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0. R packages 
 
 Install the following R packages. They will be used in these practical exercises. — 
• Install packages available on CRAN: 
install.packages(c("ade4", "adegraphics", "adespatial", "ape", "cclust", "cluster", "FD", "geoR", 
"labdsv", "mapdata", "maps", "rgl", "spdep", "vegan"), dependencies=TRUE) 
• Install mvpart available on Github. First, install.packages("devtools") if you don’t already have this 
package installed in your computer. Then: 
library(devtools) 
install_github("cran/mvpart", force=TRUE) 

• Other functions, available on http:/numericalecology.com, will also be used in the course.  
 
1. Compute basic statistics in the R language: Robin data 
 
# Import data file ‘Robins.txt’ from your working directory into an object ‘robin’ (class: data frame) 
# You must first tell R what your working directory is: 
# Windows: File menu ⇒ Change dir...   
# Mac OSX: Misc. menu ⇒ Change Working Directory 
   robin <- read.table("Robins.txt") # or:   robin = read.table("Robins.txt") 
 
# Alternative method: function file.choose() opens a dialogue box to navigate your hard disk 
   robin <- read.table( file.choose() )  # Navigate to find the "Robins.txt" data file 
 
# Check that the data have been read correctly 
   robin # or:   head(robin) 
 
# Copy the wing length values (first column) into an object ‘wing’: 
   wing = robin[,1] 
   wing # Print the contents of object 'wing' 
   class(wing) # Find the class of object 'wing' 
   is.vector(wing) 
   is.matrix(wing) 
 
# Transform vector ‘wing’ into an object with class ‘matrix’ in case you need it later:  
   wing.mat = as.matrix(wing) 
   wing.mat 
   is.vector(wing.mat) 
   is.matrix(wing.mat) 
 
# Compute the mean wing length: 
   wing.mean = mean(wing) # or: wing.mean = mean(wing.mat) 
   wing.mean # Print the value of the mean 
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# Compute the median wing length: 
   wing.med = median(wing) # or: wing.med = median(wing.mat) 
   wing.med # Print the value of the median 
 
# Compute the variance of the wing lengths: 
   wing.var = var(wing)  # or: wing.var2 = var(wing.mat) 
# Print the value of the variance: 
   wing.var # or: wing.var2 
   is.vector(wing.var) # or: is.vector(wing.var2) 
   is.matrix(wing.var) # or: is.matrix(wing.var2) 
 
# Compute the sample size ‘n’: 
   n = length(wing) # Compute the value of ‘n’ 
   ( n = length(wing) ) # Shortcut: compute the value of ‘n’ and print it 
   ( n1 = nrow(wing.mat) ) # or:  ( n1 = dim(robin)[1] ) # or:  ( n1 = dim(wing.mat)[1] ) 
 
# Compute the skewness A3. 
# 
# First, compute an unbiased estimate of the moment of order 3, k3: 
   k3 = (n*sum((wing.mat-mean(wing.mat))^3))/((n-1)*(n-2)) 
   k3 # Print the value of k3 
# 
# Then, compute the skewness, A3: 
   A3 = k3/((sqrt(wing.var))^3) 
   A3 # Print the value of A3 
 
# Compute the kurtosis A4. 
# 
# First, compute an unbiased estimate of the moment of order 4, k4, and print it: 
   k4 = (n*(n+1)*(sum((wing.mat-mean(wing.mat))^4))-3*(n-1)*((sum((wing.mat-mean(wing.mat) 
)^2))^2))/((n-1)*(n-2)*(n-3)) 
   k4 
# 
# Then, compute the kurtosis, A4, and print it: 
   A4 = k4/((sqrt(wing.var))^4) 
   A4 
 
# Compute the width of the range of values: 
   wing.range = max(wing)-min(wing) # or: wing.min.max = range(wing) 
   wing.range # wing.min.max 
 
# Compute the standard deviation: 
   ( sx = sd(wing) ) 
 
# Plot a histogram 
 
# The most simple way is to use the function ‘hist’ with all the default values: 
   hist(robin[,1]) 
 
# The histogram appears in the graphics window. It can be saved in different formats for future use 
(menu File: “save as...”) 
 
# One can specify the presentation details of the histogram 
 
   par(mai = c(1.5, 0.75, 0.5, 0.5)) # Modify the margins of the graph. See   ?par 
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   hist(robin[,1], breaks = "Sturge", freq = TRUE, right =FALSE, main = NULL, xlab = NULL, ylab 
= NULL, axes = TRUE)  

 
# Look up these specifications in the documentation file of ‘hist’ 
   ?hist 
 
# Add axis labels and a title 
 
   mtext(text="Frequency", side=2, line=3, cex=1, font=1) 
   mtext(text="Wing length (mm)", side=1, line=2, cex=1, font=1) 
   mtext(text="Histogram of Robin wing length", side=1, line=4, cex=1.5, font=1) 
 
# ========== 
 
# Repeat this exercise for variable Mass(kg), Height(cm) or Length(cm) of file ‘Bears.txt’. Call your 
file ‘bears’. Be careful when reading the data! — Is that file difficult to read in the R window? Why? 
 
# Check that the data have been read correctly! For that, type 
   head(bears) 
 
# Check section “Importing a data file to be analysed by R” on pp. 3-4 of “Introduction_to_R.pdf” 

# After you have completed the exercise, try the following commands for the ‘bears’ data: 
   summary(bears) 
   plot( bears[, 2:5] ) 
 
# ======== 
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# How to attribute values to the parameters of an R function  
 
# R functions may have several parameters (see for example ?read.table or ?hist) and these 
parameters often have default values in the function. For example, the following function 
 
add3 <- function(a = 0, b = 10, c = -5)   a+b+c 
 
# has three parameters, a, b and c, which represent numbers. Default values have been given to these 
parameters: a = 0, b = 10, c = –5. The function adds the three numbers. Example: 
 
add3() 
 
# gives for result the sum of the three numbers. 
 
# Users can replace the default values by other values that they provide. Example of replacement 
according to the positions of the parameters: 
 
add3(2, 4, 6) # The order determines the attribution of values to the parameters. 
 
# Same result if values are explicitly given to parameters a, b et c:  
 
add3(a=2, b=4, c=6) # Equivalent command: add3(b=4, c=6, a=2) 
 
# Can you anticipate the results of the following calls to the function? 
 
# 1. Attribution according to positions. What is the value taken by c? What will the sum be? 
add3(2, 4) 
 
# 2. Explicit attribution of a value to b. What are the values taken by a and c? What will the sum be? 
add3(b=7) 
 
======== 
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Examine the output object produced by rda() or cca() of {vegan} 
 
# Example: create an output object of function rda() 
 
rda.object.name <- rda(a.data.file) 
 
# List the first-level elements of the output object, which is rather complex 
 
attributes(rda.object.name) 
 
# You can then examine the contents of the separate elements as follows. Examples: 
 
rda.object.name$call 
rda.object.name$CA 
rda.object.name$tot.chi 
 
# The structure of rda() and cca() output objects is described in a documentation file: 
 
?cca.object 
 
# You can also examine the detailed structure of a given rda or cca output object (a long list): 
 
str(rda.object.name) 
 
# In the PCA exercise on pp. 7-8, we will use vegan’s summary.cca() function to print the PCA 
results 
 
summary(rda.out, scaling=1) 
 
# Note that the function is called by typing summary() and not summary.cca(). The function 
recognizes the class of the rda.out object, which is    "rda" "cca". 
 
# If the output says “Total inertia: 0” followed by an error message, that could be due to the fact 
that the package {ade4} has been loaded after {vegan} and function cca() of {ade4} is masking 
vegan’s same-name function. If you loaded {adespatial} after {vegan}, {adespatial} has loaded 
{ade4} and you have the same problem. To solve the issue and make summary.cca() print the 
PCA or RDA results correctly, you have to completely detach {vegan} and load it again: 
 
unloadNamespace("vegan") 
library("vegan") 
 
# Following this operation, the cca() function of {vegan} is masking ade4’s same-name function 
and summary.cca() should work correctly. 
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2. Simple ordination methods: PCA, CA, PCoA, nMDS 
 
# 2.1. Principal component analysis (PCA) 
# 2.1.1. Principal component analysis (PCA) through matrix algebra 
 
# Create the data matrix: 
 
   Y.mat = matrix(c(2,3,5,7,9,1,4,0,6,2), 5, 2) 
   class(Y.mat) # Check the class attached to object Y.mat 
 
# Center matrix Y.mat by columns using function ‘scale’: 
 
   Y.cent = scale(Y.mat, center=TRUE, scale=FALSE) # Data centered but not standardized 
 
# Compute the covariance matrix: 
 
   Y.cov = cov(Y.cent) 
 
# If the data are not standardized (scale=FALSE), the following command is equivalent: 
 
   Y.cov = cov(Y.mat) # but that is not the case if scale=TRUE. 
 
# Compute the eigenvalues and eigenvectors: 
 
   Y.eig = eigen(Y.cov)      # Compare with the result of    Ycov.svd = svd(Y.cov) 
  # Compare with the result of    Y.svd = svd(Y.cent)  
 
# Check the eigenvalues and eigenvectors: 
 
   Y.eig$values 
   Y.eig$vectors 
 
# Transfer the eigenvectors to U. It will be used to represent the variables in scaling type 1 plots: 
 
   U = Y.eig$vectors 
 
# Compute matrix F. It will be used to represent the objects in scaling type 1 plots: 
 
   F = Y.cent %*% U 
   F # Check the contents of F 
 
# Compute matrix U2. It will be used to represent the variables in scaling type 2 plots: 
 
   U2 = U %*% diag(Y.eig$values^(0.5)) 
 
# Compute matrix G. It will be used to represent the objects in scaling type 2 plots: 
 
   G = F %*% diag(Y.eig$values^(-0.5)) 
 
# Scaling type 1 biplot — 
# Dispersion diagram of the first 2 columns of F produced using the general plot() function: 
 
   plot(F[,1], F[,2], xlim=c(-4,4), ylim=c(-3,3), asp=1, xlab="Axis 1", ylab="Axis 2") 
 
# Notes: (-4,4) = limits of the plot abscissa, (-3,3) = limits of the plot ordinate. 
#      asp=1 : the ratio of the dimensions abscissa/ordinate is fixed to 1 
#      to obtain a correct representation of the distances among the objects. 
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# Here is another method to obtain the limits of the abscissa and ordinate for the graph. The function 
"range" provides the min and max values along axes 1 and 2. It can be applied to the columns of F by 
"apply": 
 
   F.range = apply(F, 2, range) 
   F.range 
 
# Create vectors “xlim” and “ylim” giving the limit values for the plot axes: 
 
   xlim = c(F.range[1,1], F.range[2,1]) 
   ylim = c(F.range[1,2], F.range[2,2]) 
 
   plot(F[,1], F[,2], xlim=xlim, ylim=ylim, asp=1, xlab="Axis 1", ylab="Axis 2") 
 
# Add to the diagram arrows representing the first two columns of matrix U: 
   arrows(x0=0, y0=0, U[,1]*3, U[,2]*3) 
# Note: for this example, the coordinates of the variables (from matrix U) are multiplied by 3. 
 
# Exercice : plot the diagram for scaling type 2.  
# This time, use function biplot() of {stat}, designed specifically for PCA, with matrices G and U2 
 
   biplot(G, U2) 
 
# ======== 
 
# 2.1.2. Principal component analysis (PCA) of the example data using the ‘vegan’ package 
 
# First, load the  ‘vegan’ package into your work space: 
   library(vegan) 
 
# For this example, the data are found in object Y.mat created at the beginning of section 2.1.1. 
   rda.out = rda(Y.mat) # Default option: scale=FALSE 
 
# PCA is calculated by the rda() function. That function can also compute canonical RDA. 
# The rda() function produces a PCA when a single data file is provided. 
# With the argument "scale=FALSE", the data are centred by columns but not standardized. 
 
# Examine the object produced by function rda(). See the notes entitled “Examine the output object 
produced by rda() or cca() of {vegan}” on page 5. 
 
# Examine the PCA results – 
   eigenvals(rda.out) # Eigenvalues 
 
# Scaling = 1: preserves the Euclidean distances among objects 
# Scaling = 2: preserves the correlations among descriptors 
# PCA with scaling 1: 
   summary(rda.out, scaling=1) # Species scores, site scores (modified by vegan) 
   biplot(rda.out, scaling=1) # Function biplot.rda() of ‘vegan’ is used 
 
# PCA with scaling 2: # This is also the default value of the biplot.rda function 
   summary(rda.out, scaling=2) # Species scores, site scores (modified by vegan) 
   biplot(rda.out, scaling=2) # Function biplot.rda() of ‘vegan’ is used 
 
# Note – Vegan’s function summary.cca() transforms the numerical results before printing them. In 
scaling=1, the species coordinates (U) are multiplied by the “General scaling constant” and the site 
coordinates (F) are divided by that constant. In scaling=2, the transformations are more complex; see 
the document “decision-vegan.pdf”. In a nutshell, the species and site coordinates are linear 
transformations of the coordinates computed in matrices U2 and G of the exercise. 
 
Function cleanplot.pca.R of the NEwR book can also be used to draw biplots from vegan’s rda() 
output. Examine the easy-to-use graphical options available in that function.
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# 2.1.3. Principal component analysis (PCA) of the spider data using ‘vegan’ 
 

# PCA of hunting spider data of the Netherlands1 (file "spiders” in data set “spiders.RData”). Then, 
compute the cumulative inertias of the species and sites to the PCA axes using goodness(). Load the 
data set "spiders.RData" by dragging it out to the R console, or using the load() command. 
 
# Species abundances: it is necessary to transform the data before PCA, because PCA preserves the 
Euclidean distance among the objects and this distance is inappropriate for community composition 
data. See section "4. Transformations" lower down.  
  spiders.hel <- decostand(spiders, "hellinger") # Hellinger transformation 
 
# Function rda() computes a PCA when a single input file is provided. 
  res <- rda(spiders.hel) 
# Examine the structure of the object generated by this function: str(res). See page 5. 
 
# Function goodness(x, display="species") computes the cumulative R2 of each species on axis 1, 
then on axes 1+2, axes 1+2+3, and so on. The R2 values of column PC2, for example, indicate how 
well each species is represented in the plane of the first two PCA axes. In the last column (PC12 in 
this example), all species are perfectly represented and have an R2 of 1. 
  spi.good.sp <- goodness(res, display="species", model="CA") 
# The argument model="CA" indicates that the analysis is a simple ordination, a PCA. One can 
obtain the same statistics from goodness() for a canonical ordination using argument model="CCA"; 
In canonical ordination, the last column of the output file contains values smaller than or equal to 1. 
Refer to the manual (Numerical ecology, 2012) p. 442. 
 
# Compare these results to the PCA ordination graph  
  biplot(res) 
 
# Function goodness(x, display="sites") computes the proportion of the norm of each site vector that 
is represented in 1, 1+2, 1+2+3, etc. dimensions. Refer to the manual p. 443. 
  spi.good.si <- goodness(res, display="sites", model="CA") 
 
# ======== 
 
# 2.1.4. Principal component analysis using the ‘PCA.newr’ function 
 
# Repeat the spiders analysis using the ‘PCA.newr.R’ function available among the functions of 
Numerical ecology with R. The R code in that function is essentially that found in section 2.1.1, plus 
some additional features. You can open file “PCA.newr.R’ using a text editor and examine the code. 
 
# First, load the function into your work space: 
#  Windows clients: go to the File menu => Source R Code...  
#  MacOS X clients: go to the Files menu => Source File...  
 
   pca.out = PCA.newr(spiders.hel) # Default: no standardization of the variables 
   biplot(pca.out) # The default value is scaling type 1 
 
# Compare the results: (a) those of function rda(), i.e. the eigenvalues, eigenvectors and principal 
components (eigenvals(rda.out), scores(rda.out, scaling=1)), and (b) those of function PCA.newr() 
(pca.out$eigenvalues, pca.out$U, pca.out$F). Why are there differences? — The differences are 
explained in the document “decision-vegan.pdf”, p. 6, Tables 1–2, available in the vegan folder. 

                                                
1 Aart, P.J.M. van der & N. Smeenk-Enserink. 1975. Neth. J. Zool. 25: 1-45. 
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# 2.2. Correspondence analysis (CA)  
# 2.2.1. Correspondence analysis (CA) through matrix algebra 
 
# Read a data table that will be subjected to correspondence analysis. 
# You may choose 'Table_9.11.txt' (small example from Chapter 9 of manual) 
Y = read.table( file.choose() ) 
# or 'spiders' (larger data set, real data, loaded at the beginning of section 2.1.3). 
 
# Calculate the basic parameters of Y; save the row and column names 
n = nrow(Y) 
p = ncol(Y) 
n.eigval = min((n-1),(p-1)) 
site.names = rownames(Y) 
sp.names = colnames(Y) 
 
# Construct the Qbar matrix (contributions to chi-square) 
fi. = matrix(apply(Y,1,sum),n,1) 
f.j = matrix(apply(Y,2,sum),1,p) 
f.  = sum(fi.) 
pi. = as.vector(fi./f.) 
p.j = as.vector(f.j/f.) 
E = (fi. %*% f.j)/f. 
Qbar = (Y - E) * E^(-0.5) / sqrt(f.) 
 
# Analyse Qbar by 'svd' 
svd.res = svd(Qbar) 
eigenvalues = svd.res$d[1:n.eigval]^2 
U = svd.res$v[,1:n.eigval] 
Uhat = svd.res$u[,1:n.eigval] 
 
# Alternative analysis or Qbar by 'eigen' 
Qbar = as.matrix(Qbar) 
QprQ.eig = eigen( t(Qbar) %*% Qbar ) 
eigenvalues = QprQ.eig$values[1:n.eigval] 
U = QprQ.eig$vectors[,1:n.eigval] 
Uhat = Qbar %*% U %*% diag(eigenvalues^(-0.5)) 
 
# Construct matrices V, Vhat, F, and Fhat for the ordination biplots 
V = diag(p.j^(-0.5)) %*% U 
Vhat = diag(pi.^(-0.5)) %*% Uhat 
F = Vhat %*% diag(eigenvalues^(0.5)) 
Fhat = V %*% diag(eigenvalues^(0.5)) 
 
# Find the limits of the plots 
V.range = apply(V[,1:2],2,range) 
Vhat.range = apply(Vhat[,1:2],2,range) 
F.range = apply(F[,1:2],2,range) 
Fhat.range = apply(Fhat[,1:2],2,range) 
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par(mfrow=c(1,2))  # Create a drawing window for two graphs 
 
# Biplot, scaling type = 1: plot F for sites, V for species 
# The sites are at the centroids (barycentres) of the species 
# This projection preserves the chi-square distance among the sites 
 
xmin = min(V.range[1,1], F.range[1,1]) - 0.5 
xmax = max(V.range[2,1], F.range[2,1]) + 0.5 
ymin = min(V.range[1,2], F.range[1,2]) - 0.5 
ymax = max(V.range[2,2], F.range[2,2]) + 0.5 
 
plot(F[,1:2], asp=1, pch=20, cex=2, xlim=c(xmin,xmax), ylim=c(ymin,ymax), xlab="CA axis 1", 
ylab="CA axis 2") 
text(F[,1:2], labels=site.names, pos=4, offset=0.5) 
points(V[,1:2], pch=22, cex=2) 
text(V[,1:2], labels=sp.names, pos=4, offset=0.5) 
title(main = c("CA biplot","scaling type 1"), family="serif") 
 
# Biplot, scaling type = 2: plot Vhat for sites, Fhat for species 
# The species are at the centroids (barycentres) of the sites 
# This projection preserves the chi-square distance among the species 
 
xmin = min(Vhat.range[1,1], Fhat.range[1,1]) - 0.5 
xmax = max(Vhat.range[2,1], Fhat.range[2,1]) + 0.5 
ymin = min(Vhat.range[1,2], Fhat.range[1,2]) - 0.5 
ymax = max(Vhat.range[2,2], Fhat.range[2,2]) + 0.5 
 
plot(Vhat[,1:2], asp=1, pch=20, cex=2, xlim=c(xmin,xmax), ylim=c(ymin,ymax), xlab="CA axis 1", 
ylab="CA axis 2") 
text(Vhat[,1:2], labels=site.names, pos=4, offset=0.5) 
points(Fhat[,1:2], pch=22, cex=2) 
text(Fhat[,1:2], labels=sp.names, pos=4, offset=0.5) 
title(main = c("CA biplot","scaling type 2"), family="serif") 
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# 2.2.2 Correspondence analysis (CA) using the ‘vegan’ package 
 
# Scaling = 1:  preserves the chi-square distances among objects. 
#  Uses matrices F and V, as in Canoco. 
# Scaling = 2: preserves the chi-square distances among species. 
#  Uses matrices V-hat and F-hat, as in Canoco. 
 
# Exemple 1: CA of Aart’s (1973) spider data.  
# Load the data set "spiders.RData" by dragging it out to the R console, or using the load() command. 
The data frame "spiders" will appear among the files of your R console. 
 
   library(vegan) 
   spiders.ca=cca(spiders) 
   summary(spiders.ca, scaling=1) 
   plot(spiders.ca, scaling=1) 
 
# Note: CA cannot be computed if there are rows or columns that sum to 0 in the data file.  This is 
due to the transformation of Y into matrix Q-bar, which is the first step of CA. 
# If there are rows or columns that sum to 0, the function ‘c‘ (“combine”) allows users to select the 
row or column numbers that have sums larger than 0 and use only those in the analysis. 
 
# Exemple 2 (if time allows): CA of the cafés of Neuchâtel data. Data file: "Cafes_10x6_spe.txt". 
The data represent the clientele in 10 restaurants of the town of Neuchâtel in Switzerland. The 
restaurant names are real; the clientele data were made up by Daniel Borcard to illustrate the 
properties of CA. 
 
   cafes.spe=read.table( file.choose() ) 
   cafes.afc=cca(cafes.spe) 
   cafes.afc 
   plot(cafes.afc, scaling=2) 
   summary(cafes.afc, scaling=2, axes=5) 
 
# CA can also be computed using function ‘CA.newr.R’ available among the functions of the 
Numerical ecology with R book. 
 
# ========== 
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# 2.3. Principal coordinate analysis (PCoA) 
 
# One can use the function cmdscale of the ‘stats’ package to carry out this analysis. “cmds” is  the 
acronym of “classical multidimensional scaling”. 
# Functions for PCoA are also available in packages ape (function pcoa), ade4 (function dudi.pco) 
ecodist and labdsv (functions pco) and vegan (function wcmdscale). 
# PCoA starts with a distance (or dissimilarity) matrix. Distance functions will be studied in Section 
3. The Euclidean distance will be used to illustrate how to use PCoA. The Euclidean distance is the 
default option when using function dist of the ‘stats’ package. This distance is not the optimal choice 
for PCoA ordination of community data. 
 
# Example: analysis of the spider data. 
# Load the data set "spiders.RData" by dragging it out to the R console, or using the load() command. 
The data file "spiders" will appear among the files of your R console. 
 
# First analysis: compute the matrix of Euclidean distances 
   spiders.D1 = dist(spiders) # or: spiders.D1 = dist(spiders, method="eucl") 
 
# Principal coordinate analysis. Save k=5 axes. Plot a graph of axes 1 and 2. 
   toto4=cmdscale(spiders.D1, 5, eig=TRUE) 
   plot(toto4$points[,1], toto4$points[,2], asp=1, xlab="Axis 1", ylab="Axis 2") 
 
# Note: "asp=1" constrains the two axes to the same scale. This ensures that the distances 
# among objects on the plot are projections of their real distances in multivariate space.  
  ?cmdscale # consult the documentation file of function cmdscale 
   summary(toto4) # to obtain a list of the elements in file toto4 
   toto4$points # contains the coordinates of the objects along the k=5 requested dimensions 
   toto4$eig # contains the eigenvalues of the principal axes 
 
# Repeat the analysis after applying the Hellinger transformation (using function decostand of the 
vegan package) to the spider abundance data. The transformations are described in Section 4. 
# Hellinger transformation of species abundances, followed by calculation of Euclidean distances. 
# As a consequence, the "spiders.DHel" matrix will  contain Hellinger distances. 
   library(vegan) 
   spiders.hel = decostand(spiders, "hel") # Hellinger transformation 
   spiders.DHel = dist(spiders.hel) # Compute the Hellinger distance matrix 
 
# Alternative way: obtain the Hellinger D matrix in one step with function dist.ldc() of adespatial 
   library(adespatial) 
   spiders.DHel = dist.ldc(spiders, method="hel") # Compute the Hellinger distance matrix 
 
# Principal coordinate analysis. 
   res = cmdscale(spiders.DHel, 5, eig=TRUE) 
 
# Plot the ordination (axes 1 and 2) using the ordiplot() function of package vegan 
   ordiplot(scores(res, choices=c(1,2)), type="t", main = "PCoA plot") 
   abline(h=0, v=0, col="grey") 
 
# PCoA can also be computed using the pcoa() function of the ape package. The biplot.pcoa() 
function of that package produces ordination plots on which the species can be projected if desired. 
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# 2.4. Non-metric multidimensional scaling (nMDS) 
 
# We will first use fonctions nmds and bestnmds of the labdsv package. These functions, written by 
David W. Roberts, are wrappers for the function isoMDS of Brian D. Ripley’ MASS package. 
# nMDS starts with a distance matrix. Distance functions will be studied in Section 3. 
 
# Example: analysis of the spider data. 
# Load the data set "spiders.RData" by dragging it out to the R console, or using the load() command. 
The data file "spiders" will appear among the files of your R console. 
 
# Hellinger transformation of species abundances, followed by calculation of Euclidean distances. 
# As a consequence, the "spiders.DHel" matrix will  contain Hellinger distances. 
   library(vegan) 
   spiders.hel = decostand(spiders, "hel") 
   spiders.DHel = dist(spiders.hel) # Compute the Hellinger distance matrix 
 
# Alternative way: obtain the Hellinger D matrix in one step with function dist.ldc() of adespatial 
   library(adespatial) 
   spiders.DHel = dist.ldc(spiders, method="hel") # Compute the Hellinger distance matrix 
 
# Compute an nMDS solution in k=2 dimensions. If no initial configuration of the points is provided, a 
PCoA is computed and the first two axes of that solution form the initial configuration for nMDS. 
   library(labdsv) 
   toto2 = nmds(spiders.DHel, k=2) 
   plot(toto2) 
 
# The bestnmds wrapper provides a list of the successive solutions (paramètre "itr") obtained by using 
several random configurations as starting points for nMDS. 
   toto2 = bestnmds(spiders.DHel, k=2, itr=20) 
 
# The solution with lowest stress is kept in the output object. We plot it. 
   plot(toto2) 
 
# ========== 
 
# The vegan package contains function metaMDS. This wrapper of isoMDS carries our nMDS 
following the recommendations of ecologist Peter Minchin. The function automatically looks for a 
stable solution after several random starting configurations (by default, trymax = 20). 
# At the end of the analysis, a PCA of the final configuration is computed, so that the variance of the 
objects is maximum along the first axis. The species are projected in the site ordination graph as 
weighted averages, in the same way as in correspondence analysis.  
# The documentation of metaMDS is quite detailed. 
 
# The Bray-Curtis dissimilarity (or percentage difference) is the default in metaMDS. Instead, we will 
use Hellinger distance matrix obtained above. 
 
# Compute an nMDS solution in k=2 dimensions (default value). 
   toto3 = metaMDS(spiders.hel, distance="euclidean") 
   plot(toto3, type="t") # type="t" adds species to the graph 
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3. Dissimilarities 
 
Dissimilarity (or distance) functions are available in several packages of the R language. 
 
3.1. Package stats, function dist : 6 distances (documentation:  ?dist) 
 
euclidean: Usual Euclidean distance between the two vectors (2 norm). This is the default value. 
maximum: Maximum distance between two components of x and y (supremum norm). 
manhattan: Absolute distance between the two vectors (1 norm). 
canberra: sum(|x_i - y_i| / |x_i + y_i|). Terms with zero numerator and denominator are omitted 

from the sum and treated as if the values were missing. 
binary: (aka asymmetric binary): The vectors are regarded as binary bits, so non-zero elements are 

‘on’ and zero elements are ‘off’. The distance is the proportion of bits in which only one is on 
amongst those in which at least one is on. ⎯  This coefficient is (1 – Jaccard). 

minkowski: The p norm, the pth root of the sum of the pth powers of the differences of the 
components. 

The choice of coefficient is done by typing its name in quotes. Example: 
   dist(data, method="binary")   or   dist(data, "binary") 
=> In practice, function dist() is mostly used to compute a Euclidean distance matrix. 
 
3.2. Package vegan, function vegdist : 10 distances (documentation:  ?vegdist) 
 
euclidean d[jk] = sqrt(sum (x[ij]-x[ik])^2) 
manhattan d[jk] = sum(abs(x[ij] - x[ik])) 
gower d[jk] = (1/M) sum (abs(x[ij]-x[ik])/(max(x[i])-min(x[i]))); M = number of variables 
altGower d[jk] = (1/NZ) sum(abs(x[ij] - x[ik])); NZ = n. columns excluding double-zeros 
canberra d[jk] =  (1/NZ) sum ((x[ij]-x[ik])/(x[ij]+x[ik])); exclude double-zeros; NZ as above 
bray d[jk] = (sum abs(x[ij]-x[ik])/(sum (x[ij]+x[ik]))  = Bray & Curtis distance(default) 
kulczynski d[jk] 1 - 0.5*((sum min(x[ij],x[ik])/(sum x[ij]) + (sum min(x[ij],x[ik])/(sum x[ik])) 
morisita {d[jk] = 1 - 2*sum(x[ij]*x[ik])/((lambda[j]+lambda[k]) * sum(x[ij])*sum(x[ik])) } 
 where lambda[j] = sum(x[ij]*(x[ij]-1))/sum(x[ij])*sum(x[ij]-1) 
horn Like morisita, but lambda[j] = sum(x[ij]^2)/(sum(x[ij])^2) 
binomial d[jk] = sum(x[ij]*log(x[ij]/n[i]) + x[ik]*log(x[ik]/n[i]) - n[i]*log(1/2))/n[i] 
 
jaccard 

where n[i] = x[ij] + x[ik] 
d[jk] = 1 - (a / (a+b+c)); binary=TRUE to obtain the Jaccard coeff. for binary data. 

"mountford" (Mountford index), "raup" (Raup-Crick probabilistic index), "chao" (Chao index), "cao"  
and "mahalanobis" can also be obtained. See ?vegdist. 
 
The choice of coefficient is done by typing its name in quotes. Example: 
   vegdist(data, method="bray")   or   vegdist(data, "bray") 
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3.3. Package ade4, function dist.binary : 10 binary distances (documentation:  ?dist.binary) 
 
=> These similarities (S) are converted to distances through the transformation D = sqrt(1 – S). 
 
1 = Jaccard index (1901) [S3 coefficient of Gower & Legendre] : s1 = a / (a+b+c) 
2 = Sokal & Michener index (1958) 
 [S4 coefficient of Gower & Legendre] : s2 = (a+d) / (a+b+c+d) 
3 = Sokal & Sneath(1963) [S5 coefficient of Gower & Legendre] : s3 = a / (a + 2(b + c)) 
4 = Rogers & Tanimoto (1960) 
 [S6 coefficient of Gower & Legendre] : s4 = (a + d) / (a + 2(b + c) +d) 
5 = Czekanowski (1913) or Sørensen (1948) 
 [S7 coefficient of Gower & Legendre] : s5 = 2a / (2a + b + c) 
6 = [S9 index of Gower & Legendre (1986)] : s6 = (a - (b + c) + d) / (a + b + c + d) 
7 = Ochiai (1957) [S12 coefficient of Gower & Legendre] : s7 = a / sqrt((a + b)(a + c)) 
8 = Sokal & Sneath (1963) 
 [S13 coefficient of Gower & Legendre] : s8 = ad / sqrt((a + b)(a + c)(d + b)(d + c)) 
9 = Phi of Pearson 
 [S14 coefficient of Gower & Legendre] : s9 = (ad - bc) / sqrt((a + b)(a + c)(d + b)(d + c)) 
10 = [S2 coefficient of Gower & Legendre] : s10 = a / (a + b + c + d) 
 
# The choice of coefficient is done by typing its number in the list above. Examples: 
   dist.binary(data, method=1)   or   dist.binary(data, 1)    or   dist.binary(data, "1") 
 
3.4. Package adespatial, function dist.ldc(): 21 dissimilarity indices (information:  ?dist.ldc) 
 
# The function allows users to compute 18 quantitative dissimilarity indices:  

"hellinger", "chord", "chisquare", "profiles", "percentdiff", "ruzicka", "divergence", "canberra", 
"whittaker", "wishart", "kulczynski", "ab.jaccard", "ab.sorensen", "ab.ochiai", "ab.simpson", 
"euclidean", "manhattan", "modmeanchardiff",  
as well as 3 binary indices: "jaccard", "sorensen", "ochiai".  

# These measures are described and analysed in the Legendre & De Cáceres (2013) paper. 
 
# Details about the 21 dissimilarity indices are found in the Details of the documentation file.  
 
-------- 
  
 Group 1 – The D matrix is computed by transformation of Y followed by Euclidean distance.  

 Hellinger D, D[ik] = sqrt(sum((sqrt(y[ij]/y[i+])-sqrt(y[kj]/y[k+]))^2))  

 chord D, D[ik] = sqrt(sum((y[ij]/sqrt(sum(y[ij]^2))-y[kj]/sqrt(sum(y[kj]^2)))^2))  

 chi-square D, D[ik] = sqrt(y[++] sum((1/j[+j])(y[ij]/y[i+]-y[kj]/y[k+])^2))  

 species profiles D, D[ik] = sqrt(sum((y[ij]/y[i+]-y[kj]/y[k+])^2))  
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 Group 2 – Other D functions appropriate for the study of beta diversity. In the first two functions, 
A = sum(min(y[ij],y[kj])), B = y[i+]-A, C = y[k+]-A. 

 percentage difference D, D[ik] = (sum(abs(y[ij]-y[k,j])))/(y[i+]+y[k+]) or else, D[ik] = 
(B+C)/(2A+B+C) (aka Bray-Curtis dissimilarity)   

 Ružička D, D[ik] = 1-(sum(min(y[ij],y[kj])/sum(max(y[ij],y[kj])) or else, D[ik] = 
(B+C)/(A+B+C)  

 coeff. of divergence D, D[ik] = sqrt((1/pp)sum(((y[ij]-y(kj])/(y[ij]+y(kj]))^2))  

 Canberra metric D, D[ik] = (1/pp)sum(abs(y[ij]-y(kj])/(y[ij]+y(kj]))  

 Whittaker D, D[ik] = 0.5*sum(abs(y[ij]/y[i+]-y(kj]/y[k+]))  

 Wishart D, D[ik] = 1-sum(y[ij]y[kj])/(sum(y[ij]^2)+sum(y[kj]^2)-sum(y[ij]y[kj]))  

 Kulczynski D, D[ik] = 1-0.5((sum(min(y[ij],y[kj])/y[i+]+sum(min(y[ij],y[kj])/y[k+]))  

 Group 3 – Classical D indices for presence-absence data; these indices are appropriate for beta 
diversity studies. The D matrices are square-root transformed, as in dist.binary() of {ade4}.  

 Jaccard D, D[ik] = sqrt((b+c)/(a+b+c))  

 Sørensen D, D[ik] = sqrt((b+c)/(2a+b+c))  

 Ochiai D, D[ik] = sqrt(1 - a/sqrt((a+b)(a+c)))  

 Group 4 – Abundance-based indices of Chao et al. (2006) for quantitative abundance data. These 
functions correct the index for species that have not been observed due to sampling errors. On 
output, the D matrices are not square-rooted, contrary to the Jaccard, Sørensen and Ochiai 
indices in group 3, which are square-root transformed.  

 abundance-based Jaccard D, D[ik] = 1-(UV/(U+V-UV))  

 abundance-based Sørensen D, D[ik] = 1-(2UV/(U+V))  

 abundance-based Ochiai D, D[ik] = 1-sqrt(UV)  

 abundance-based Simpson D, D[ik] = 1-(UV/(UV+min((U-UV),(V-UV))))  

 Group 5 – General-purpose dissimilarities that do not have an upper bound (maximum D value). 
These indices are inappropriate for beta diversity studies.  

 Euclidean D, D[ik] = sqrt(sum(y[ij]-y[kj])^2)  

 Manhattan D, D[ik] = sum(abs(y[ij] - y[ik]))  
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 modified mean character difference, D[ik] = (1/pp) sum(abs(y[ij] - y[ik])) 

-------- 
 
# The indices are computed by functions written in C for greater computation speed, especially for 
large data matrices. These same indices are available in function beta.div() to compute beta diversity 
and LCBD indices. 
 

3.5. Package cluster, function daisy(): 3 quantitative dissimilarities (documentation:  ?daisy) 
 
# Dissimilarities among objects can be computed from environmental variables using coefficients in 
the function ‘daisy’ which correctly handles missing values (NA). The available coefficients are: 
Euclidean distance, Manhattan distance, and Gower dissimilarity. The choice of coefficient is done 
by typing its name in quotes. 
 
# When computing the Gower coefficient, daisy() recognizes and handles differently variables 
belonging to different types: quantitative, semi-quantitative (“ordered factor”) and binary variables 
on the one hand, qualitative multiclass variables (“factors”) on the other. Missing values (NA) are 
allowed. D = 1 – S. Example: 
 
   data(dune.env)  # available in package ‘vegan’ 
   ?dune # Information about these data 
 
# The first variable is quantitative. Variables #2, 4, and 5 are “ordered factors”; they will be treated as 
if they were quantitative. Variable #3 is a “factor”. 
 
   mat.gower = daisy(dune.env, "gower") 
 
# Method ‘gower’ in vegan’s function vegdist() does not handle missing values nor factors. It only 
uses quantitative variables. Example: 
 
   mat.gower.2 = vegdist(dune.env, "gower") 
 
# Example of data with missing values, NA (Numerical ecology 2012, p. 280) 
 
   ex.p260 = matrix(c(2,1,1,2,3,6,NA,3,1,2,1,5,2,2,3,4,2,5,2,2,4,6,5,10),3,8) 
   ex.p260 
   res.gower = daisy(ex.p260, "gower") 
 
# Function vegdist() in ‘vegan’ cannot handle the missing values (NA) in variable #3 
 
   res.gower.2 = vegdist(ex.p260, "gower") 
   res.gower.2 = vegdist(ex.p260[,-3], "gower") 
 

3.6. Package FD, function gowdis(): Gower dissimilarity (documentation:  ?gowdis) 
 
 This is the most complete function to compute Gower’s coefficient. It computes the 
dissimilarity for variables of mixed types, including quantitative, ordered, factor, and binary 
variables. Variable weights can be specified in that function. Missing values (NA) are allowed. D = 1 
– S. Run in gowdis() and daisy() the example data set ‘dummy$trait’ used as example in the 
gowdis() help file. 
 
# ========== 
 
# Some tricks of the trade 
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# If a similarity matrix computed by another program is imported into the R console, it can be 
transformed into a dissimilarity by: 
   mat.D = 1-mat.S 
 
# or (better in many cases, to avoid negative eigenvalues in PCoA): 
   mat.D = sqrt(1-mat.S) 
 
# That object is a ‘data.frame’. Its type can be changed as follows to the type ‘dist’, required by 
hclust(), cmdscale(), and the nMDS functions: 
   mat.DD = as.dist(mat.D)  
 
# A function in ‘ade4’ tells users whether or not a dissimilarity matrix ‘mat.D’ is Euclidean. If it is 
not, it will produce negative eigenvalues in principal coordinate analysis (PCoA). See Numerical 
ecology (2012), pp. 296-298 and 500-506. 
 
   is.euclid(mat.D) 
 
# Examples 
   is.euclid(mat.gower) # Matrix ‘mat.gower’ computed above using daisy() 
   is.euclid(sqrt(mat.gower))  # Matrix ‘mat.gower’ computed above using daisy() 
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4. Transformations  
 
# Transform the data. In particular, one may want to transform species presence-absence or 
abundance data before linear analyses that preserve the Euclidean distance among the objects (PCA, 
RDA, k-means partitioning), 
 
# Load Yari Oksanen’s vegan package. 
 
   library(vegan) 
 
# The vegan function for transformations is decostand. Info :    ?decostand 
 
# Transformations for species presence-absence or abundance data: 
 
• total: divide by margin total (default MARGIN = 1). MARGIN = 1 means “by rows”. 
• normalize: make margin sum of squares equal to one (default MARGIN = 1). 
• chi.square: divide by row sums and square root of column sums, and adjust for square root of 

matrix total (Legendre & Gallagher 2001). When used with Euclidean distance, the matrix should 
be similar to the Chi-square distance used in correspondence analysis. However, the results from 
cmdscale would still differ, since CA is a weighted ordination method (default MARGIN = 1). 

• hellinger: square root of method = "total" (Legendre & Gallagher 2001). 
• log: logarithmic transformation suggested by Anderson et al. (2006). This is not log(y+1). 
• pa: scale into presence/absence scale (0/1). 
 
# Other transformations for physical variables: 
 
• max: divide by margin maximum (default MARGIN = 2). MARGIN = 2 means “by columns”. 
• freq: divide by margin maximum and multiply by number of non-zero items, so that the average of 

non-zero entries is one (Oksanen 1983; default MARGIN = 2). 
• range: standardize values into range 0 ... 1 (default MARGIN = 2). If all values are constant, they 

will be transformed to 0. 
• standardize: scale into zero mean and unit variance (default MARGIN = 2). 
• pa: scale into presence/absence scale (0/1). 
 
# Examples for species abundance data: 
 
   spiders.transf = decostand(spiders,"total")      # transf. to profiles of relative abundances 
   spiders.transf = decostand(spiders,"norm")     # chord transformation 
   spiders.transf = decostand(spiders,"hel")       # Hellinger transformation 
   spiders.transf = decostand(log1p(spiders),"norm") # log-chord transformation 
   spiders.transf = decostand(spiders,"chi.sq")    # chi-square transformation 
   spiders.transf = decostand(spiders,"pa")         # transformation to presence-absence data 
 
# Examples for physical data: 
 
   data.transf = decostand(data,"range")      # range variables to the [0, 1] interval 
   data.transf = decostand(data,"stand")      # variable standardization 



 Practicals using the R language 20 

5. Multiple regression 
 
# Read file 'Bears.txt' to produce a 'data frame' bears: 
   bears = read.table(file.choose(), header=TRUE, row.names=1) 
   bears 
 
# The last column of the table is a factor (sex) represented by characters (letters M, F). 
# Create a matrix-type file containing only the numerical portion of the 'data frame': 
   bears.mat = as.matrix(bears[,1:4]) 
 
# A regression model (function ‘lm’) can be written for the data frame ‘bears’,  
# with notation ~ to indicate the columns used in the model (response and explanatory variables).  
# ‘lm’ stands for ‘linear model’ and ~ means ‘function of’. 
   toto = lm(bears[,2] ~ bears[,1] + bears[,3] + bears[,4]) 
 
# The regression coefficients are found in the output object 'toto'. 
   toto 
 
# The regression coefficients and tests of significance are obtained by the command 'summary': 
   summary(toto) 
 
# In the model, one can use directly the names of the variables found in the data frame. 
# It is useful to have short names for the variables. 
   toto = lm(Mass.kg ~ Estimated.age + Height.cm + Length.cm, data=bears) 
   summary(toto) 
 
# One can also write the model using the matrix-type file ‘bears.mat’: 
   toto = lm(bears.mat[,2] ~ bears.mat[,1] + bears.mat[,3] + bears.mat[,4]) 
   summary(toto) 
 
# For the matrix-type file ‘bears.mat’, the same command can also be written as: 
   toto = lm(bears.mat[,2] ~ bears.mat[, c(1,3,4)])  
   summary(toto) 
 
# The 5th variable of file bears is a qualitative variable with two classes, M and F.  
# If that variable is transformed into a factor 
   bears[, 5] = as.factor(bears[, 5]) 
 
# it can be used directly in the regression, which becomes an analysis of covariance: 
   toto = lm(bears[,2] ~ bears[,1] + bears[,3] + bears[,4] + bears[,5]) 
   summary(toto) 
 
# The fitted values of the regression model are obtained as follows: 
   Fitted = predict(toto)  # or else    Fitted = fitted.values(toto) 
   Fitted 
# The residuals of the regression model are obtained as follows: 
   Resid = residuals(toto) 
   Resid 
 
# For the analysis of residuals, four graphs are produced in sequence by the command: 
   plot(toto) 
# These graphs are described in the documentation file 
   ?plot.lm 
# The two most interesting graphs plot the residuals as a function of the fitted values: 
   plot(toto, which=c(1,3)) 
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# In the case of a simple linear regression (with a single explanatory variable), one can produce as 
follows a graph of the data points showing the regression line: 
   toto = lm(Mass.kg ~ Estimated.age, data = bears) 
   summary(toto) 
   a = summary(toto)$coefficients[1,1] # Intercept 
   b = summary(toto)$coefficients[2,1] # Slope 
   plot(bears[,1], bears[,2], xlab="Age", ylab="Mass") # Plot the data points 
   abline(a, b, col="red")  # Plot the regression line 
 
# Special tests of significance – A table of additional tests can be obtained by: 
   anova(toto) 
# Warning: That table is difficult to interpret. The order of the variables in the model is important. 
The table tests the additional effects of the variables in their order of inclusion in the model. 
 
# Nested models can be statistically compared as follows: 
   model1 = lm(bears[,2] ~ bears[,1] + bears[,3] + bears[,4] + bears[,5]) 
   model2 = lm(bears[,2] ~ bears[,1] + bears[,3]) 
   anova(model1, model2) 
 
# That function can be used to test the partial effect of a single variable: 
   model1 = lm(bears[,2] ~ bears[,1] + bears[,3] + bears[,4] + bears[,5]) 
   model2 = lm(bears[,2] ~ bears[,1] + bears[,3] + bears[,4]) 
   anova(model1, model2) 
 
# Compare this result with that of the test of the partial regression coefficient  of variable 5 
# computed above. Remember that for a single variable, t = sqrt(F) 
   summary(model1) 
 
# ========== 

# Function ‘lm’ can be used to carry out regression, single-classification analysis of variance, and 
analysis of covariance. The function ‘aov’ may, however, provide a more convenient interface for 
these more complex analyses. 

# Function ‘aov’ is a wrapper for function ‘lm’, for fitting linear models to balanced or unbalanced 
experimental designs, simple or crossed. It can also produce analyses of covariance mixing factors 
with quantitative variables. The factor(s) must be declared “as.factor”. Details of the analysis of 
variance or covariance results are given by ‘summary.aov’. 
 
# Multivariate analysis of variance is obtained by the function ‘manova’. Manova result details are 
given by ‘summary.manova’. 
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6. Canonical  analyses (RDA and CCA) 
# 6.1. Canonical redundancy analysis (RDA)  
# 6.1.1. Canonical redundancy analysis (RDA) through matrix algebra 
 
# Read the data from file "Table_11-3.txt" and transfer them to matrices 
   Table11.3 = read.table( file.choose() ) 
   Table11.3.mat = as.matrix(Table11.3) 
   Y.mat = Table11.3.mat[,1:6]  # Check the contents of Y.mat 
   X.mat = Table11.3.mat[,7:10]  # Check the contents of YX.mat 
 
# Center matrix Y, standardize matrix X. 
# Note: parameter ‘2’ indicates to apply the function ‘center’ by columns 
   Y = scale(Y.mat, center=TRUE, scale=FALSE) # or: Y = apply(Y.mat,2,scale,center=T,scale=F) 
   X = scale(X.mat, center=TRUE, scale=TRUE) # or: X = apply(X.mat,2,scale,center=T,scale=T) 
 
# Note that column #4 is collinear to columns #2 and 3. 
# Create matrix X3, which only contains the first 3 columns of X: 
   X3 = X[,1:3] 
 
### First part of RDA: multivariate regression 
 
# Create X'X and compute inv[X'X]: 
   invX3 = solve( t(X3) %*% X3 ) 
    
# Compute the projector matrix: proj(nxn) = X inv[X'X] X' 
   projX3 = X3 %*% invX3 %*% t(X3) 
 
# Computed the matrix of regression fitted values, Yhat = projX * Y 
   Yhat3 = projX3 %*% Y # Check the contents of Yhat3 
 
# The fitted values in Yhat are the same if computed from X.mat centred, not standardized 
   X4 = scale(X.mat[,1:3], center=TRUE, scale=FALSE) 
   Yhat4 = X4 %*% solve(t(X4)%*%X4) %*% t(X4) %*% Y 
   # Proof: the sum of the differences between matrices Yhat3 and Yhat4 is zero 
   ( diff = sum( abs(Yhat3 - Yhat4) ) ) 
 
# Could we compute Yhat from matrix X (which contains 4 columns) instead of X3? 
   library(MASS) 
   invX = ginv(t(X) %*% X)         # Would “invX = solve(t(X) %*% X)” also work? 
   projX = X %*% invX %*% t(X) 
   Yhat5 = projX %*% Y # Check the contents of Yhat5 
# Are the fitted values in Yhat5 the same as in Yhat3 ? 
   ( diff = sum( abs(Yhat3 - Yhat5) ) ) 
# Why is it that ginv() (generalized inverse) works despite the collinearity in matrix X? 
# Look at the documentation file of function ginv() in package MASS. 
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### Second part of RDA: PCA of the Yhat matrix of fitted values 
 
# Compute the covariance matrix of the fitted values: 
 
   Yhat3.cov = cov(Yhat3) 
 
# Compute the eigenvalues and eigenvectors: 
 
   Yhat3.eig = eigen(Yhat3.cov) 
 
# Examine the eigenvalues and eigenvectors: 
 
   Yhat3.eig$values 
   Yhat3.eig$vectors 
 
# Compute the eigenvalues as fractions of the total variance in matrix Y. 
# The total variance in Y can be computed in different ways.  
# One way is to sum the diagonal terms of the covariance matrix, another is to compute the 
# sum of the squared values of Y, obtained by Hadamard product; Y is already centered. 
 
   trace = sum(diag(cov(Y))) # or:    trace = (sum(Y*Y)) / (n-1) 
   trace # or:    trace = (sum(Y^2)) / (n-1) 
 
   EigvalPercent = Yhat3.eig$values[1:3] / trace 
   EigvalPercent 
 
# Scaling type 1: plots will involve matrices F.mat and U, or Z.mat and U. 
# The equations are described in Numerical ecology (2012), p. 639. 
# Transfer the first 3 eigenvectors to matrix U (element 'species' in the rda() output list): 
 
   U = Yhat3.eig$vectors[,1:3] 
 
# Compute matrix F.mat:   F.mat = Y * U (element 'sites' in the rda() output list): 
 
   F.mat = Y %*% U 
   F.mat 
 
# Compute matrix Z.mat:   Z.mat = Yhat * U (element 'constraints' in the rda() output list): 
 
   Z.mat = Yhat3 %*% U 
   Z.mat 
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# Plot the first two columns of F.mat, with axis 2 reversed; 
# add the first two columns of matrix U*10 to that diagram: 
 
   plot(F.mat[,1], -F.mat[,2], xlim=c(-16,16), ylim=c(-10,10), asp=1, xlab="Axis 1", ylab="Axis 2") 
   arrows(x0=0 ,y0=0 ,U[,1]*10 ,-U[,2]*10, code=0) 
    
# Biplot using matrices Z.mat (with axis 2 reversed) and U: 
    
   plot(Z.mat[,1], -Z.mat[,2], xlim=c(-16,16), ylim=c(-10,10), asp=1, xlab="Axis 1", ylab="Axis 2") 
   arrows(x0=0, y0=0, U[,1]*10, -U[,2]*10, code=0) 
 
# Notes: the limits set for the abscissa are (-16,16), and (-10,10) for the ordinate. 
# asp=1 : the ratio of the dimensions abscissa/ordinate is fixed to 1 
# Arrows, code=0: arrows without head; code=2: arrows with an arrowhead. 
 
# Representation of the explanatory variables in the diagram. 
# First, compute the matrix containing the correlations between X and Z.mat: 
 
   corXZ=cor(X, Z.mat) 
   corXZ 
 
# Create the diagonal matrix 'D' of weights, sqrt(lambda(k)/trace): 
 
   D = diag(sqrt(Yhat3.eig$values[1:3]/trace)) 
 
# Compute the positions of the explanatory variables in the diagram (element 'biplot' in the rda()  
# output list). Plot the explanatory variables in the diagram: 
 
   posX = corXZ %*% D 
   arrows(x0=0, y0=0, posX[,1]*10, -posX[,2]*10, code=2) 
 
# Note: for scaling type 1, it would be incorrect to plot the explanatory variables using the values in  
# the correlation matrix ‘corXZ’: the substrate class variables would not point to the centroids of the  
# groups of sites containing these substrates. You can verify that by typing: 
 
   arrows(x0=0, y0=0, corXZ[,1]*10, -corXZ[,2]*10, code=2, col="red") 
 
# ========== 
 
# Optional exercise: write the equations in R for scaling type 2 biplots. The equations are described 
in Numerical ecology (2012), p. 640. 
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# 6.1.2. Canonical redundancy analysis using the vegan package 
 
# Data are in a text file called "Table_11-3.txt" 
# Read the data and transfer them into a matrix called Table11.3.mat,  
# then into matrices Y.mat (response variables, columns 1 to 6 of Table11.3.mat) and X.mat  
# (explanatory variables, columns 7 to 10): 
 
   Table11.3 = read.table( file.choose() ) 
   Y.mat=Table11.3[,1:6] 
   X.mat=Table11.3[,7:10] 
 
   Y.mat 
       Spec1 Spec2 Spec3 Spec4 Spec5 Spec6 
Site1      1     0     0     0     0     0 
Site2      0     0     0     0     0     0 
Site3      0     1     0     0     0     0 
Site4     11     4     0     0     8     1 
Site5     11     5    17     7     0     0 
Site6      9     6     0     0     6     2 
Site7      9     7    13    10     0     0 
Site8      7     8     0     0     4     3 
Site9      7     9    10    13     0     0 
Site10     5    10     0     0     2     4 
 
   X.mat 
       Depth Coral Sand Other 
Site1      1     0    1     0 
Site2      2     0    1     0 
Site3      3     0    1     0 
Site4      4     0    0     1 
Site5      5     1    0     0 
Site6      6     0    0     1 
Site7      7     1    0     0 
Site8      8     0    0     1 
Site9      9     1    0     0 
Site10    10     0    0     1 
 
# Call the ‘vegan’ package  
   library(vegan) 
# Canonical redundancy analysis (RDA, function ‘rda’) 
   rda.out = rda(Y.mat, X.mat) 
   rda.out 
Call: 
rda(X = Y.mat, Y = X.mat)  
 
              Inertia Rank 
Total         112.889      
Constrained   108.341    3 
Unconstrained   4.548    4 
Inertia is variance  
Some constraints were aliased because they were collinear (redundant) 
 # The binary variable “Other”, which was collinear, was eliminated 
Eigenvalues for constrained axes: 
  RDA1   RDA2   RDA3  
74.523 24.942  8.876  
 
Eigenvalues for unconstrained axes: 
     PC1      PC2      PC3      PC4  
4.188785 0.313863 0.037037 0.008463  
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# Look at the structure of the output object produced by rda(), where the detailed results of the 
analysis are found. See the notes entitled “Examine the output object produced by rda() or cca() of 
{vegan}” on page 5.  
 
# Examine the RDA results 
 
summary(rda.out, scaling=1) 
summary(rda.out, scaling=2) 
 
# Plot the graph: 
 
   plot(rda.out, display=c("sp","sites","bp")) 
 
# Compute the R2 and adjusted R2 statistics: 
 
   RsquareAdj(rda.out) 
 
# Test of significance of the canonical relationship: 
 
   anova(rda.out) 
Permutation test for rda under reduced model 
 
Model: rda(X = Y.mat, Y = X.mat) 
         Df     Var      F  N.Perm Pr(>F)     
Model     3 108.341 47.642 199.000  0.005 ** 
Residual  6   4.548                          
--- 
Signif. codes:  0 `***’ 0.001 `**’ 0.01 `*’ 0.05 `.’ 0.1 ` ‘ 1  
 
#  Information on function ‘anova’ for permutation tests: 
   ?anova.cca 
 
# Users can impose a predetermined number of permutations. For example, to obtain 9999 random  
# permutations, the command is written as follows: 
 
   anova(rda.out, permutations = how(nperm=9999)) 
 
# There are another ways to write the RDA model: 
   rda.out = rda(Table11.3[,1:6] ~ Depth + Coral + Sand + Other, data=Table11.3)  
 
# or else 
   rda.out = rda(Y.mat ~ . , data=X.mat) 
 
# The character ~ means ‘function of’, as in multiple regression models. 
# The declaration “data=” at the end of the model specification means that the variables that follow 
the tilde sign (~) are found in that file. That file must have the ‘data.frame’ class. 
# The period (.) that follows the tilde sign (~) indicates that all variables in file “data” must be 
included as explanatory variables in the model. 
# It is necessary to use the functional form of the call to obtain tests of significance by="axis", 
by="terms" or by="margin" (next page). 
 
# ========== 
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# 6.1.3. Tests of individual canonical eigenvalues 
 
   Table11.3 = read.table( file.choose() ) # Read the data file "Table_11-3.txt" 
   Table.spe = Table11.3[,1:6] 
   Table.env = Table11.3[,7:9] 
 
# 1. Automatic test of all individual canonical eigenvalues using vegan’s ‘marginal’ method 
 
   toto = rda(Table.spe ~ Depth+Coral+Sand, data=Table.env) 
   anova(toto, by="axis")  
 
# 2. How does that test work? Manual test of individual canonical eigenvalues using rda() in 'vegan' 
# First, look at the structure of the output object of function rda() 
   str(toto) 
 
# The positions of objects in canonical space are found in matrix ‘toto$CCA$u’ 
   toto$CCA$u 
 
# Test the three axes, in succession, in the presence of the previously tested axes (covariables) 
# This is the ‘forward’ method of Cajo J. F. ter Braak. 
 
   rda.axe1 = rda(Table.spe, toto$CCA$u[,1]) 
   anova(rda.axe1) 
 
   rda.axe2 = rda(Table.spe, toto$CCA$u[,2], toto$CCA$u[,1]) 
   anova(rda.axe2) 
 
   rda.axe3 = rda(Table.spe, toto$CCA$u[,3], toto$CCA$u[,1:2]) 
   anova(rda.axe3) 
 
# 6.1.4. Significance tests by="terms" and by="margin" 
 
# Test the significance of the additional contribution of each explanatory variable, in a sequential 
way, following their inclusion order in the model. Compare the following results: 
 
   toto1 = rda(Table.spe ~ Depth+Coral+Sand, data=Table.env) 
   anova(toto1, by="terms")  
 
   toto2 = rda(Table.spe ~ Sand+Coral+Depth, data=Table.env) 
   anova(toto2, by="terms")  
 
# Test the additional (marginal) contribution of each explanatory variable in the presence of all the 
other variables in the model. Compare the results of the two following analyses: 
 
   anova(toto1, by="margin")  
   anova(toto2, by="margin") 
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# 6.2. Partial canonical redundancy analysis 
# 6.2.1. Example of partial canonical redundancy analysis using matrix algebra 
 
# Example: compute the partial, unique contribution of variable ‘Depth’ 
# to the variation of Y, in the presence of the other variables of matrix X. 
 
# Read the data, etc. 
 
   Table11.3 = read.table( file.choose() ) # Read the data file "Table_11-3.txt" 
   Table11.3.mat = as.matrix(Table11.3) 
   Y.mat=Table11.3.mat[,1:6] 
   X.mat=Table11.3.mat[,7:10] 
   Y = scale(Y.mat, center=TRUE, scale=FALSE) # or: Y = apply(Y.mat,2,scale,center=T,scale=F) 
   X = scale(X.mat, center=TRUE, scale=TRUE) # or: X = apply(X.mat,2,scale,center=T,scale=T) 
   Y 
   X 
# Create matrix XX containing variable ‘Depth’ as well as the 
# matrix of covariables W containing the other three variables of X: 
 
   XX = X[,1] 
   W = X[,2:4] 
 
# Regress depth (XX) on the covariables (W); 
# compute the residuals of that regression: 
   library(MASS) 
   invWprW = ginv(t(W) %*% W) 
   projW = W %*% invWprW %*% t(W) 
   Xres.W = XX - (projW %*% XX) 
 
# Compute the canonical analysis (RDA) of Y by XXres: 
 
   invXprX = ginv(t(Xres.W) %*% Xres.W) 
   projXres.W = Xres.W %*% invXprX %*% t(Xres.W) 
   YhatXX = projXres.W %*% Y 
   YhatXX.cov = cov(YhatXX) 
   YhatXX.eig = eigen(YhatXX.cov) 
   Z.mat = YhatXX %*% YhatXX.eig$vectors[,1] 
 
# Examine the single canonical eigenvalue and the positions of the objects along the canonical axis: 
 
   YhatXX.eig$values[1] 
   Z.mat 
 
# Express the canonical eigenvalue as a fraction of the total variance in matrix Y 
# (eigenvalue = 0.083, P = 0.001): 
 
   EigvalPercent = YhatXX.eig$values[1] / sum(diag(cov(Y))) 
   EigvalPercent 
 
# This standardized eigenvalue gives the partial contribution of ‘Depth’ to the explanation of the  
# variance of Y in the presence of the other variables of matrix X (semipartial R2). 
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# 6.2.2. Example of partial canonical analysis (here RDA) using ‘vegan’ 
# 
# Compute the partial (unique) contribution of variable "Depth" to the explanation of the variance  
# of Y in the presence of the other variables of matrix X: 
 
   rda.out = rda(Table11.3[1:6] ~ Depth + Condition(Coral+Sand+Other), data = Table11.3)  
# or else (same results): 
   rda.out = rda(Y.mat, X.mat[,1], X.mat[,2:4])   
   anova(rda.out) 
 
Permutation test for rda under reduced model 
 
Model: rda(X = Y.mat, Y = X.mat[, 1], Z = X.mat[, 2:4]) 
         Df    Var      F N.Perm Pr(>F)    
Model     1 9.3407 12.322    999  0.002 ** 
Residual  6 4.5481                         
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  
 
# Compute the semipartial R2; there is no adjusted R-square in partial RDA. 
 
   RsquareAdj(rda.out) 
 
# 6.3. Canonical correspondence analysis (CCA) 
 
# Beware: there are cca functions in other R packages, in particular in ade4. 
 
# CCA example 1: spider data  
   library(vegan) 
 
# Load the data set "spiders.RData" by dragging it out to the R console, or using the load() command. 
The data files "spiders" and "spiders.env4" will appear among the files of your R console. 
 
# Download the two data tables (response and explanatory variables) 
   ls() 
   dim(spiders)    # Response variables  
   dim(spiders.env4)    # Explanatory variables 
   ( spider.cca = cca(spiders ~ ., spiders.env4) ) 
   plot(spider.cca, scaling=1) 
   summary(spider.cca, scaling=1, axes=3) 
   anova(spider.cca) # Test of significance of the canonical relationahip (R2) 
 
# CCA example 2: the cafés of Neuchâtel (D. Borcard) 
   library(vegan) 
   cafes.spe = read.table( file.choose() ) # Read the data file "Cafes_10x6_spe.txt" 
   cafes.env = read.table( file.choose() ) # Read the data file "Cafes_10x3_env.txt" 
   ( cafes.cca = cca(cafes.spe, cafes.env) ) 
   plot(cafes.cca, scaling=1) 
   summary(cafes.cca, scaling=2, axes=3) 
   anova(cafes.cca) 
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7. Two-way Manova by RDA 
# Use RDA to carry out a two-way multivariate analysis of variance (Manova). 
 
# The two crossed factors (A, B) are represented by Helmert contrasts. Their interaction is 
represented by variables that are the product of the variables coding for the main factors. Properties: 
(1) the sum of each variable is zero; (2) all variables are orthogonal (their scalar products are all 
zero). The group of variables coding for factor A is orthogonal to the group of variables coding for 
factor B and to the group of variables coding for the interaction A*B. 
 
1. Read the data table (24 rows, 5 columns) 
table.sp = read.table( file.choose() ) # Read the data file "Table_sp.txt" 
table.sp 
# Row labels indicate levels of factors A (3 levels) and B (4 levels), and the replicate number (1, 2) 
 
2. Generate variables representing the two factors  
 
# Use ‘gl’ to generate a variable representing factor A with 3 levels and 8 replicates 
A = gl(3, 8) 
 
# Use ‘gl’ to generate a variable representing factor B with 4 levels and 2 replicates repeated 3 times 
B = gl(4, 2, length=24) 
# Check that the values so produced correspond to the arrangement of the factors in the data table 
 
3. Create Helmert contrasts for the factors, as well as variables representing the interaction A*B 
# Examine the documentation files of functions ‘model.matrix’, ‘contrast’, and ‘contr.helmert’ 
 
helmert = model.matrix(~ A*B, contrasts=list(A="contr.helmert", B="contr.helmert")) 
# Examine this table. Which columns represent factor A? Factor B? The interaction? 
apply(helmert[,2:12], 2, sum) # Check property 1 of Helmert contrasts 
t(helmert[,2:12]) %*% helmert[,2:12] # Check property 2; or: cor(helmert[,2:12]) 
 
4. Test the interaction using RDA.  Factors A and B form the matrix of  covariables 
 
interaction.rda = rda(table.sp, helmert[,7:12], helmert[,2:6]) 
anova(interaction.rda, model="direct")  # Is the interaction significant? 
 
5. Test main factor A using RDA. Factor B and the interaction form the matrix of covariables. 
 
factorA.rda = rda(table.sp, helmert[,2:3], helmert[,4:12]) 
anova(factorA.rda, model="direct")                # Is factor A significant? 
 
6. Test main factor B using RDA. Factor A and the interaction form the matrix of covariables. 
 
factorB.rda = rda(table.sp, helmert[,4:6], helmert[,c(2:3, 7:12)]) 
anova(factorB.rda, model="direct")                # Is factor B significant? 
 
# Can you calculate the R-square corresponding to the explanation by factors A and B (separately)?
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8. Selection of explanatory variables in RDA 
 
8.1. Forward selection using forward.sel() of the ‘adespatial’ package 
 
# This function uses two files: the response variables and the explanatory variables. 
 
library(adespatial) 
# Examine the documentation file of function forward.sel() 
   ?forward.sel 
 
# Load the data set "spiders.RData" by dragging it out to the R console, or using the load() command.  
# The data files "spiders" and "spiders.env15" will appear among the files of your R console. 
   ls() 
   dim(spiders)    # Response variables  
   dim(spiders.env15)    # Explanatory variables 
 
# Function forward.sel() produces a table showing the stepwise inclusion of the explanatory 
# variables. The user decides from this table which variables will be retained for the RDA 
# computed using “vegan”. 
 
   res = forward.sel(spiders, spiders.env15) 
 
# Quick method to run vegan’s rda() function, using only the selected columns (variables) of file   
# “spiders.env15”. Example using only the first three variables selected by forward.sel(): 
 
   rda(spiders, spiders.env15[, res$order[1:3]]) 
 
8.2. Forward, backward or stepwise selection using ordistep() or ordiR2step() 
 
# Functions ordistep() and ordiR2step() are available in the vegan package. 
# Function ordiR2step() produces the same selection as forward.sel() described in section 8.1. 
 
# Read the documentation file and run the Examples: 
 
?ordistep # or:  ?ordiR2step 
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9. Spatial detrending 
 
It is important to remove linear spatial trends that may be present in the response data prior to most 
forms of spatial analysis. That includes spatial eigenfunction (dbMEM) analysis (section 10). Linear 
trends represent processes acting at a scale much larger than the study area. These processes cannot 
be modelled correctly using data acquired in the study area only. 
 
# 1. Detrending by regression, function lm(). Univariate case. 
 
var1 = c(1:20) 
var2 = rnorm(20,0,3) 
var3 = var1 + var2 
plot(var1, var3) # Examine variable ‘var3’ produced, as a function of ‘var1’ (abscissa) 
 
model.lm = lm(var3 ~ var1) 
resid = residuals(model.lm) 
plot(var1, resid) # Examine the residuals, as a function of ‘var1’ (abscissa) 
 
========== 
 
# 2. Detrending the response data by multivariate regression, manual eq. 10.16. 
# Example using the mite data (multivariate) available in {vegan} 
library(vegan) 
data(mite) # Species data, 70 x 35 
data(mite.xy) # Site coordinates, 70 x 2 
Y = mite 
X = mite.xy 
 
# Centre Y and X 
Y = scale(Y, center=TRUE, scale= FALSE) 
X = scale(X, center= TRUE, scale= FALSE) 
# Matrix algebra equation for multivariate regression and calculation of residuals 
mite.res = Y - (X %*% solve(t(X)%*%X) %*% t(X) %*% Y) 
 
========== 
 
# 3. Detrending multivariate response data by regression, function lm().  
# Example: multivariate mite data 
 
mite.lm = lm(as.matrix(mite) ~ ., mite.xy) 
mite.resid = residuals(mite.lm) 
head(mite.resid) 
 
# Check the results 
 
sum(abs(mite.res - mite.resid)) # The two sets of residuals do not differ 
diag(cor(mite.res, mite.resid))  # The two sets of residuals have correlations of 1 
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10. dbMEM spatial (or temporal) eigenfunction analysis (formerly called PCNM analysis)1 
 
# Load the packages required for this exercise. 
# It is important to load the packages in the specified order, loading ade4 before adegraphics. In that 
way, some functions of ade4 are masked (i.e. they are turned off) by the same-name functions of new 
package adegraphics. Later, the same-name functions of ade4 will be discarded. 
 
library(ade4) 
library(adegraphics) 
library(adespatial) 
 
# Load the mite data files available in {vegan} 
 
library(vegan) 
data(mite)       # Mite species data from "vegan", 70 x 35 
data(mite.xy)    # Geographic coordinates from "vegan", 70 x 2 
 
# Transform the species data (Practicals p. 16) 
mite.hel <- decostand(mite, "hellinger") 
 
# Read file "mite_env.txt" from the folder of Practicals 
mite_env = read.table( file.choose() ) 
 
# Plot a rough map of the 70 sampling points 
plot(mite.xy, asp=1)     
text(mite.xy, labels=rownames(mite.xy), pos=3) 
 
# ======== 
 
# dbMEM analysis by steps 
 
# 1. Detrend the species data  (Practicals p. 32) 
 
mite.lm = lm(as.matrix(mite.hel) ~ as.matrix(mite.xy)) 
mite.resid = residuals(mite.lm) 
 

                                                
1 The pcnm() function of vegan produces classical PCNM eigenfunctions, for which the eigenvalues do not 
correspond to the associated Moran’s I indices; the eigenvectors modelling positive spatial correlation are, 
however, perfectly correlated to the same-rank dbMEM eigenfunctions. They act in the same way when they 
are used as explanatory variables in a regression or RDA model. Typically, for n sites, PCNMs produce 
approximately 2n/3 eigenfunctions that have positive eigenvalues. The last third of those have negative 
Moran’s I, which indicate that they model negative spatial correlation. The pcnm() function of vegan can use 
weights, and this allows the construction of PCNM variables that remain orthogonal when they are used in 
canonical correspondence analysis (vegan’s function cca(), section 6.3 in these Practicals). 
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# 2. Construct the dbMEM eigenfunctions using the dbmem() function. See ?dbmem. Note that 
dbmem() can use the xy coordinates of the sites or a pre-computed geographic distance matrix. 
# The default option of argument MEM.autocor is to compute only the eigenfunctions modelling 
positive spatial correlation. However, other options are available for argument MEM.autocor. 
 
?dbmem 
 
mite.dbmem = dbmem(mite.xy, silent=FALSE)     # Note the truncation value 
summary(mite.dbmem) 
 
# Examine the positive eigenvalues 
attributes(mite.dbmem)$values 
 
# Get the dbMEM eigenvectors modelling positive spatial correlation 
mite.mem = as.matrix(mite.dbmem) 
dim(mite.mem)   # How many are there? 
 
# Plot the spatial weighting matrix of this analysis, showing all edges > truncation value 
s.label(mite.xy, nb = attr(mite.dbmem, "listw")) 
 
# Plot maps of the first 9 dbMEM eigenfunctions using the new s.value() function of adegraphics: 
s.value(mite.xy, mite.dbmem[,1:9]) 
 
# This plot can also be obtained using function s.value() of ade4 (slower); it involves, however, the 
writing of a for loop: 
 
par(mfrow=c(3,3)) 
for(i in 1:9) { 
ade4::s.value(mite.xy, mite.mem[ ,i], addaxes=FALSE, include.origin=FALSE,  
   sub=paste("dbMEM #",i), csub=1.5)   
} 
 
# Compute and test the Moran’s I values associated with the dbMEM eigenfunctions 
# One can check that the eigenvalues are perfectly proportional to Moran’s I 
 
( test <- moran.randtest(mite.dbmem, nrepet = 999) ) 
plot(test$obs, attr(mite.dbmem, "values"), xlab = "Moran's I", ylab = "Eigenvalues") 
 
# Plot the decreasing values of Moran’s I describing the successive dbMEM eigenfunctions. 
# The red line is the expected value of Moran’s I under H0. 
 
plot(test$obs, xlab="MEM rank", ylab="Moran's I") 
abline(h=-1/(nrow(mite.xy) - 1), col="red") 
 
# 3. Compute the R2 and the R2

adjusted for the global model that includes all positive dbMEM 
 
RsquareAdj(rda(mite.resid, mite.mem)) 
 
# 4. Forward selection (p. 28): identify the significant dbMEM among those that model positive 
spatial correlation. Use the adjusted R2 above as value for stopping criterion “adjR2thresh”. 
 
( mite.sel = forward.sel(mite.resid, mite.mem, adjR2thresh=0.2455) ) 
 
# The selected dbMEM variables are listed in vector "mite.sel$order" (column 2 of output table) 
( mite.sel$order ) 
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# Obtain an ordered list of the selected variable numbers: 
 
( sel.dbmem = sort(mite.sel$order) ) 
 
# Look at the adjusted R-square of the model containing the 8 selected dbMEM (line 8 of table): 
mite.sel[8,] 
 
# 5. Draw maps of the selected eigenfunctions using the new s.value() function of adegraphics:  
 
s.value(mite.xy, mite.mem[ ,sel.dbmem]) 
 
# This plot can be obtained using function s.value() of ade4 (slower); it involves writing a for loop: 
 
par(mfrow=c(3,3)) 
for(i in 1:length(sel.dbmem)) { 
ade4::s.value(mite.xy, mite.mem[ ,sel.dbmem[i]], addaxes=FALSE, include.origin=FALSE, 
sub=paste("dbMEM #", sel.dbmem[i]), csub=1.5) } 
 
# 6. Canonical analysis (RDA): compute the dbMEM spatial model 
 
mite.rda = rda(mite.resid ~ ., data=as.data.frame(mite.mem[,sel.dbmem])) 
anova(mite.rda) 
anova(mite.rda, by="axis") 
 
# How many axes of the canonical model are significant at level alpha = 0.05? 
anova(mite.rda, by="axis", cutoff=0.05) 
 
# 7. Draw maps of the three significant canonical axes using function s.value() of ade4 (larger maps) 
 
par(mfrow=c(1,3)) 
for(i in 1:3) { 
ade4::s.value(mite.xy, mite.rda$CCA$u[,i], addaxes=FALSE, include.origin=FALSE, 
sub=paste("Canonical axis #",i), csub=1.5) } 
 
# These maps could have been produced with the s.value() function of adegraphics. Can you do it? 
 
# 8. Other examples of dbMEM analysis are found in the documentation file of the function 
?dbmem 
 
# ======== 
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11. Variation partitioning 
 
# Function varpart (from ‘vegan’) partitions the variation of a response table Y with respect to 2, 3, 
or 4 explanatory tables X1, X2, X3, X4. The underlying method of analysis is canonical redundancy 
analysis (RDA). It is not necessary to eliminate collinear variables from the explanatory tables before 
partitioning. The transformations available in decostand (described section 4 above) can be called as 
options of the varpart function. As usual in R, the help file of varpart is obtained by:  
 
   library(vegan) 
   ?varpart 
 
# The examples provided with the function varpart use Borcard’s soil mite data, available in vegan. 
 
   data(mite) 
   data(mite.env) 
   data(mite.pcnm)   # These are classical PCNM eigenfunctions. See note at bottom of p. 30. 
 
# Example for two explanatory tables, "mite.env" and "mite.pcnm". "mite" is the Y (response)  
# table. "mite.env" contains multistate qualitative variables coded as factors. 
 
# There are two ways to write the model: 
# 1. One can write the file names one after the other, starting with the response table Y, followed by 
the explanatory data tables. The general format is:   result = varpart(Y, X1, X2) 
 
# Table ‘mite.env’ contains the nominal variable ‘Substrate’ coded as a factor. We must, first, create 
a new table in which that variable will be recoded by dummy variables. In this example, the ordinal 
variable ‘Shrub’ has a mostly linear contribution to the explanation of the mite data. 
 
   mm = model.matrix(~ SubsDens +WatrCont +Substrate +as.numeric(Shrub) +Topo, mite.env)[,-1] 
 
# The function ‘model.matrix’ creates a first column of ‘1’ that is used to compute the intercept in 
regression. The statement [,-1] at the end of the line removes that column before creating ‘mm’. 
 
   result2 = varpart(mite, mm, mite.pcnm, transfo="hel")  
   result2 
 
# The parameter transfo="hel" specifies that the Hellinger transformation is to be applied to the 
response table (‘mite’) before variation partitioning. varpart calls decostand for the transformation. 
 
# 2. Researchers who are used to writing regression models with a ‘tilde’ (~), in function lm, can use 
the same form in varpart. Using this writing, it is not necessary to unpack the variables coded as 
factors before running varpart. 
 
   result2 = varpart(mite, ~ SubsDens + WatrCont + Substrate + as.numeric(Shrub) + Topo, 
mite.pcnm, data=mite.env, transfo="hel") 
   result2  # Same result as above 
   showvarparts(2) # Plot a Venn diagram with the fraction names 
   plot(result2, bg=2:3) # Plot a Venn diagram with the fraction values 
# This new version of varpart appeared in version 2.3-1 of vegan. It produces coloured Venn 
diagrams upon request. The choice of colours is specified by parameter ‘bg’ (background colours). 
 
# The testable fractions can be tested for significance using vegan’s function rda. 
# For example, we will test the significance of fraction [a] as follows. 
 
# Function rda does not allow one to include a table of covariables residing in a separate file when 
using the formula with tilde (~). Before calling rda, one must first recode the nominal variable 
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‘Substrate’ in table ‘mite.env’, if this recoding has not already been done. 
 
   mm = model.matrix(~ SubsDens +WatrCont +Substrate +as.numeric(Shrub) +Topo, mite.env)[,-1] 
 
# The following call to rda contains a call to decostand to apply a Hellinger transformation, specified 
by "hel", to the mite data prior to the rda. 
   rda.result = rda(decostand(mite, "hel"), mm, mite.pcnm) 
   anova(rda.result) 
 
# Example for three explanatory tables. The two following calls to varpart are equivalent. 
 
# 1. First, create matrices of dummy variables (design matrices) for the variables coded as factors: 
 
   mm1 = model.matrix(~ SubsDens + WatrCont, mite.env)[,-1] 
   mm2 = model.matrix(~ Substrate + as.numeric(Shrub) + Topo, mite.env)[, -1] 
   result3 = varpart(mite, mm1, mm2, mite.pcnm, transfo="hellinger") 
   showvarparts(3)  # No colours were specified using parameter ‘bg’ 
   plot(result3, bg=2:4)  # The numbers determine the colours; try different combinations  
 
# Parameters can be added to print negative fractions (they are not printed in the default options), set 
the number of decimals (parameter ‘digits’), and choose the font size (parameter ‘cex’). Example: 
 
   plot(result3, cutoff = -Inf, digits=5, cex = 0.7, bg=5:7) 
 
# 2. If one prefers to write the model in the functional (~) form: 
 
   result3 = varpart(mite, ~ SubsDens+WatrCont, ~ Substrate + as.numeric(Shrub) + Topo, 
mite.pcnm, data=mite.env, transfo="hel") 
   showvarparts(3, bg=2:4) 
   plot(result3, bg=5:7) 
 
# For four explanatory tables, the function is called using the general form: 
 
   result4 = varpart(Y, X1, X2, X3, X4)  # Y = response table, X[1 ... 4] = explanatory tables 
   showvarparts(4, bg=4:7) 
 
# Hint: varpart can be used to obtain the adjusted R-square for a single explanatory variable: type the 
explanatory table’s name twice, as in the following example:  result1 = varpart(Y, X1, X1) 
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12. Clustering and partitioning methods 
 
# 12.1. Partitioning the objects into groups using the K-means method 
 
# 1. Prepare the data table. Example: file "Bears.txt" (beware: column 1 has a header) 
bears = read.table(file.choose(), header=TRUE, row.names=1) 
# Eliminate column 5, which is a qualitative variable. K-means requires quantitative variables. 
bears.mat = as.matrix(bears[,1:4]) 
 
# The variables must first be standardized because they are not expressed in the same physical units. 
 
bears2 = apply(bears.mat, 2, scale, center=TRUE, scale=TRUE) 
 
# Note: the parameter ‘2’ indicates to center by columns, not by rows; 
# ‘center=TRUE’ indicates to center the data on the variables’ means; ‘scale=TRUE’ calls for 
division of the centered values by the variables’ standard deviations. 
 
# Or standardize using the ‘decostand’ function of ‘vegan’: 
 
bears2 = decostand(bears.mat, "stand") 
 
 
# 2. Compute partitioning into 5 groups (param. ‘centers’) using ‘cclust’ of the ‘cclust’ package.  
# This function offers a variety of convex clustering methods; the default method is K-means. 
# ‘cclust’ is not the best choice for K-means because it does not allow users to automatically repeat 
# the analysis a large number of times. That function is interesting for other reasons, though. 
 
library(cclust) 
result.cclust.5 = cclust(bears2, centers=5) 
result.cclust.5 # A brief summary of the results 
summary(result.cclust.5) # Structure of the output file giving detailed results 
 
# Graphs can be obtained where the groups are identified on  bivariate plots of the  data: 
plot(bears.mat[,1:2], col=result.cclust.5$cluster) # K-means results on plot of variables 1 and 2 
plot(bears.mat[,3:4], col=result.cclust.5$cluster) # K-means results on plot of variables 3 and 4 
 
# Extension to PCA: compute a PCA of ‘bears.mat’, then plot K-means results on ordination: 
 
bears.pca = rda(Bear2)  # Compute PCA using function ‘rda’ of ‘vegan’ 
plot(summary(bears.pca)$sites, col=result.cclust.5$cluster) 
 
# Compute stopping criteria using the ‘clustIndex’ function of ‘cclust’. These criteria allow one  
# to choose  the best partition among those corresponding to different values of K. 
# Milligan & Cooper (1985) recommend to maximize the Calinski-Harabasz index (F-statistic).  
# The maximum of ‘ssi’ is another good indicator of the best partition in the least-squares sense. 
 
clustIndex(result.cclust.5, bears2) 
clustIndex(result.cclust.5, bears2, index=c("calinski","ssi")) # Compute 2 indices only 
 
# 3. Compute partitioning in 5 groups (parameter ‘centers’) using ‘kmeans’ of the ‘stats’ package. 
 
# This is a more interesting function for K-means because the analysis can be automatically repeated 
a large number of times (parameter ‘nstart’). The function finds the best solution (smallest value of 
sum of within-groups sums-of-squares) after repeating the analysis ‘nstart’ times. 
 
result.km.5 = kmeans(bears2, centers=5, nstart=100) 
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result.km.5 
 
----- 
K-means clustering with 5 clusters of sizes 6, 5, 5, 5, 8 
 
Cluster means: 
  Estimated.age    Mass.kg  Height.cm  Length.cm 
1    -0.4429883  0.4064977  0.2937206  0.9624910 
2    -1.0359111 -0.9007854 -1.6099529 -0.9332289 
3     0.9404982 -0.3309587  0.8412004 -0.4314848 
4     1.3357801  1.8625307  1.1580161  1.4969575 
5    -0.4429883 -0.6991148 -0.4635802 -0.8045206 
 
Clustering vector: 
 [1] 5 5 2 2 1 1 1 2 2 1 2 5 5 1 5 5 5 5 1 3 3 4 4 3 3 4 4 4 3 
 
Within cluster sum of squares by cluster: 
[1] 3.3117416 0.9739777 1.8493394 0.6940644 4.1964065 
 
Available components: 
[1] "cluster"  "centers"  "withinss" "size" 
----- 
 
# Look at the structure of the file. You can use any of the subfiles in further analyses. 
 
summary(result.km.5) 
 
# Compute the sum of the squared within-group residuals (or “error” sum-of-squares, SSE): 
 
SSE = sum(result.km.5$withinss) 
SSE 
[1] 11.02553 
 
# Compute stopping criteria using the ‘clustIndex’ function of ‘cclust’: 
 
clustIndex(result.km.5, bears2, index=c("calinski","ssi")) 
 
# Repeat the K-means analysis for K = 2, K = 3, K = 4, K = 5 and compare the values of the indices. 
# Do the indices reach a maximum for some intermediate value  of K? Which partition is the best? 
Which index seems the most useful?  
 
result.km.2 = kmeans(bears2, centers=2, nstart=100) 
clustIndex(result.km.2, bears2, index=c("calinski","ssi")) 
result.km.3 = kmeans(bears2, centers=3, nstart=100) 
clustIndex(result.km.3, bears2, index=c("calinski","ssi")) 
result.km.4 = kmeans(bears2, centers=4, nstart=100) 
clustIndex(result.km.4, bears2, index=c("calinski","ssi")) 
result.km.5 = kmeans(bears2, centers=5, nstart=100) 
clustIndex(result.km.5, bears2, index=c("calinski","ssi")) 
result.km.6 = kmeans(bears2, centers=6, nstart=100) 
clustIndex(result.km.6, bears2, index=c("calinski","ssi")) 
result.km.7 = kmeans(bears2, centers=7, nstart=100) 
clustIndex(result.km.7, bears2, index=c("calinski","ssi")) 
 
 
# 4. Compute K-means for a range of values of K using ‘cascadeKM’ of the ‘vegan’ package. 
# This function is a wrapper for the ‘kmeans’ function of the ‘stats’ package, that is, a function that  
# uses a basic function, adding new properties to it. It creates several partitions forming a cascade  
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# from small (parameter ‘inf.gr’) to large values of K (parameter ‘sup.gr’). 
 
result.cascadeKM = cascadeKM(bears2, inf.gr=2, sup.gr=10, iter = 100, criterion = 'ssi')  
 
# Look at the structure of the results file: 
 
summary(result.cascadeKM) 
 
# The element ‘partition’ contains a table showing the group attributed to each object: 
 
result.cascadeKM$partition 
 
# Element ‘results’ gives the SSE statistic as well as the value of the criterion (“calinski” or “ssi”) for 
each value of K. It is easy to identify the partition for which the criterion is maximum. Element ‘size’ 
gives the number of objects in each group of every partition. 
 
# A plot shows the group attributed to each object for each partition (rows of the graph). The groups 
are represented by different colours; there are two colours for K = 2, three colours for K = 3, and so 
on. Another graph shows the values of the chosen stopping criterion for the different values of K: 
 
out.bears = plot(result.cascadeKM) 
 
# Option ‘sort=TRUE’ reorders the objects in such a way as to put together, insofar as possible, the 
objects pertaining to each group: 
 
out.bears = plot(result.cascadeKM, sortg=TRUE) 
 
# The R output object, called ‘out.bears’ in this example, contains a table showing the group 
attributed to each object, taking into account the new order of the objects.
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# 12.2. Hierarchical agglomerative clustering 
 
# Example: file ‘Bears.txt’ 
# First, standardize the variables in file bears 
# before computing the matrix of Euclidean distances (see section 3). 
 
bears = read.table(file.choose(), header=TRUE, row.names=1) # Read the file "Bears.txt" 
bears.mat = as.matrix(bears[,1:4]) 
bears2 = decostand(bears.mat, "stand") # Standardize the variables 
bears.D1 = dist(bears2, method="eucl") # Compute Euclidean distance 
 
# Methods available in hclust: "ward.D", "ward.D2", "single", "complete", "average" (= UPGMA), 
"mcquitty" (= WPGMA), "median" (= WPGMC)" and "centroid" (= UPGMC). 
 
# Agglomerative clustering, UPGMA method: hclust(D, method = "average", members=NULL) 
bears.cl = hclust(bears.D1, method="average") 
plot(bears.cl)  # Plot the dendrogram 
plot(bears.cl, hang=-1) 
 
# Examine the following functions: 
?identify 
?rect.hclust 
?cutree 
?dendrogram    # See in particular option "horiz" 
 
# Compute cophenetic correlation  # Documentation file:  ?cophenetic 
bears.coph = cophenetic(bears.cl) # Cophenetic distances of the dendrogram 
cor(bears.D1, bears.coph) # Cophenetic correlation 
 
# ========= 
# Examples of hierarchical agglomerative clustering: Screws and bolts 
 
# 1. Hierarchical clustering, using only the binary data in the matrix 
 
Screws=read.table( file.choose() ) # Read the file "Screws_and_bolts.txt" 
Screws.bin=Screws[, 2:9] 
library(ade4) 
screws.D1=dist.binary(Screws.bin, method=1) # Compute D = sqrt(1 – Jaccard similarity) 
screws.cl=hclust(screws.D1, method="average") 
plot(screws.cl) 
 
# 2. Read a square distance matrix (in ASCII) pre-computed by another program 
 
screws.S15=read.table( file.choose() ) # Read the file "Screws_D=1-S15.txt" 
screws.D=as.dist(screws.S15) # Give type “dist” to the distance matrix 
screws.cl2=hclust(screws.D, method="average") 
plot(screws.cl2) 
 
# ========= 
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# Hierarchical agglomerative clustering: the Ward method 
 
 Two different algorithms are found in the literature for Ward clustering. In the hclust function 
of R version >= 3.1.1, the algorithm used by option "ward.D" does not implement Ward's (1963) 
clustering criterion; this is equivalent to the only option "ward" available in R versions <= 3.0.3. 
Following Murtagh and Legendre (2013), the hclust function was modified in R version 3.1.1; the 
new option "ward.D2" implements the Ward (1963) criterion. In that algorithm, the dissimilarities are 
squared before cluster updating. Note that function agnes(*, method="ward") (AGglomerative 
NESting) of {cluster} also implements Ward's (1963) clustering criterion. 

Example –  
1. Using function agnes(*, method="ward") 

   library(cluster) # Documentation file: ?agnes 
   bears.agnes.Ward.D2 <- agnes(bears.D1, diss=TRUE, method="ward") 
   plot(bears.agnes.Ward.D2) 
   bears.agnes.Ward.D2$height # List of fusion levels 
   range(bears.agnes.Ward.D2$height)  # Range of the fusion levels 
 
2. Using function hclust(*, method="ward.D2") 

   bears.hclust.Ward.D2 <- hclust(bears.D1, method="ward.D2") 
   plot(bears.hclust.Ward.D2) 
   bears.hclust.Ward.D2$height # List of fusion levels 
   range(bears.hclust.Ward.D2$height)  # Range of the fusion levels 
 
3. Using function hclust(*, method="ward.D") 
   Note: in R versions <= 3.0.3, hclust(*, method="ward") produced the same result 

   bears.cl <- hclust(bears.D1^2, method="ward.D") # Use squared distances 
   bears.cl$height <- sqrt(bears.cl$height) # Square-root the fusion levels 
   plot(bears.cl, hang=-1)  # Draw the dendrogram 
   bears.cl$height # List of fusion levels 
   range(bears.cl$height)  # Range of the fusion levels 
 
# Are the fusion levels the same in all three methods? Are the fusion levels ranges the same? What is 
the cause of these differences? 

# ========= 
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# Agglomerative clustering of the spider data 

# Load the data set "spiders.RData" by dragging it out to the R console, or using the load() command. 
The data file "spiders" will appear among the files of your R console.  

# 1. Compute the percentage difference dissimilarity (alias Bray-Curtis D) using 'vegdist' (vegan 
package; see section 3.2), followed by agglomerative clustering using hclust() (method="average") 
and agnes() (method="ward"). Compute the cophenetic correlation for the hclust() result. 

# 2. Compute the Hellinger distance: (1) compute a Hellinger transformation of the data (section 4) 
followed by (2) computation of the Euclidean distance (section 3.1). (3) Then, compute 
agglomerative clustering using hclust() (method="average") and agnes() (method="ward"). Compute 
the cophenetic correlation for the hclust() result. 

# 3. This exercise will use presence-absence data. Compute the Jaccard distance on the data file using 
function dist.binary() of ade4; see section 3.3. Users don’t have to pre-transform the data to 
presence-absence, the dist.binary() function takes care of that transformation. The computed 
dissimilarities are actually D = sqrt(1 – Jaccard similarity). Finally, compute clustering using hclust() 
(method= "average") and agnes() (method="ward"). Compute cophenetic correlation for the hclust() 
result. 

# Compare the results, as well as the cophenetic correlations, obtained in #1, 2 et 3. Which 
dissimilarity measure produces the dendrogram with the highest cophenetic correlation? 

# ========= 
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13. Correlograms 

 
# Correlograms with tests of significance of individual correlation coefficients are available in: 
 
library(spdep) 
 
# We will compute correlograms for two variables of the file mite_env.txt, which is available among 
the data sets of this Short Course. The file mite.env is also available in the vegan package. Variable 
#1 is Substrate density (‘SubsDens’) and variable #2 is Water content (‘WatrCont’). 
 
# Load the mite data files available in {vegan} 
library(vegan) 
data(mite.env) # Environmental data, 70 x 5 
 
subs.density <- mite.env[,1] 
 
# The geographic coordinates are found in the file mite_xy.txt. Create the file of neighbors. 
 
data(mite.xy) # Geographic coordinates, 70 x 2 
nb1 <- dnearneigh(as.matrix(mite.xy), 0, 0.7) 
 
# Compute the correlogram. 
 
mite.correlog <- sp.correlogram(nb1, subs.density, order=14, method="I", zero.policy=TRUE) 
print(mite.correlog) 
plot(mite.correlog) 
 
# Correct the probabilities for multiple testing using a Bonferroni correction. 
 
print(mite.correlog, "bonferroni") 
plot(mite.correlog) 
 
# The correlogram based on the spatial correlation function is obtained as follows: 
 
mite.correlog2 <- sp.correlogram(nb1, subs.density, order=14, method="corr", zero.policy=TRUE) 
print(mite.correlog2) 
plot(mite.correlog2) 
 
# Exercise: compute the correlogram for the variable ‘water.content’. 
 
water.content <- mite.env[,2] 
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14. Variogram and interpolated maps by kriging 
 
# 1. Basic mapping 
# World and country maps are available in R. Examples: 
 
library(maps) # Basic package to draw maps 
library(mapdata) # Package with specialized maps, e.g. ‘rivers’ 
map('world') # or map() # Worls map centered on Europe and Africa 
map('world2') # World map centered on the Pacific Ocean 
 
# Maps by country are also available, for example the map of China. 
 
map(region='china') # Map of China without provinces, from the package ‘maps’ 
map('china') # Map of China with provinces, from the package ‘mapdata’ 
 
# Draw capitals of Southeast Asia  countries, plus Taipei for perspective 
 
capitals = read.table( file.choose() ) # Read the file "SoutheastAsia_capitals.txt" 
map(region= 

c('cambodia','laos','myanmar','thailand','vietnam','brunei','indonesia','malaysia','philippines')) 
points(capitals[,2], capitals[,1], cex=2, pch=20, col="red") 
text(capitals [,2], capitals [,1], rownames(capitals), pos=4) 
 
# Repeat the exercise using the following map as the base map 
 
map(region= c('china', 

'cambodia','laos','myanmar','thailand','vietnam','brunei','indonesia','malaysia','philippines')) 
 
========= 
 
# 2. Construct an empirical variogram 
 
library(geoR) 
 
library(vegan) 
data(mite) # Species data, 70x35 
data(mite.env) # Environmental data, 70 x 5 
data(mite.xy) # Site coordinates, 70 x 2 
 
water.content <- as.matrix(mite.env[,2]) 
 
vario.water <- variog(coords=mite.xy, data=water.content) 
plot(vario.water) 
 
# Fit a variogram model. Save it before quitting the Eyefit window. 
 
x11()  # For Mac OS X only: open x11 before ‘eyefit’. Operation not necessary in Windows. 
model.water <- eyefit(vario.water) # Click on “Save” to save the model, then “Quit’. 
 
# 3. Conventional kriging for fixed variogram model, variable ‘water.content’ 
 
# 3.1. Define a grid for interpolation. The sampled area is a rectangle 2.5m x 10 m. 
# Beware: The grid spacing must be at least as fine as the precision of the point coordinates 
# located near the margins of the area to be mapped. 
 
pred.grid <- expand.grid(seq(0, 2.5, 0.05), seq(0, 10, 0.05)) 
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# 3.2. Interpolate by ordinary kriging (abbreviated "ok"). 
 
kc.water <- krige.conv(coords=mite.xy, data=water.content, loc= pred.grid, 

krige=krige.control(type.krige="ok", obj.model=model.water)) 
 
# 3.3. Map the point estimates and the prediction variance. 
 
# Provide space for two graphs side by side in the window. 
par(mfrow=c(1,2)) 
 
# Left portion of the window: draw the interpolated map, using the image.kriging function. 
image(kc.water, loc = pred.grid, xlab="X", ylab="Y") 
 
# 3.4. Add the raw data (standardized) to the map. 
# Use the s.value function of the ade4 package:  
# empty squares for values smaller than the mean, full squares for values larger than the mean. 
 
library(ade4) 
s.value(mite.xy, scale(water.content), add.plot=TRUE, csize=0.8, clegend=0) 
 
# 3.5. Right portion of the window: draw the map of prediction variance. 
 
# Define the axes 
x <- seq(0, 2.5, 0.05) 
y <- seq(0, 10, 0.05) 
 
# Write the kriging variance information to a matrix 
krige.water.var <- matrix(kc.water$krige.var, nrow=length(x), ncol=length(y)) 
 
# Draw the map of kriging variance, using the image function of the graphics package. 
image(x=x, y=y, z=krige.water.var, asp=1, col=heat.colors(30)) 
 
 
# Exercise: repeat the mapping operations by kriging for mite species #15, square-root transformed. 
 
sp15.sqrt <- sqrt(mite.spe[,15]) 
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15. Linear discriminant analysis – Daniel Borcard, 31 mars 2009 
 
# Load required packages 
library(ade4) 
library(vegan) 
 
# Preparation of the Doubs data (package ade4). See: http://fr.wikipedia.org/wiki/Doubs_(rivière) 
data(doubs) 
spe <- doubs$poi    # Species abundances 
env <- doubs$mil    # Environmental data 
spa <- doubs$xy     # Geographical coordinates 
 
# Remove empty site 8 
spe <- spe[-8,] 
env <- env[-8,] 
spa <- spa[-8,] 
 
# Correct a mistake in env object 
env[6,1] <- 268 
env[7,1] <- 324 
 
# Remove the 'das' variable from the env dataset 
env = env[,-1] 
 
# Transform the species dataset to allow RDA 
spe.hel = decostand(spe, "hellinger") 
 
# Create subset of 3 explanatory variables: altitude, oxygen concentration and  
# biological oxygen demand 
 
env.pars2 <- as.matrix(env[,c(1,9,10)]) 
 
# Create four groups of sites based on the clustering dendrogram of the fish abundances 
 
gr = cutree(hclust(vegdist(spe.hel,"euc")^2,"ward"),4) ### D^2 ### 
gr 
 
# Verify multivariate homogeneity of within-group variances 
# using Marti Anderson's betadisper() function {vegan} 
 
env.pars2.d1 <- dist(env.pars2) 
env.MHV <- betadisper(env.pars2.d1,gr) 
anova(env.MHV) # Parametric test 
permutest(env.MHV) # Permutational test 
 
 # Variances are NOT homogeneous. Let us try a log  
 # transformation on variables alt and dbo 
env.pars3 <- cbind(log(env$alt), env$oxy, log(env$dbo)) 
colnames(env.pars3) <- c("alt.ln", "oxy", "dbo.ln")  
row.names(env.pars3) <- row.names(env) 
env.pars3.d1 <- dist(env.pars3) 
env.MHV2 <- betadisper(env.pars3.d1,gr) 
permutest(env.MHV2) 
 
 # This time the variances are homogeneous! We can proceed. 
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# Test of significance of among-group dispersion: 
# compute Wilks’ lambda (eq. 11.42) and test its significance (eq. 11.43). 
 
# Computation of LDA (discrimination) 
 
library(MASS) 
env.pars3.df <- as.data.frame(env.pars3) 
spe.lda <- lda(gr ~ alt.ln + oxy + dbo.ln, data=env.pars3.df) 
spe.lda 
 
# The result object contains the information necessary to interpret the LDA  
summary(spe.lda) 
 
# Examine the elements in the output object – 
# Group means for the 3 variables 
spe.lda$means 
 
# Normalized eigenvectors (matrix C, eq. 11.33) = standardized  
# discriminant function coefficients 
C <- spe.lda$scaling 
 
# Canonical eigenvalues 
spe.lda$svd^2 
sum.sl <- sum(spe.lda$svd^2) 
proportion.of.trace <- spe.lda$svd^2/sum.sl 
 
# Position of the objects in the space of the canonical variates 
F <- predict(spe.lda)$x 
# alternative way: F <- scale(env.pars3.df, center=TRUE, scale=FALSE) %*% C 
 
# Classification of the objects 
spe.class <- predict(spe.lda)$class 
 
# Posterior probabilities of objects belonging to the groups 
spe.post <- predict(spe.lda)$posterior 
 
# Table of prior vs predicted 
spe.table <- table(gr, spe.class) 
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# Percentage of correct classification 
diag(prop.table(spe.table, 1)) 
 
# Plot of objects in the space of the canonical variates 
# with colors according to their classification 
plot(F[,1], F[,2], type="n") 
text(F[,1], F[,2], row.names(env), col=c(as.numeric(spe.class)+1)) 
abline(v=0, lty="dotted") 
abline(h=0, lty="dotted") 
# Draw 95% ellipses around groups 
library(ellipse) 
for(i in 1:length(levels(as.factor(gr)))) { 
   cov <- cov(F[gr==i,]) 
   centre <- apply(F[gr==i,], 2, mean) 
   lines(ellipse(cov,centre=centre, level=0.95)) 
} 
 
# Classification of a new object (identification) 
# A new object is created with ln(alt)=6.8, oxygen=90 and ln(dbo)=3.2 
new = c(6.8, 90, 3.2) 
new = as.data.frame(t(new))  # ‘new’ must be a row table 
colnames(new) = colnames(env.pars3) 
predict.new <- predict(spe.lda, newdata=new) 
predict.new 
 
 # In which group has the new object has been classified? 
 # Note: group numbers in vector ‘gr’ may differ among computer platforms and versions of 
R. 
 # This calculation could have been done in the same way for a whole table of new 
observations. 
 
# LDA with jackknife-based classification (i.e., leave-one-out cross-validation) 
 
spe.lda.jac <- lda(gr ~ alt.ln + oxy + dbo.ln, data=env.pars3.df, CV=TRUE) 
summary(spe.lda.jac) 
 
# Number and percentages of correct classification 
spe.jac.class <- spe.lda.jac$class 
spe.jac.table <- table(gr,spe.jac.class) 
spe.jac.table # Classification table (see Manuel p. 629) 
diag(prop.table(spe.jac.table,1)) 
 

# The classification success in “spe.jac.table” seems not as good as the result in “spe.table”. 
Remember, however, that “spe.table” shows an a posteriori classification of the objects that 
have been used in the computations. It is too optimistic. By comparison, cross-validation results 
are obtained by computing the ‘lda’ and classification of each object, in turn, with that object 
taken out of the ‘lda’ calculation. It is more realistic. 
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16. Some common statistical procedures available in R 
 
Common statistical tests available in package « stats » 

t.test: Student's t-test. Paired t-test: paired=TRUE 
pairwise.t.test: a posteriori comparisons between groups by t-test 
var.test: F-test of the ratio of two variances 
bartlett.test: Bartlett's test of homogeneity of variances 
friedman.test: Friedman's test (nonparametric analysis of variance without replication) 
kruskal.test: Kruskal-Wallis test 
ks.test: Kolmogorov-Smirnov goodness-of-fit test 
mcnemar.test: McNemar's test 
power.t.test: power of t-test, one or two samples 
shapiro.test: Shapiro-Wilk's normality test 
wilcox.test: Wilcoxon rank sum and signed rank tests. Mann-Whitney U-test: paired=FALSE 
 
chisq.test: contingency table analysis, Pearson's chi-square statistic.  
                    One gives either two vectors, or a contingency table.  
                    One can obtain a permutation test as an option. 
 
aov: analysis of variance. The factor(s) must be declared “as.factor”. 
summary.aov: ‘aov' results 
manova: multivariate analysis of variance 
summary.manova: ‘manova' results 
 
 
Confidence intervals 

t.test: Student's t-test and confidence intervals, 1 or 2 groups. 
confint: confidence intervals of the parameters of a model fitted to the data 
confint.glm (MASS package): confidence intervals of the parameters of a model fitted to the data 
norm.ci (BOOT package): confidence intervals based on normal approximation 
boot.ci (BOOT package): bootstrap confidence intervals 
print.bootci (BOOT package): prints the bootstrap confidence intervals 
intervals (librairie NLME): confidence intervals of coefficients 
 
 
Multiple regression 

lm (package stats) is used to fit linear models. It can be used to carry out regression, single stratum 
analysis of variance and analysis of covariance (although aov may provide a more convenient 
interface for these). This function also computes multivariate regressions for multivariate response 
tables. 
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Linear discriminant analysis 

library(MASS) 
lda (MASS): linear discriminant analysis 
ldahist: histogram of diagram of group densities 
pairs.lda: scattergrams for pairs of groups 
plot.lda: diagrams for objects of class “lda” 
predict.lda: lda-based classification of multivariate objects 
 
library(ade4) 
discrimin: linear discriminant analysis 
 
library(labdsv) 
spcdisc: a form of discriminant analysis for species data 
 
library(sonarX)  
This library is distributed on the ESA Web page http://esapubs.org/archive/, inside “Ecological 
Archives A016-047-S1”. 
ldaTest: linear discriminant analysis 
 
Canonical correlation analysis 
 
CCorA : function available on the Web page http://www.bio.umontreal.ca/legendre/ 
 
Statistical distributions 

# Example : FDist for the F distribution – 
# Ask for information about the F distribution: 
 
?FDist 
 
# Applications : 
 
 pf(F,df1,df2,lower.tail=FALSE) to find probabilities associated to the F distribution 
 qf(prob,df1,df2,lower.tail=FALSE) to find a value of F corresponding to a given probability 
 rf(n,df1,df2) to obtain n random numbers extracted from the specified F distribution 
 df(F,df1,df2) to obtain the density of the F distribution for a given value of F 
 
# Ask for information about the other frequently used distributions: 
 
?Normal 
?TDist 
?Chisquare 
?Lognormal 
?Binomial 
?Multinomial 
?NegBinomial 
?mvrnorm in package MASS 
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17. Using R as a calculator 
 
A simple sum 
 
  1+1 
[1] 2 

 
Square root of a number 
  
  sqrt(10) 
[1] 3.162278 

 
Create a sequence of numbers  Information : ?seq 
 
  seq(0,5,length=6) 
[1] 0 1 2 3 4 5 

 
Generate a graph  Information : ?plot 
 
  plot(sin(seq(0,2*pi,length=100))) 

 
Create a vector of values 
 
  x =  c(2,3,5,2,7,1) 
  x 
 
[1] 2 3 5 2 7 1 

 
Calculate the mean 
 
  mean(x) 
[1] 3.333333 

 
Calculate the standard deviation 
 
  sd(x) 
[1] 2.250926 

 
Calculate the standard error of the mean 
 
  sd(x)/sqrt(6) 
[1] 0.9189366 

 
Sort a vector of values  Information : ?sort 
 
  sort(x) 
[1] 1 2 2 3 5 7 
# or try 
  y=sort(x) 
  y 
[1] 1 2 2 3 5 7 
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Random normal generator  Information : ?rnorm 
 
  x=rnorm(10,0,1) 
  mean(x) 
  sd(x) 
 
  x=rnorm(1000,mean=10,sd=5) 
  mean(x) 
  sd(x) 

 
Generate a column vector with zeros  Information : ?matrix 
 
  Vector=matrix(0,10,1) 
  Vector 
      [,1] 
 [1,]    0 
 [2,]    0 
 [3,]    0 
 [4,]    0 
 [5,]    0 
 [6,]    0 
 [7,]    0 
 [8,]    0 
 [9,]    0 
[10,]    0 

 
Create a sequence of actions: a ‘for’ loop 
 
# Use a ‘for’ loop to compute a cumulative mean of random numbers. The 
cumulative mean should converge to the true mean as the number of values 
included in the calculation increases. 
 
  n = 30   # n = sample size 
  vec.means = vector(mode="numeric", length=(n-1)) 
  true.mean = 5 
  x = rnorm(n, mean=true.mean, sd=1)    # Information: ?rnorm 
  for(i in 2:n) { 
     vec.means[i-1] = sum(x[1:i])/i 
     } 
 
# Print the vector of mean values 
  vec.means 
  plot(vec.means, ylim=c(true.mean-1, true.mean+1)) 
  abline(h=true.mean, col="red") 

 

========================= 

 


