a dune area. Netherlands 
Journal of Zoology 25: 1-45. 

Borcard, D., F. Gillet & P. Legendre. 2011. Numerical ecology with R. Use R! series, Springer 
Science, New York. xi + 306 pp. 

Borcard, D., F. Gillet & P. Legendre. 2018. Numerical ecology with R, 2nd edition. Use R! series, 
Springer International Publishing AG. xv + 435 pp. 

De’ath, G. 2002. Multivariate regression trees: a new technique for modeling species-environment 
relationships. Ecology 83: 1105-1117. 

De’ath, G. 2012. mvpart: Multivariate partitioning. R package version 1.6-0. http://cran.rproject.org/ 
web/packages/mvpart/. 

Legendre, P. & L. Legendre. 2012. Numerical ecology, 3rd English edition. Elsevier Science BV, 
Amsterdam. xvi + 990 pp. 

ter Braak, C. J. F. 1986. Canonical correspondence analysis: a new eigenvector technique for 
multivariate direct gradient analysis. Ecology 67: 1167-1179. 

  



 8 

Appendix 1 
Data files used to compute the multivariate regression tree in Figure 1. In the matrices that follow, 
the data in Y and X are ordered by the values of variable x1, as in Figure 1a. 

 
# Matrix Y 
             Y1        Y2        Y3 
 [1,] 0.1910978 1.5642915 1.3534104 
 [2,] 0.5743539 1.4040023 0.7107540 
 [3,] 0.0000000 0.0000000 1.6401854 
 [4,] 0.7523856 2.2506030 1.1379542 
 [5,] 1.0987933 1.3578862 0.2126343 
 [6,] 0.7835680 2.9186479 1.8296707 
 [7,] 1.8139399 1.5591685 0.0000000 
 [8,] 0.9436658 1.5667416 0.2651598 
 [9,] 2.0875316 1.4574247 1.1136134 
[10,] 1.7829821 2.0335457 1.7756639 
[11,] 3.0812930 0.6086476 1.1863433 
[12,] 2.8692957 3.0200150 0.3664296 
 
# Matrix X 
      X1   X2  X3 
Site1   1.02  6.9   C 
Site2   1.08  6.7   A 
Site3   1.14  5.9   C 
Site4   1.32  7.9   C 
Site5   1.38  6.6   B 
Site6   1.56  8.2   C 
Site7   1.63  7.0   B 
Site8   1.73  8.1   B 
Site9   1.84  6.5   A 
Site10  1.86  6.7   C 
Site11  2.82  6.9   B 
Site12  2.89  8.4   A 
 

Analysis that produced the tree in Figure 1 – 
mvpart(data.matrix(Y) ~ ., data=mat.X, xv="pick", xvmult=100) 

The tree with size 4 (i.e. with 4 clusters) was selected. 

# ======== 
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Appendix 2 
# This Appendix contains practical notes on the use of function mvpart.R from package {mvpart} 
(De’ath 2012). 
 
library(mvpart) 
?mvpart           # Documentation file 

# Many of the arguments are the same as in the rpart function of package {rpart}. 
 

Required data files 
 Y = response data; class: data.matrix 

 X = explanatory data; class: data.frame 
 

Description of some graphical parameters used by mvpart – See also:     ?par     
# Usage – An example 

res = mvpart(data.matrix(Y) ~ pH+Lat+Lon, data=X, margin=0.08, xv="pick", xvmult=100) 
   • xv="p" is short for xv="pick", which means: pick a number of groups by clicking 

   • xvmult: number of cross-validation steps 
# If you have chosen xv="pick" or xv="p", a first graph is produced –  

   • green line and dots: relative error for different values of k; this line has no minimum. 
   • blue line: cross validation error; choose the minimum value (indicated by red dot),  

     or a smaller value within the confidence interval of the minimum (e.g. orange dot),  
     shown by the horizontal red line in the graph. 

 
# Click on a point in this graph to indicate your choice of the number of groups (k). The second 
graph appears; it contains the multivariate regression tree. 
 

Additional functions to help interpret the MRT results 
summary.rpart(res) 

# Produce a PCA plot of the data showing the groups, number as selected. Each group is surrounded 
by a convex hull and the group centroids are linked by the tree structure. 

?rpart.pca 
rpart.pca(res, interact=FALSE, wgt.ave=FALSE) 

# If interact=TRUE, the plot can be viewed from different angles by left-clicking around the plot. 
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Classification tree graph 

At the bottom of the tree – 
 • Error: relative error of the tree. R-square = 1 - Error 

 • CV error: cross-validation error 
 • SE: standard error 

Label on each split:  
 • the X variable used for that split and the values in the left and right branches 

Underneath each leaf of the tree 
 • the value is the error sum-of-squares of the group ('leaf' of the tree) 

 • n = number of objects in the group ('leaf') 
 • histogram of the abundances of the p species in matrix Y 

 
Output object of function 'mvpart' 

# Type the following to obtain details on the mvpart output file: 
?rpart.object 

• object_mvpart$y contains the response matrix 
• object_mvpart$call contains the call to the mvpart function 

• object_mvpart$cptable contains a tree structure summary. CP = complexity parameter 
• object_mvpart$frame presents the tree in data.frame form, one row for each node of the tree. This 
element shows the number of objects in each cluster ('leaf'). 
• object_mvpart$where contains a list of the groups to which individual objects belong in the 
classification.  
 

======== 
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Appendix 3 
# This Appendix contains R code to compute a spatially-constrained analysis by MRT of the fish 
community data along the Doubs River, using function mvpart.R of package {mvpart}1. The 
freshwater fish community data from the Doubs River in eastern France are used throughout the 
Borcard et al. (2011, 2018) books2. 

 
# Load the necessary packages 
library(vegan)  
library(mvpart) 
 
# Load the following function. It will be used to renumber the clusters sequentially 
renumber.cl <- function(gr) { 

aa <- 1 
gr2 <- rep(1,length(gr)) 
for (i in 2:length(gr)) { 

   if (gr[i]!=gr[i-1]) aa <- aa+1 
   gr2[i] <- aa 
   } 

gr2  
} 

 
# Read the Doubs.RData file, obtained in the material downloaded from the NEwR Web site. 
 
# Site #8, where no fish had been caught, must be removed from all data files to prevent that site 
from terminating a spatial segment of the sites 
spe <- spe[-8,] # Species data 
env <- env[-8,] # Environmental data 
spa <- spa[-8,] # Spatial data: geographic coordinates (for plotting maps) 
 
# Transform the species data with the Hellinger and chord transformations 
spe.hel <- decostand(spe, "hellinger") # Hellinger transformation 
spe.norm <- decostand(spe, "normalize") # chord transformation 
 
  

                                                
1 If package mvpart is not already installed on your computer, install it manually following the instructions in 
Appendix 4. 
2 To obtain the Doubs River fish community data, go to the Web page 
http://adn.biol.umontreal.ca/~numericalecology/numecolR/ of the book Numerical ecology with R, 2nd edition 
(2018). In the white square, click on the link “Complete material, updated for R 4.0.4” to download the 
scripts of R code, the two data sets used in the book and some R functions. 
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# (a) MRT of the Hellinger-transformed abundance data  <== Used in figs. MRT.3 and MRT.4. 
#  The spatially constraining variable is ‘dsf’, distance of the sites from the river source. 
 
dev.new(title="MRT with sequential constraint, Hellinger") 
spe.hel.seq <- mvpart(as.matrix(spe.hel) ~ dfs, data=env, xv="pick", 

margin=0.08, xvmult=100) 
 
# “pick” graph: click on the desired number of groups, e.g. 5 groups 
# Examine the sites composing the 5 groups, which form the leaves of the regression tree 
(gr5.hel <- spe.hel.seq$where) 
 [1] 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 9 9 9 8 8 8 8 8 8 8 8 8 8 8 
# Renumber the 5 groups with function “renumber.cl()”, so that the group numbers in Figure 4 will 
start with 1 at the head of the river 
 ( gr5.hel.ren = renumber.cl(gr5.hel) ) 
 [1] 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 5 5 5 5 5 5 5 5 5 5 5 
##### End Hellinger 
 
 
# (b) MRT of the chord-transformed abundance data;  
#  Readers can produce the MRT tree, as in the Hellinger case. 
 
dev.new(title="MRT with sequential constraint, chord") 
spe.ch.seq <- mvpart(as.matrix(spe.norm) ~ dfs, data=env, xv="pick", 

margin=0.08, xvmult=100) 
 
# “pick” graph: click on the desired number of groups, e.g. 5 groups 
( gr5.ch <- spe.ch.seq$where ) 
 [1] 5 5 5 6 6 6 6 6 6 7 7 7 7 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 
# Renumber the 5 groups with function renumber.cl( 
( gr5.ch.ren = renumber.cl(gr5.ch) ) 
 [1] 1 1 1 2 2 2 2 2 2 3 3 3 3 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 
##### End chord 
 
 
# Plot the clusters on a schematic map of the Doubs river using the following script. 
# The coordinates of the sites are found in file “spa”. The map is shown in Figure 4 
 
# The groups from Hellinger-transformed data are identified as variable gr2, used in the script 
gr2 = gr5.hel.ren    
 
dev.new(title="Map of MRT groups on Doubs river") 
plot(spa, type="n", main="Space-constrained Doubs fish groups, MRT", 

xlab="x coordinate (km)", ylab="y coordinate (km)", asp=1) 
lines(spa, col="light blue") 
text(80, 8, "Upstream", cex=1.2, col="red") 
text(15, 80, "Downstream", cex=1.2, col="red") 
k <- length(levels(factor(gr2))) 
for (i in 1:k) { 
   points(spa[gr2==i,1], spa[gr2==i,2], pch=i+20, cex=3, col=i+1, bg=i+1) 
   } 
text(spa, row.names(spa), cex=0.8, col="white", font=2) 
legend("bottomright", paste("Group",1:k), pch=(1:k)+20, col=2:(k+1), 

pt.bg=2:(k+1), pt.cex=2, bty="n") 
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Appendix 4 
# Installing package mvpart 
 
# If package mvpart is not already installed on your computer, install it manually from 
# the GitHub repository by typing the following commands in the R console.  
# Unfortunately, package mvpart is no longer available from CRAN. 
 
# On Windows machines, Rtools (4.0 and above) must be installed first. In a Web browser, go to: 
# https://cran.r-project.org/bin/windows/Rtools/ 
 
# Following that, copy or type the following commands: 
install.packages("devtools") 
library(devtools) 
install_github("cran/mvpart", force = TRUE) 
 
 
# If the “install_github” command returns an error about the namespace file (this may happen  
# due to your computer platform and System version), copy or type the following commands: 

assignInNamespace("version_info",  
                  c(devtools:::version_info, 
                  list("4.0" = list(version_min = "3.3.0", 
                  version_max = "99.99.99", 
                  path = "bin"))), 
                  "devtools") 
install_github("cran/mvpart", force = TRUE) 
 
 
======== 
 
 


