
Practicals using the R statistical language

Pierre Legendre Updtes: August 2005; May, July 2006;
Département de sciences biologiques May, July, Nov. 2007; Jan., Feb., April, Aug., Oct. 2008;
Université de Montréal February to November 2009, September 2010; January 2011;
 July, Nov. 2012; April, June, October 2016; January, March, Nov. 2017;
 January, June, November 2019; December 2020;

0. R packages

 Install the following R packages. They will be used in these practical exercises. —
• Install packages available on CRAN:
install.packages(c("ade4", "adegraphics", "adespatial", "ape", "cclust", "cluster", "FD", "geoR",
"labdsv", "mapdata", "maps", "rgl", "spdep", "vegan"), dependencies=TRUE)
• Install mvpart available on Github. First, install.packages("devtools") if you don’t already have this
package installed in your computer. Then:
library(devtools)
install_github("cran/mvpart", force=TRUE)

• Other functions, available on http:/numericalecology.com, will also be used in the course.

1. Compute basic statistics in the R language: Robin data

Import data file ‘Robins.txt’ from your working directory into an object ‘robin’ (class: data frame)
You must first tell R what your working directory is:
Windows: File menu ⇒ Change dir...
Mac OSX: Misc. menu ⇒ Change Working Directory
 robin <- read.table("Robins.txt") # or: robin = read.table("Robins.txt")

Alternative method: function file.choose() opens a dialogue box to navigate your hard disk
 robin <- read.table(file.choose()) # Navigate to find the "Robins.txt" data file

Check that the data have been read correctly
 robin # or: head(robin)

Copy the wing length values (first column) into an object ‘wing’:
 wing = robin[,1]
 wing # Print the contents of object 'wing'
 class(wing) # Find the class of object 'wing'
 is.vector(wing)
 is.matrix(wing)

Transform vector ‘wing’ into an object with class ‘matrix’ in case you need it later:
 wing.mat = as.matrix(wing)
 wing.mat
 is.vector(wing.mat)
 is.matrix(wing.mat)

Compute the mean wing length:
 wing.mean = mean(wing) # or: wing.mean = mean(wing.mat)
 wing.mean # Print the value of the mean

 Practicals using the R language 2

Compute the median wing length:
 wing.med = median(wing) # or: wing.med = median(wing.mat)
 wing.med # Print the value of the median

Compute the variance of the wing lengths:
 wing.var = var(wing) # or: wing.var2 = var(wing.mat)
Print the value of the variance:
 wing.var # or: wing.var2
 is.vector(wing.var) # or: is.vector(wing.var2)
 is.matrix(wing.var) # or: is.matrix(wing.var2)

Compute the sample size ‘n’:
 n = length(wing) # Compute the value of ‘n’
 (n = length(wing)) # Shortcut: compute the value of ‘n’ and print it
 (n1 = nrow(wing.mat)) # or: (n1 = dim(robin)[1]) # or: (n1 = dim(wing.mat)[1])

Compute the skewness A3.

First, compute an unbiased estimate of the moment of order 3, k3:
 k3 = (n*sum((wing.mat-mean(wing.mat))^3))/((n-1)*(n-2))
 k3 # Print the value of k3

Then, compute the skewness, A3:
 A3 = k3/((sqrt(wing.var))^3)
 A3 # Print the value of A3

Compute the kurtosis A4.

First, compute an unbiased estimate of the moment of order 4, k4, and print it:
 k4 = (n*(n+1)*(sum((wing.mat-mean(wing.mat))^4))-3*(n-1)*((sum((wing.mat-mean(wing.mat)
)^2))^2))/((n-1)*(n-2)*(n-3))
 k4

Then, compute the kurtosis, A4, and print it:
 A4 = k4/((sqrt(wing.var))^4)
 A4

Compute the width of the range of values:
 wing.range = max(wing)-min(wing) # or: wing.min.max = range(wing)
 wing.range # wing.min.max

Compute the standard deviation:
 (sx = sd(wing))

Plot a histogram

The most simple way is to use the function ‘hist’ with all the default values:
 hist(robin[,1])

The histogram appears in the graphics window. It can be saved in different formats for future use
(menu File: “save as...”)

One can specify the presentation details of the histogram

 par(mai = c(1.5, 0.75, 0.5, 0.5)) # Modify the margins of the graph. See ?par

 Practicals using the R language 3

 hist(robin[,1], breaks = "Sturge", freq = TRUE, right =FALSE, main = NULL, xlab = NULL, ylab
= NULL, axes = TRUE)

Look up these specifications in the documentation file of ‘hist’
 ?hist

Add axis labels and a title

 mtext(text="Frequency", side=2, line=3, cex=1, font=1)
 mtext(text="Wing length (mm)", side=1, line=2, cex=1, font=1)
 mtext(text="Histogram of Robin wing length", side=1, line=4, cex=1.5, font=1)

==========

Repeat this exercise for variable Mass(kg), Height(cm) or Length(cm) of file ‘Bears.txt’. Call your
file ‘bears’. Be careful when reading the data! — Is that file difficult to read in the R window? Why?

Check that the data have been read correctly! For that, type
 head(bears)

Check section “Importing a data file to be analysed by R” on pp. 3-4 of “Introduction_to_R.pdf”

After you have completed the exercise, try the following commands for the ‘bears’ data:
 summary(bears)
 plot(bears[, 2:5])

========

 Practicals using the R language 4

How to attribute values to the parameters of an R function

R functions may have several parameters (see for example ?read.table or ?hist) and these
parameters often have default values in the function. For example, the following function

add3 <- function(a = 0, b = 10, c = -5) a+b+c

has three parameters, a, b and c, which represent numbers. Default values have been given to these
parameters: a = 0, b = 10, c = –5. The function adds the three numbers. Example:

add3()

gives for result the sum of the three numbers.

Users can replace the default values by other values that they provide. Example of replacement
according to the positions of the parameters:

add3(2, 4, 6) # The order determines the attribution of values to the parameters.

Same result if values are explicitly given to parameters a, b et c:

add3(a=2, b=4, c=6) # Equivalent command: add3(b=4, c=6, a=2)

Can you anticipate the results of the following calls to the function?

1. Attribution according to positions. What is the value taken by c? What will the sum be?
add3(2, 4)

2. Explicit attribution of a value to b. What are the values taken by a and c? What will the sum be?
add3(b=7)

========

 Practicals using the R language 5

Examine the output object produced by rda() or cca() of {vegan}

Example: create an output object of function rda()

rda.object.name <- rda(a.data.file)

List the first-level elements of the output object, which is rather complex

attributes(rda.object.name)

You can then examine the contents of the separate elements as follows. Examples:

rda.object.name$call
rda.object.name$CA
rda.object.name$tot.chi

The structure of rda() and cca() output objects is described in a documentation file:

?cca.object

You can also examine the detailed structure of a given rda or cca output object (a long list):

str(rda.object.name)

In the PCA exercise on pp. 7-8, we will use vegan’s summary.cca() function to print the PCA
results

summary(rda.out, scaling=1)

Note that the function is called by typing summary() and not summary.cca(). The function
recognizes the class of the rda.out object, which is "rda" "cca".

If the output says “Total inertia: 0” followed by an error message, that could be due to the fact
that the package {ade4} has been loaded after {vegan} and function cca() of {ade4} is masking
vegan’s same-name function. If you loaded {adespatial} after {vegan}, {adespatial} has loaded
{ade4} and you have the same problem. To solve the issue and make summary.cca() print the
PCA or RDA results correctly, you have to completely detach {vegan} and load it again:

unloadNamespace("vegan")
library("vegan")

Following this operation, the cca() function of {vegan} is masking ade4’s same-name function
and summary.cca() should work correctly.

 Practicals using the R language 6

2. Simple ordination methods: PCA, CA, PCoA, nMDS

2.1. Principal component analysis (PCA)
2.1.1. Principal component analysis (PCA) through matrix algebra

Create the data matrix:

 Y.mat = matrix(c(2,3,5,7,9,1,4,0,6,2), 5, 2)
 class(Y.mat) # Check the class attached to object Y.mat

Center matrix Y.mat by columns using function ‘scale’:

 Y.cent = scale(Y.mat, center=TRUE, scale=FALSE) # Data centered but not standardized

Compute the covariance matrix:

 Y.cov = cov(Y.cent)

If the data are not standardized (scale=FALSE), the following command is equivalent:

 Y.cov = cov(Y.mat) # but that is not the case if scale=TRUE.

Compute the eigenvalues and eigenvectors:

 Y.eig = eigen(Y.cov) # Compare with the result of Ycov.svd = svd(Y.cov)
 # Compare with the result of Y.svd = svd(Y.cent)

Check the eigenvalues and eigenvectors:

 Y.eig$values
 Y.eig$vectors

Transfer the eigenvectors to U. It will be used to represent the variables in scaling type 1 plots:

 U = Y.eig$vectors

Compute matrix F. It will be used to represent the objects in scaling type 1 plots:

 F = Y.cent %*% U
 F # Check the contents of F

Compute matrix U2. It will be used to represent the variables in scaling type 2 plots:

 U2 = U %*% diag(Y.eig$values^(0.5))

Compute matrix G. It will be used to represent the objects in scaling type 2 plots:

 G = F %*% diag(Y.eig$values^(-0.5))

Scaling type 1 biplot —
Dispersion diagram of the first 2 columns of F produced using the general plot() function:

 plot(F[,1], F[,2], xlim=c(-4,4), ylim=c(-3,3), asp=1, xlab="Axis 1", ylab="Axis 2")

Notes: (-4,4) = limits of the plot abscissa, (-3,3) = limits of the plot ordinate.
asp=1 : the ratio of the dimensions abscissa/ordinate is fixed to 1
to obtain a correct representation of the distances among the objects.

 Practicals using the R language 7

Here is another method to obtain the limits of the abscissa and ordinate for the graph. The function
"range" provides the min and max values along axes 1 and 2. It can be applied to the columns of F by
"apply":

 F.range = apply(F, 2, range)
 F.range

Create vectors “xlim” and “ylim” giving the limit values for the plot axes:

 xlim = c(F.range[1,1], F.range[2,1])
 ylim = c(F.range[1,2], F.range[2,2])

 plot(F[,1], F[,2], xlim=xlim, ylim=ylim, asp=1, xlab="Axis 1", ylab="Axis 2")

Add to the diagram arrows representing the first two columns of matrix U:
 arrows(x0=0, y0=0, U[,1]*3, U[,2]*3)
Note: for this example, the coordinates of the variables (from matrix U) are multiplied by 3.

Exercice : plot the diagram for scaling type 2.
This time, use function biplot() of {stat}, designed specifically for PCA, with matrices G and U2

 biplot(G, U2)

========

2.1.2. Principal component analysis (PCA) of the example data using the ‘vegan’ package

First, load the ‘vegan’ package into your work space:
 library(vegan)

For this example, the data are found in object Y.mat created at the beginning of section 2.1.1.
 rda.out = rda(Y.mat) # Default option: scale=FALSE

PCA is calculated by the rda() function. That function can also compute canonical RDA.
The rda() function produces a PCA when a single data file is provided.
With the argument "scale=FALSE", the data are centred by columns but not standardized.

Examine the object produced by function rda(). See the notes entitled “Examine the output object
produced by rda() or cca() of {vegan}” on page 5.

Examine the PCA results –
 eigenvals(rda.out) # Eigenvalues

Scaling = 1: preserves the Euclidean distances among objects
Scaling = 2: preserves the correlations among descriptors
PCA with scaling 1:
 summary(rda.out, scaling=1) # Species scores, site scores (modified by vegan)
 biplot(rda.out, scaling=1) # Function biplot.rda() of ‘vegan’ is used

PCA with scaling 2: # This is also the default value of the biplot.rda function
 summary(rda.out, scaling=2) # Species scores, site scores (modified by vegan)
 biplot(rda.out, scaling=2) # Function biplot.rda() of ‘vegan’ is used

Note – Vegan’s function summary.cca() transforms the numerical results before printing them. In
scaling=1, the species coordinates (U) are multiplied by the “General scaling constant” and the site
coordinates (F) are divided by that constant. In scaling=2, the transformations are more complex; see
the document “decision-vegan.pdf”. In a nutshell, the species and site coordinates are linear
transformations of the coordinates computed in matrices U2 and G of the exercise.

Function cleanplot.pca.R of the NEwR book can also be used to draw biplots from vegan’s rda()
output. Examine the easy-to-use graphical options available in that function.

 Practicals using the R language 8

2.1.3. Principal component analysis (PCA) of the spider data using ‘vegan’

PCA of hunting spider data of the Netherlands1 (file "spiders” in data set “spiders.RData”). Then,
compute the cumulative inertias of the species and sites to the PCA axes using goodness(). Load the
data set "spiders.RData" by dragging it out to the R console, or using the load() command.

Species abundances: it is necessary to transform the data before PCA, because PCA preserves the
Euclidean distance among the objects and this distance is inappropriate for community composition
data. See section "4. Transformations" lower down.
 spiders.hel <- decostand(spiders, "hellinger") # Hellinger transformation

Function rda() computes a PCA when a single input file is provided.
 res <- rda(spiders.hel)
Examine the structure of the object generated by this function: str(res). See page 5.

Function goodness(x, display="species") computes the cumulative R2 of each species on axis 1,
then on axes 1+2, axes 1+2+3, and so on. The R2 values of column PC2, for example, indicate how
well each species is represented in the plane of the first two PCA axes. In the last column (PC12 in
this example), all species are perfectly represented and have an R2 of 1.
 spi.good.sp <- goodness(res, display="species", model="CA")
The argument model="CA" indicates that the analysis is a simple ordination, a PCA. One can
obtain the same statistics from goodness() for a canonical ordination using argument model="CCA";
In canonical ordination, the last column of the output file contains values smaller than or equal to 1.
Refer to the manual (Numerical ecology, 2012) p. 442.

Compare these results to the PCA ordination graph
 biplot(res)

Function goodness(x, display="sites") computes the proportion of the norm of each site vector that
is represented in 1, 1+2, 1+2+3, etc. dimensions. Refer to the manual p. 443.
 spi.good.si <- goodness(res, display="sites", model="CA")

========

2.1.4. Principal component analysis using the ‘PCA.newr’ function

Repeat the spiders analysis using the ‘PCA.newr.R’ function available among the functions of
Numerical ecology with R. The R code in that function is essentially that found in section 2.1.1, plus
some additional features. You can open file “PCA.newr.R’ using a text editor and examine the code.

First, load the function into your work space:
Windows clients: go to the File menu => Source R Code...
MacOS X clients: go to the Files menu => Source File...

 pca.out = PCA.newr(spiders.hel) # Default: no standardization of the variables
 biplot(pca.out) # The default value is scaling type 1

Compare the results: (a) those of function rda(), i.e. the eigenvalues, eigenvectors and principal
components (eigenvals(rda.out), scores(rda.out, scaling=1)), and (b) those of function PCA.newr()
(pca.out$eigenvalues, pca.out$U, pca.out$F). Why are there differences? — The differences are
explained in the document “decision-vegan.pdf”, p. 6, Tables 1–2, available in the vegan folder.

1 Aart, P.J.M. van der & N. Smeenk-Enserink. 1975. Neth. J. Zool. 25: 1-45.

 Practicals using the R language 9

2.2. Correspondence analysis (CA)
2.2.1. Correspondence analysis (CA) through matrix algebra

Read a data table that will be subjected to correspondence analysis.
You may choose 'Table_9.11.txt' (small example from Chapter 9 of manual)
Y = read.table(file.choose())
or 'spiders' (larger data set, real data, loaded at the beginning of section 2.1.3).

Calculate the basic parameters of Y; save the row and column names
n = nrow(Y)
p = ncol(Y)
n.eigval = min((n-1),(p-1))
site.names = rownames(Y)
sp.names = colnames(Y)

Construct the Qbar matrix (contributions to chi-square)
fi. = matrix(apply(Y,1,sum),n,1)
f.j = matrix(apply(Y,2,sum),1,p)
f. = sum(fi.)
pi. = as.vector(fi./f.)
p.j = as.vector(f.j/f.)
E = (fi. %*% f.j)/f.
Qbar = (Y - E) * E^(-0.5) / sqrt(f.)

Analyse Qbar by 'svd'
svd.res = svd(Qbar)
eigenvalues = svd.res$d[1:n.eigval]^2
U = svd.res$v[,1:n.eigval]
Uhat = svd.res$u[,1:n.eigval]

Alternative analysis or Qbar by 'eigen'
Qbar = as.matrix(Qbar)
QprQ.eig = eigen(t(Qbar) %*% Qbar)
eigenvalues = QprQ.eig$values[1:n.eigval]
U = QprQ.eig$vectors[,1:n.eigval]
Uhat = Qbar %*% U %*% diag(eigenvalues^(-0.5))

Construct matrices V, Vhat, F, and Fhat for the ordination biplots
V = diag(p.j^(-0.5)) %*% U
Vhat = diag(pi.^(-0.5)) %*% Uhat
F = Vhat %*% diag(eigenvalues^(0.5))
Fhat = V %*% diag(eigenvalues^(0.5))

Find the limits of the plots
V.range = apply(V[,1:2],2,range)
Vhat.range = apply(Vhat[,1:2],2,range)
F.range = apply(F[,1:2],2,range)
Fhat.range = apply(Fhat[,1:2],2,range)

 Practicals using the R language 10

par(mfrow=c(1,2)) # Create a drawing window for two graphs

Biplot, scaling type = 1: plot F for sites, V for species
The sites are at the centroids (barycentres) of the species
This projection preserves the chi-square distance among the sites

xmin = min(V.range[1,1], F.range[1,1]) - 0.5
xmax = max(V.range[2,1], F.range[2,1]) + 0.5
ymin = min(V.range[1,2], F.range[1,2]) - 0.5
ymax = max(V.range[2,2], F.range[2,2]) + 0.5

plot(F[,1:2], asp=1, pch=20, cex=2, xlim=c(xmin,xmax), ylim=c(ymin,ymax), xlab="CA axis 1",
ylab="CA axis 2")
text(F[,1:2], labels=site.names, pos=4, offset=0.5)
points(V[,1:2], pch=22, cex=2)
text(V[,1:2], labels=sp.names, pos=4, offset=0.5)
title(main = c("CA biplot","scaling type 1"), family="serif")

Biplot, scaling type = 2: plot Vhat for sites, Fhat for species
The species are at the centroids (barycentres) of the sites
This projection preserves the chi-square distance among the species

xmin = min(Vhat.range[1,1], Fhat.range[1,1]) - 0.5
xmax = max(Vhat.range[2,1], Fhat.range[2,1]) + 0.5
ymin = min(Vhat.range[1,2], Fhat.range[1,2]) - 0.5
ymax = max(Vhat.range[2,2], Fhat.range[2,2]) + 0.5

plot(Vhat[,1:2], asp=1, pch=20, cex=2, xlim=c(xmin,xmax), ylim=c(ymin,ymax), xlab="CA axis 1",
ylab="CA axis 2")
text(Vhat[,1:2], labels=site.names, pos=4, offset=0.5)
points(Fhat[,1:2], pch=22, cex=2)
text(Fhat[,1:2], labels=sp.names, pos=4, offset=0.5)
title(main = c("CA biplot","scaling type 2"), family="serif")

 Practicals using the R language 11

2.2.2 Correspondence analysis (CA) using the ‘vegan’ package

Scaling = 1: preserves the chi-square distances among objects.
Uses matrices F and V, as in Canoco.
Scaling = 2: preserves the chi-square distances among species.
Uses matrices V-hat and F-hat, as in Canoco.

Exemple 1: CA of Aart’s (1973) spider data.
Load the data set "spiders.RData" by dragging it out to the R console, or using the load() command.
The data frame "spiders" will appear among the files of your R console.

 library(vegan)
 spiders.ca=cca(spiders)
 summary(spiders.ca, scaling=1)
 plot(spiders.ca, scaling=1)

Note: CA cannot be computed if there are rows or columns that sum to 0 in the data file. This is
due to the transformation of Y into matrix Q-bar, which is the first step of CA.
If there are rows or columns that sum to 0, the function ‘c‘ (“combine”) allows users to select the
row or column numbers that have sums larger than 0 and use only those in the analysis.

Exemple 2 (if time allows): CA of the cafés of Neuchâtel data. Data file: "Cafes_10x6_spe.txt".
The data represent the clientele in 10 restaurants of the town of Neuchâtel in Switzerland. The
restaurant names are real; the clientele data were made up by Daniel Borcard to illustrate the
properties of CA.

 cafes.spe=read.table(file.choose())
 cafes.afc=cca(cafes.spe)
 cafes.afc
 plot(cafes.afc, scaling=2)
 summary(cafes.afc, scaling=2, axes=5)

CA can also be computed using function ‘CA.newr.R’ available among the functions of the
Numerical ecology with R book.

==========

 Practicals using the R language 12

2.3. Principal coordinate analysis (PCoA)

One can use the function cmdscale of the ‘stats’ package to carry out this analysis. “cmds” is the
acronym of “classical multidimensional scaling”.
Functions for PCoA are also available in packages ape (function pcoa), ade4 (function dudi.pco)
ecodist and labdsv (functions pco) and vegan (function wcmdscale).
PCoA starts with a distance (or dissimilarity) matrix. Distance functions will be studied in Section
3. The Euclidean distance will be used to illustrate how to use PCoA. The Euclidean distance is the
default option when using function dist of the ‘stats’ package. This distance is not the optimal choice
for PCoA ordination of community data.

Example: analysis of the spider data.
Load the data set "spiders.RData" by dragging it out to the R console, or using the load() command.
The data file "spiders" will appear among the files of your R console.

First analysis: compute the matrix of Euclidean distances
 spiders.D1 = dist(spiders) # or: spiders.D1 = dist(spiders, method="eucl")

Principal coordinate analysis. Save k=5 axes. Plot a graph of axes 1 and 2.
 toto4=cmdscale(spiders.D1, 5, eig=TRUE)
 plot(toto4$points[,1], toto4$points[,2], asp=1, xlab="Axis 1", ylab="Axis 2")

Note: "asp=1" constrains the two axes to the same scale. This ensures that the distances
among objects on the plot are projections of their real distances in multivariate space.
 ?cmdscale # consult the documentation file of function cmdscale
 summary(toto4) # to obtain a list of the elements in file toto4
 toto4$points # contains the coordinates of the objects along the k=5 requested dimensions
 toto4$eig # contains the eigenvalues of the principal axes

Repeat the analysis after applying the Hellinger transformation (using function decostand of the
vegan package) to the spider abundance data. The transformations are described in Section 4.
Hellinger transformation of species abundances, followed by calculation of Euclidean distances.
As a consequence, the "spiders.DHel" matrix will contain Hellinger distances.
 library(vegan)
 spiders.hel = decostand(spiders, "hel") # Hellinger transformation
 spiders.DHel = dist(spiders.hel) # Compute the Hellinger distance matrix

Alternative way: obtain the Hellinger D matrix in one step with function dist.ldc() of adespatial
 library(adespatial)
 spiders.DHel = dist.ldc(spiders, method="hel") # Compute the Hellinger distance matrix

Principal coordinate analysis.
 res = cmdscale(spiders.DHel, 5, eig=TRUE)

Plot the ordination (axes 1 and 2) using the ordiplot() function of package vegan
 ordiplot(scores(res, choices=c(1,2)), type="t", main = "PCoA plot")
 abline(h=0, v=0, col="grey")

PCoA can also be computed using the pcoa() function of the ape package. The biplot.pcoa()
function of that package produces ordination plots on which the species can be projected if desired.

 Practicals using the R language 13

2.4. Non-metric multidimensional scaling (nMDS)

We will first use fonctions nmds and bestnmds of the labdsv package. These functions, written by
David W. Roberts, are wrappers for the function isoMDS of Brian D. Ripley’ MASS package.
nMDS starts with a distance matrix. Distance functions will be studied in Section 3.

Example: analysis of the spider data.
Load the data set "spiders.RData" by dragging it out to the R console, or using the load() command.
The data file "spiders" will appear among the files of your R console.

Hellinger transformation of species abundances, followed by calculation of Euclidean distances.
As a consequence, the "spiders.DHel" matrix will contain Hellinger distances.
 library(vegan)
 spiders.hel = decostand(spiders, "hel")
 spiders.DHel = dist(spiders.hel) # Compute the Hellinger distance matrix

Alternative way: obtain the Hellinger D matrix in one step with function dist.ldc() of adespatial
 library(adespatial)
 spiders.DHel = dist.ldc(spiders, method="hel") # Compute the Hellinger distance matrix

Compute an nMDS solution in k=2 dimensions. If no initial configuration of the points is provided, a
PCoA is computed and the first two axes of that solution form the initial configuration for nMDS.
 library(labdsv)
 toto2 = nmds(spiders.DHel, k=2)
 plot(toto2)

The bestnmds wrapper provides a list of the successive solutions (paramètre "itr") obtained by using
several random configurations as starting points for nMDS.
 toto2 = bestnmds(spiders.DHel, k=2, itr=20)

The solution with lowest stress is kept in the output object. We plot it.
 plot(toto2)

==========

The vegan package contains function metaMDS. This wrapper of isoMDS carries our nMDS
following the recommendations of ecologist Peter Minchin. The function automatically looks for a
stable solution after several random starting configurations (by default, trymax = 20).
At the end of the analysis, a PCA of the final configuration is computed, so that the variance of the
objects is maximum along the first axis. The species are projected in the site ordination graph as
weighted averages, in the same way as in correspondence analysis.
The documentation of metaMDS is quite detailed.

The Bray-Curtis dissimilarity (or percentage difference) is the default in metaMDS. Instead, we will
use Hellinger distance matrix obtained above.

Compute an nMDS solution in k=2 dimensions (default value).
 toto3 = metaMDS(spiders.hel, distance="euclidean")
 plot(toto3, type="t") # type="t" adds species to the graph

 Practicals using the R language 14

3. Dissimilarities

Dissimilarity (or distance) functions are available in several packages of the R language.

3.1. Package stats, function dist : 6 distances (documentation: ?dist)

euclidean: Usual Euclidean distance between the two vectors (2 norm). This is the default value.
maximum: Maximum distance between two components of x and y (supremum norm).
manhattan: Absolute distance between the two vectors (1 norm).
canberra: sum(|x_i - y_i| / |x_i + y_i|). Terms with zero numerator and denominator are omitted

from the sum and treated as if the values were missing.
binary: (aka asymmetric binary): The vectors are regarded as binary bits, so non-zero elements are

‘on’ and zero elements are ‘off’. The distance is the proportion of bits in which only one is on
amongst those in which at least one is on. ⎯ This coefficient is (1 – Jaccard).

minkowski: The p norm, the pth root of the sum of the pth powers of the differences of the
components.

The choice of coefficient is done by typing its name in quotes. Example:
 dist(data, method="binary") or dist(data, "binary")
=> In practice, function dist() is mostly used to compute a Euclidean distance matrix.

3.2. Package vegan, function vegdist : 10 distances (documentation: ?vegdist)

euclidean d[jk] = sqrt(sum (x[ij]-x[ik])^2)
manhattan d[jk] = sum(abs(x[ij] - x[ik]))
gower d[jk] = (1/M) sum (abs(x[ij]-x[ik])/(max(x[i])-min(x[i]))); M = number of variables
altGower d[jk] = (1/NZ) sum(abs(x[ij] - x[ik])); NZ = n. columns excluding double-zeros
canberra d[jk] = (1/NZ) sum ((x[ij]-x[ik])/(x[ij]+x[ik])); exclude double-zeros; NZ as above
bray d[jk] = (sum abs(x[ij]-x[ik])/(sum (x[ij]+x[ik])) = Bray & Curtis distance(default)
kulczynski d[jk] 1 - 0.5*((sum min(x[ij],x[ik])/(sum x[ij]) + (sum min(x[ij],x[ik])/(sum x[ik]))
morisita {d[jk] = 1 - 2*sum(x[ij]*x[ik])/((lambda[j]+lambda[k]) * sum(x[ij])*sum(x[ik])) }
 where lambda[j] = sum(x[ij]*(x[ij]-1))/sum(x[ij])*sum(x[ij]-1)
horn Like morisita, but lambda[j] = sum(x[ij]^2)/(sum(x[ij])^2)
binomial d[jk] = sum(x[ij]*log(x[ij]/n[i]) + x[ik]*log(x[ik]/n[i]) - n[i]*log(1/2))/n[i]

jaccard

where n[i] = x[ij] + x[ik]
d[jk] = 1 - (a / (a+b+c)); binary=TRUE to obtain the Jaccard coeff. for binary data.

"mountford" (Mountford index), "raup" (Raup-Crick probabilistic index), "chao" (Chao index), "cao"
and "mahalanobis" can also be obtained. See ?vegdist.

The choice of coefficient is done by typing its name in quotes. Example:
 vegdist(data, method="bray") or vegdist(data, "bray")

 Practicals using the R language 15

3.3. Package ade4, function dist.binary : 10 binary distances (documentation: ?dist.binary)

=> These similarities (S) are converted to distances through the transformation D = sqrt(1 – S).

1 = Jaccard index (1901) [S3 coefficient of Gower & Legendre] : s1 = a / (a+b+c)
2 = Sokal & Michener index (1958)
 [S4 coefficient of Gower & Legendre] : s2 = (a+d) / (a+b+c+d)
3 = Sokal & Sneath(1963) [S5 coefficient of Gower & Legendre] : s3 = a / (a + 2(b + c))
4 = Rogers & Tanimoto (1960)
 [S6 coefficient of Gower & Legendre] : s4 = (a + d) / (a + 2(b + c) +d)
5 = Czekanowski (1913) or Sørensen (1948)
 [S7 coefficient of Gower & Legendre] : s5 = 2a / (2a + b + c)
6 = [S9 index of Gower & Legendre (1986)] : s6 = (a - (b + c) + d) / (a + b + c + d)
7 = Ochiai (1957) [S12 coefficient of Gower & Legendre] : s7 = a / sqrt((a + b)(a + c))
8 = Sokal & Sneath (1963)
 [S13 coefficient of Gower & Legendre] : s8 = ad / sqrt((a + b)(a + c)(d + b)(d + c))
9 = Phi of Pearson
 [S14 coefficient of Gower & Legendre] : s9 = (ad - bc) / sqrt((a + b)(a + c)(d + b)(d + c))
10 = [S2 coefficient of Gower & Legendre] : s10 = a / (a + b + c + d)

The choice of coefficient is done by typing its number in the list above. Examples:
 dist.binary(data, method=1) or dist.binary(data, 1) or dist.binary(data, "1")

3.4. Package adespatial, function dist.ldc(): 21 dissimilarity indices (information: ?dist.ldc)

The function allows users to compute 18 quantitative dissimilarity indices:

"hellinger", "chord", "chisquare", "profiles", "percentdiff", "ruzicka", "divergence", "canberra",
"whittaker", "wishart", "kulczynski", "ab.jaccard", "ab.sorensen", "ab.ochiai", "ab.simpson",
"euclidean", "manhattan", "modmeanchardiff",
as well as 3 binary indices: "jaccard", "sorensen", "ochiai".

These measures are described and analysed in the Legendre & De Cáceres (2013) paper.

Details about the 21 dissimilarity indices are found in the Details of the documentation file.

 Group 1 – The D matrix is computed by transformation of Y followed by Euclidean distance.

 Hellinger D, D[ik] = sqrt(sum((sqrt(y[ij]/y[i+])-sqrt(y[kj]/y[k+]))^2))

 chord D, D[ik] = sqrt(sum((y[ij]/sqrt(sum(y[ij]^2))-y[kj]/sqrt(sum(y[kj]^2)))^2))

 chi-square D, D[ik] = sqrt(y[++] sum((1/j[+j])(y[ij]/y[i+]-y[kj]/y[k+])^2))

 species profiles D, D[ik] = sqrt(sum((y[ij]/y[i+]-y[kj]/y[k+])^2))

 Practicals using the R language 16

 Group 2 – Other D functions appropriate for the study of beta diversity. In the first two functions,
A = sum(min(y[ij],y[kj])), B = y[i+]-A, C = y[k+]-A.

 percentage difference D, D[ik] = (sum(abs(y[ij]-y[k,j])))/(y[i+]+y[k+]) or else, D[ik] =
(B+C)/(2A+B+C) (aka Bray-Curtis dissimilarity)

 Ružička D, D[ik] = 1-(sum(min(y[ij],y[kj])/sum(max(y[ij],y[kj])) or else, D[ik] =
(B+C)/(A+B+C)

 coeff. of divergence D, D[ik] = sqrt((1/pp)sum(((y[ij]-y(kj])/(y[ij]+y(kj]))^2))

 Canberra metric D, D[ik] = (1/pp)sum(abs(y[ij]-y(kj])/(y[ij]+y(kj]))

 Whittaker D, D[ik] = 0.5*sum(abs(y[ij]/y[i+]-y(kj]/y[k+]))

 Wishart D, D[ik] = 1-sum(y[ij]y[kj])/(sum(y[ij]^2)+sum(y[kj]^2)-sum(y[ij]y[kj]))

 Kulczynski D, D[ik] = 1-0.5((sum(min(y[ij],y[kj])/y[i+]+sum(min(y[ij],y[kj])/y[k+]))

 Group 3 – Classical D indices for presence-absence data; these indices are appropriate for beta
diversity studies. The D matrices are square-root transformed, as in dist.binary() of {ade4}.

 Jaccard D, D[ik] = sqrt((b+c)/(a+b+c))

 Sørensen D, D[ik] = sqrt((b+c)/(2a+b+c))

 Ochiai D, D[ik] = sqrt(1 - a/sqrt((a+b)(a+c)))

 Group 4 – Abundance-based indices of Chao et al. (2006) for quantitative abundance data. These
functions correct the index for species that have not been observed due to sampling errors. On
output, the D matrices are not square-rooted, contrary to the Jaccard, Sørensen and Ochiai
indices in group 3, which are square-root transformed.

 abundance-based Jaccard D, D[ik] = 1-(UV/(U+V-UV))

 abundance-based Sørensen D, D[ik] = 1-(2UV/(U+V))

 abundance-based Ochiai D, D[ik] = 1-sqrt(UV)

 abundance-based Simpson D, D[ik] = 1-(UV/(UV+min((U-UV),(V-UV))))

 Group 5 – General-purpose dissimilarities that do not have an upper bound (maximum D value).
These indices are inappropriate for beta diversity studies.

 Euclidean D, D[ik] = sqrt(sum(y[ij]-y[kj])^2)

 Manhattan D, D[ik] = sum(abs(y[ij] - y[ik]))

 Practicals using the R language 17

 modified mean character difference, D[ik] = (1/pp) sum(abs(y[ij] - y[ik]))

The indices are computed by functions written in C for greater computation speed, especially for
large data matrices. These same indices are available in function beta.div() to compute beta diversity
and LCBD indices.

3.5. Package cluster, function daisy(): 3 quantitative dissimilarities (documentation: ?daisy)

Dissimilarities among objects can be computed from environmental variables using coefficients in
the function ‘daisy’ which correctly handles missing values (NA). The available coefficients are:
Euclidean distance, Manhattan distance, and Gower dissimilarity. The choice of coefficient is done
by typing its name in quotes.

When computing the Gower coefficient, daisy() recognizes and handles differently variables
belonging to different types: quantitative, semi-quantitative (“ordered factor”) and binary variables
on the one hand, qualitative multiclass variables (“factors”) on the other. Missing values (NA) are
allowed. D = 1 – S. Example:

 data(dune.env) # available in package ‘vegan’
 ?dune # Information about these data

The first variable is quantitative. Variables #2, 4, and 5 are “ordered factors”; they will be treated as
if they were quantitative. Variable #3 is a “factor”.

 mat.gower = daisy(dune.env, "gower")

Method ‘gower’ in vegan’s function vegdist() does not handle missing values nor factors. It only
uses quantitative variables. Example:

 mat.gower.2 = vegdist(dune.env, "gower")

Example of data with missing values, NA (Numerical ecology 2012, p. 280)

 ex.p260 = matrix(c(2,1,1,2,3,6,NA,3,1,2,1,5,2,2,3,4,2,5,2,2,4,6,5,10),3,8)
 ex.p260
 res.gower = daisy(ex.p260, "gower")

Function vegdist() in ‘vegan’ cannot handle the missing values (NA) in variable #3

 res.gower.2 = vegdist(ex.p260, "gower")
 res.gower.2 = vegdist(ex.p260[,-3], "gower")

3.6. Package FD, function gowdis(): Gower dissimilarity (documentation: ?gowdis)

 This is the most complete function to compute Gower’s coefficient. It computes the
dissimilarity for variables of mixed types, including quantitative, ordered, factor, and binary
variables. Variable weights can be specified in that function. Missing values (NA) are allowed. D = 1
– S. Run in gowdis() and daisy() the example data set ‘dummy$trait’ used as example in the
gowdis() help file.

==========

Some tricks of the trade

 Practicals using the R language 18

If a similarity matrix computed by another program is imported into the R console, it can be
transformed into a dissimilarity by:
 mat.D = 1-mat.S

or (better in many cases, to avoid negative eigenvalues in PCoA):
 mat.D = sqrt(1-mat.S)

That object is a ‘data.frame’. Its type can be changed as follows to the type ‘dist’, required by
hclust(), cmdscale(), and the nMDS functions:
 mat.DD = as.dist(mat.D)

A function in ‘ade4’ tells users whether or not a dissimilarity matrix ‘mat.D’ is Euclidean. If it is
not, it will produce negative eigenvalues in principal coordinate analysis (PCoA). See Numerical
ecology (2012), pp. 296-298 and 500-506.

 is.euclid(mat.D)

Examples
 is.euclid(mat.gower) # Matrix ‘mat.gower’ computed above using daisy()
 is.euclid(sqrt(mat.gower)) # Matrix ‘mat.gower’ computed above using daisy()

 Practicals using the R language 19

4. Transformations

Transform the data. In particular, one may want to transform species presence-absence or
abundance data before linear analyses that preserve the Euclidean distance among the objects (PCA,
RDA, k-means partitioning),

Load Yari Oksanen’s vegan package.

 library(vegan)

The vegan function for transformations is decostand. Info : ?decostand

Transformations for species presence-absence or abundance data:

• total: divide by margin total (default MARGIN = 1). MARGIN = 1 means “by rows”.
• normalize: make margin sum of squares equal to one (default MARGIN = 1).
• chi.square: divide by row sums and square root of column sums, and adjust for square root of

matrix total (Legendre & Gallagher 2001). When used with Euclidean distance, the matrix should
be similar to the Chi-square distance used in correspondence analysis. However, the results from
cmdscale would still differ, since CA is a weighted ordination method (default MARGIN = 1).

• hellinger: square root of method = "total" (Legendre & Gallagher 2001).
• log: logarithmic transformation suggested by Anderson et al. (2006). This is not log(y+1).
• pa: scale into presence/absence scale (0/1).

Other transformations for physical variables:

• max: divide by margin maximum (default MARGIN = 2). MARGIN = 2 means “by columns”.
• freq: divide by margin maximum and multiply by number of non-zero items, so that the average of

non-zero entries is one (Oksanen 1983; default MARGIN = 2).
• range: standardize values into range 0 ... 1 (default MARGIN = 2). If all values are constant, they

will be transformed to 0.
• standardize: scale into zero mean and unit variance (default MARGIN = 2).
• pa: scale into presence/absence scale (0/1).

Examples for species abundance data:

 spiders.transf = decostand(spiders,"total") # transf. to profiles of relative abundances
 spiders.transf = decostand(spiders,"norm") # chord transformation
 spiders.transf = decostand(spiders,"hel") # Hellinger transformation
 spiders.transf = decostand(log1p(spiders),"norm") # log-chord transformation
 spiders.transf = decostand(spiders,"chi.sq") # chi-square transformation
 spiders.transf = decostand(spiders,"pa") # transformation to presence-absence data

Examples for physical data:

 data.transf = decostand(data,"range") # range variables to the [0, 1] interval
 data.transf = decostand(data,"stand") # variable standardization

 Practicals using the R language 20

5. Multiple regression

Read file 'Bears.txt' to produce a 'data frame' bears:
 bears = read.table(file.choose(), header=TRUE, row.names=1)
 bears

The last column of the table is a factor (sex) represented by characters (letters M, F).
Create a matrix-type file containing only the numerical portion of the 'data frame':
 bears.mat = as.matrix(bears[,1:4])

A regression model (function ‘lm’) can be written for the data frame ‘bears’,
with notation ~ to indicate the columns used in the model (response and explanatory variables).
‘lm’ stands for ‘linear model’ and ~ means ‘function of’.
 toto = lm(bears[,2] ~ bears[,1] + bears[,3] + bears[,4])

The regression coefficients are found in the output object 'toto'.
 toto

The regression coefficients and tests of significance are obtained by the command 'summary':
 summary(toto)

In the model, one can use directly the names of the variables found in the data frame.
It is useful to have short names for the variables.
 toto = lm(Mass.kg ~ Estimated.age + Height.cm + Length.cm, data=bears)
 summary(toto)

One can also write the model using the matrix-type file ‘bears.mat’:
 toto = lm(bears.mat[,2] ~ bears.mat[,1] + bears.mat[,3] + bears.mat[,4])
 summary(toto)

For the matrix-type file ‘bears.mat’, the same command can also be written as:
 toto = lm(bears.mat[,2] ~ bears.mat[, c(1,3,4)])
 summary(toto)

The 5th variable of file bears is a qualitative variable with two classes, M and F.
If that variable is transformed into a factor
 bears[, 5] = as.factor(bears[, 5])

it can be used directly in the regression, which becomes an analysis of covariance:
 toto = lm(bears[,2] ~ bears[,1] + bears[,3] + bears[,4] + bears[,5])
 summary(toto)

The fitted values of the regression model are obtained as follows:
 Fitted = predict(toto) # or else Fitted = fitted.values(toto)
 Fitted
The residuals of the regression model are obtained as follows:
 Resid = residuals(toto)
 Resid

For the analysis of residuals, four graphs are produced in sequence by the command:
 plot(toto)
These graphs are described in the documentation file
 ?plot.lm
The two most interesting graphs plot the residuals as a function of the fitted values:
 plot(toto, which=c(1,3))

 Practicals using the R language 21

In the case of a simple linear regression (with a single explanatory variable), one can produce as
follows a graph of the data points showing the regression line:
 toto = lm(Mass.kg ~ Estimated.age, data = bears)
 summary(toto)
 a = summary(toto)$coefficients[1,1] # Intercept
 b = summary(toto)$coefficients[2,1] # Slope
 plot(bears[,1], bears[,2], xlab="Age", ylab="Mass") # Plot the data points
 abline(a, b, col="red") # Plot the regression line

Special tests of significance – A table of additional tests can be obtained by:
 anova(toto)
Warning: That table is difficult to interpret. The order of the variables in the model is important.
The table tests the additional effects of the variables in their order of inclusion in the model.

Nested models can be statistically compared as follows:
 model1 = lm(bears[,2] ~ bears[,1] + bears[,3] + bears[,4] + bears[,5])
 model2 = lm(bears[,2] ~ bears[,1] + bears[,3])
 anova(model1, model2)

That function can be used to test the partial effect of a single variable:
 model1 = lm(bears[,2] ~ bears[,1] + bears[,3] + bears[,4] + bears[,5])
 model2 = lm(bears[,2] ~ bears[,1] + bears[,3] + bears[,4])
 anova(model1, model2)

Compare this result with that of the test of the partial regression coefficient of variable 5
computed above. Remember that for a single variable, t = sqrt(F)
 summary(model1)

==========

Function ‘lm’ can be used to carry out regression, single-classification analysis of variance, and
analysis of covariance. The function ‘aov’ may, however, provide a more convenient interface for
these more complex analyses.

Function ‘aov’ is a wrapper for function ‘lm’, for fitting linear models to balanced or unbalanced
experimental designs, simple or crossed. It can also produce analyses of covariance mixing factors
with quantitative variables. The factor(s) must be declared “as.factor”. Details of the analysis of
variance or covariance results are given by ‘summary.aov’.

Multivariate analysis of variance is obtained by the function ‘manova’. Manova result details are
given by ‘summary.manova’.

 Practicals using the R language 22

6. Canonical analyses (RDA and CCA)
6.1. Canonical redundancy analysis (RDA)
6.1.1. Canonical redundancy analysis (RDA) through matrix algebra

Read the data from file "Table_11-3.txt" and transfer them to matrices
 Table11.3 = read.table(file.choose())
 Table11.3.mat = as.matrix(Table11.3)
 Y.mat = Table11.3.mat[,1:6] # Check the contents of Y.mat
 X.mat = Table11.3.mat[,7:10] # Check the contents of YX.mat

Center matrix Y, standardize matrix X.
Note: parameter ‘2’ indicates to apply the function ‘center’ by columns
 Y = scale(Y.mat, center=TRUE, scale=FALSE) # or: Y = apply(Y.mat,2,scale,center=T,scale=F)
 X = scale(X.mat, center=TRUE, scale=TRUE) # or: X = apply(X.mat,2,scale,center=T,scale=T)

Note that column #4 is collinear to columns #2 and 3.
Create matrix X3, which only contains the first 3 columns of X:
 X3 = X[,1:3]

First part of RDA: multivariate regression

Create X'X and compute inv[X'X]:
 invX3 = solve(t(X3) %*% X3)

Compute the projector matrix: proj(nxn) = X inv[X'X] X'
 projX3 = X3 %*% invX3 %*% t(X3)

Computed the matrix of regression fitted values, Yhat = projX * Y
 Yhat3 = projX3 %*% Y # Check the contents of Yhat3

The fitted values in Yhat are the same if computed from X.mat centred, not standardized
 X4 = scale(X.mat[,1:3], center=TRUE, scale=FALSE)
 Yhat4 = X4 %*% solve(t(X4)%*%X4) %*% t(X4) %*% Y
 # Proof: the sum of the differences between matrices Yhat3 and Yhat4 is zero
 (diff = sum(abs(Yhat3 - Yhat4)))

Could we compute Yhat from matrix X (which contains 4 columns) instead of X3?
 library(MASS)
 invX = ginv(t(X) %*% X) # Would “invX = solve(t(X) %*% X)” also work?
 projX = X %*% invX %*% t(X)
 Yhat5 = projX %*% Y # Check the contents of Yhat5
Are the fitted values in Yhat5 the same as in Yhat3 ?
 (diff = sum(abs(Yhat3 - Yhat5)))
Why is it that ginv() (generalized inverse) works despite the collinearity in matrix X?
Look at the documentation file of function ginv() in package MASS.

 Practicals using the R language 23

Second part of RDA: PCA of the Yhat matrix of fitted values

Compute the covariance matrix of the fitted values:

 Yhat3.cov = cov(Yhat3)

Compute the eigenvalues and eigenvectors:

 Yhat3.eig = eigen(Yhat3.cov)

Examine the eigenvalues and eigenvectors:

 Yhat3.eig$values
 Yhat3.eig$vectors

Compute the eigenvalues as fractions of the total variance in matrix Y.
The total variance in Y can be computed in different ways.
One way is to sum the diagonal terms of the covariance matrix, another is to compute the
sum of the squared values of Y, obtained by Hadamard product; Y is already centered.

 trace = sum(diag(cov(Y))) # or: trace = (sum(Y*Y)) / (n-1)
 trace # or: trace = (sum(Y^2)) / (n-1)

 EigvalPercent = Yhat3.eig$values[1:3] / trace
 EigvalPercent

Scaling type 1: plots will involve matrices F.mat and U, or Z.mat and U.
The equations are described in Numerical ecology (2012), p. 639.
Transfer the first 3 eigenvectors to matrix U (element 'species' in the rda() output list):

 U = Yhat3.eig$vectors[,1:3]

Compute matrix F.mat: F.mat = Y * U (element 'sites' in the rda() output list):

 F.mat = Y %*% U
 F.mat

Compute matrix Z.mat: Z.mat = Yhat * U (element 'constraints' in the rda() output list):

 Z.mat = Yhat3 %*% U
 Z.mat

 Practicals using the R language 24

Plot the first two columns of F.mat, with axis 2 reversed;
add the first two columns of matrix U*10 to that diagram:

 plot(F.mat[,1], -F.mat[,2], xlim=c(-16,16), ylim=c(-10,10), asp=1, xlab="Axis 1", ylab="Axis 2")
 arrows(x0=0 ,y0=0 ,U[,1]*10 ,-U[,2]*10, code=0)

Biplot using matrices Z.mat (with axis 2 reversed) and U:

 plot(Z.mat[,1], -Z.mat[,2], xlim=c(-16,16), ylim=c(-10,10), asp=1, xlab="Axis 1", ylab="Axis 2")
 arrows(x0=0, y0=0, U[,1]*10, -U[,2]*10, code=0)

Notes: the limits set for the abscissa are (-16,16), and (-10,10) for the ordinate.
asp=1 : the ratio of the dimensions abscissa/ordinate is fixed to 1
Arrows, code=0: arrows without head; code=2: arrows with an arrowhead.

Representation of the explanatory variables in the diagram.
First, compute the matrix containing the correlations between X and Z.mat:

 corXZ=cor(X, Z.mat)
 corXZ

Create the diagonal matrix 'D' of weights, sqrt(lambda(k)/trace):

 D = diag(sqrt(Yhat3.eig$values[1:3]/trace))

Compute the positions of the explanatory variables in the diagram (element 'biplot' in the rda()
output list). Plot the explanatory variables in the diagram:

 posX = corXZ %*% D
 arrows(x0=0, y0=0, posX[,1]*10, -posX[,2]*10, code=2)

Note: for scaling type 1, it would be incorrect to plot the explanatory variables using the values in
the correlation matrix ‘corXZ’: the substrate class variables would not point to the centroids of the
groups of sites containing these substrates. You can verify that by typing:

 arrows(x0=0, y0=0, corXZ[,1]*10, -corXZ[,2]*10, code=2, col="red")

==========

Optional exercise: write the equations in R for scaling type 2 biplots. The equations are described
in Numerical ecology (2012), p. 640.

 Practicals using the R language 25

6.1.2. Canonical redundancy analysis using the vegan package

Data are in a text file called "Table_11-3.txt"
Read the data and transfer them into a matrix called Table11.3.mat,
then into matrices Y.mat (response variables, columns 1 to 6 of Table11.3.mat) and X.mat
(explanatory variables, columns 7 to 10):

 Table11.3 = read.table(file.choose())
 Y.mat=Table11.3[,1:6]
 X.mat=Table11.3[,7:10]

 Y.mat
 Spec1 Spec2 Spec3 Spec4 Spec5 Spec6
Site1 1 0 0 0 0 0
Site2 0 0 0 0 0 0
Site3 0 1 0 0 0 0
Site4 11 4 0 0 8 1
Site5 11 5 17 7 0 0
Site6 9 6 0 0 6 2
Site7 9 7 13 10 0 0
Site8 7 8 0 0 4 3
Site9 7 9 10 13 0 0
Site10 5 10 0 0 2 4

 X.mat
 Depth Coral Sand Other
Site1 1 0 1 0
Site2 2 0 1 0
Site3 3 0 1 0
Site4 4 0 0 1
Site5 5 1 0 0
Site6 6 0 0 1
Site7 7 1 0 0
Site8 8 0 0 1
Site9 9 1 0 0
Site10 10 0 0 1

Call the ‘vegan’ package
 library(vegan)
Canonical redundancy analysis (RDA, function ‘rda’)
 rda.out = rda(Y.mat, X.mat)
 rda.out
Call:
rda(X = Y.mat, Y = X.mat)

 Inertia Rank
Total 112.889
Constrained 108.341 3
Unconstrained 4.548 4
Inertia is variance
Some constraints were aliased because they were collinear (redundant)
 # The binary variable “Other”, which was collinear, was eliminated
Eigenvalues for constrained axes:
 RDA1 RDA2 RDA3
74.523 24.942 8.876

Eigenvalues for unconstrained axes:
 PC1 PC2 PC3 PC4
4.188785 0.313863 0.037037 0.008463

 Practicals using the R language 26

Look at the structure of the output object produced by rda(), where the detailed results of the
analysis are found. See the notes entitled “Examine the output object produced by rda() or cca() of
{vegan}” on page 5.

Examine the RDA results

summary(rda.out, scaling=1)
summary(rda.out, scaling=2)

Plot the graph:

 plot(rda.out, display=c("sp","sites","bp"))

Compute the R2 and adjusted R2 statistics:

 RsquareAdj(rda.out)

Test of significance of the canonical relationship:

 anova(rda.out)
Permutation test for rda under reduced model

Model: rda(X = Y.mat, Y = X.mat)
 Df Var F N.Perm Pr(>F)
Model 3 108.341 47.642 199.000 0.005 **
Residual 6 4.548

Signif. codes: 0 `***’ 0.001 `**’ 0.01 `*’ 0.05 `.’ 0.1 ` ‘ 1

Information on function ‘anova’ for permutation tests:
 ?anova.cca

Users can impose a predetermined number of permutations. For example, to obtain 9999 random
permutations, the command is written as follows:

 anova(rda.out, permutations = how(nperm=9999))

There are another ways to write the RDA model:
 rda.out = rda(Table11.3[,1:6] ~ Depth + Coral + Sand + Other, data=Table11.3)

or else
 rda.out = rda(Y.mat ~ . , data=X.mat)

The character ~ means ‘function of’, as in multiple regression models.
The declaration “data=” at the end of the model specification means that the variables that follow
the tilde sign (~) are found in that file. That file must have the ‘data.frame’ class.
The period (.) that follows the tilde sign (~) indicates that all variables in file “data” must be
included as explanatory variables in the model.
It is necessary to use the functional form of the call to obtain tests of significance by="axis",
by="terms" or by="margin" (next page).

==========

 Practicals using the R language 27

6.1.3. Tests of individual canonical eigenvalues

 Table11.3 = read.table(file.choose()) # Read the data file "Table_11-3.txt"
 Table.spe = Table11.3[,1:6]
 Table.env = Table11.3[,7:9]

1. Automatic test of all individual canonical eigenvalues using vegan’s ‘marginal’ method

 toto = rda(Table.spe ~ Depth+Coral+Sand, data=Table.env)
 anova(toto, by="axis")

2. How does that test work? Manual test of individual canonical eigenvalues using rda() in 'vegan'
First, look at the structure of the output object of function rda()
 str(toto)

The positions of objects in canonical space are found in matrix ‘totoCCAu’
 totoCCAu

Test the three axes, in succession, in the presence of the previously tested axes (covariables)
This is the ‘forward’ method of Cajo J. F. ter Braak.

 rda.axe1 = rda(Table.spe, totoCCAu[,1])
 anova(rda.axe1)

 rda.axe2 = rda(Table.spe, totoCCAu[,2], totoCCAu[,1])
 anova(rda.axe2)

 rda.axe3 = rda(Table.spe, totoCCAu[,3], totoCCAu[,1:2])
 anova(rda.axe3)

6.1.4. Significance tests by="terms" and by="margin"

Test the significance of the additional contribution of each explanatory variable, in a sequential
way, following their inclusion order in the model. Compare the following results:

 toto1 = rda(Table.spe ~ Depth+Coral+Sand, data=Table.env)
 anova(toto1, by="terms")

 toto2 = rda(Table.spe ~ Sand+Coral+Depth, data=Table.env)
 anova(toto2, by="terms")

Test the additional (marginal) contribution of each explanatory variable in the presence of all the
other variables in the model. Compare the results of the two following analyses:

 anova(toto1, by="margin")
 anova(toto2, by="margin")

 Practicals using the R language 28

6.2. Partial canonical redundancy analysis
6.2.1. Example of partial canonical redundancy analysis using matrix algebra

Example: compute the partial, unique contribution of variable ‘Depth’
to the variation of Y, in the presence of the other variables of matrix X.

Read the data, etc.

 Table11.3 = read.table(file.choose()) # Read the data file "Table_11-3.txt"
 Table11.3.mat = as.matrix(Table11.3)
 Y.mat=Table11.3.mat[,1:6]
 X.mat=Table11.3.mat[,7:10]
 Y = scale(Y.mat, center=TRUE, scale=FALSE) # or: Y = apply(Y.mat,2,scale,center=T,scale=F)
 X = scale(X.mat, center=TRUE, scale=TRUE) # or: X = apply(X.mat,2,scale,center=T,scale=T)
 Y
 X
Create matrix XX containing variable ‘Depth’ as well as the
matrix of covariables W containing the other three variables of X:

 XX = X[,1]
 W = X[,2:4]

Regress depth (XX) on the covariables (W);
compute the residuals of that regression:
 library(MASS)
 invWprW = ginv(t(W) %*% W)
 projW = W %*% invWprW %*% t(W)
 Xres.W = XX - (projW %*% XX)

Compute the canonical analysis (RDA) of Y by XXres:

 invXprX = ginv(t(Xres.W) %*% Xres.W)
 projXres.W = Xres.W %*% invXprX %*% t(Xres.W)
 YhatXX = projXres.W %*% Y
 YhatXX.cov = cov(YhatXX)
 YhatXX.eig = eigen(YhatXX.cov)
 Z.mat = YhatXX %*% YhatXX.eig$vectors[,1]

Examine the single canonical eigenvalue and the positions of the objects along the canonical axis:

 YhatXX.eig$values[1]
 Z.mat

Express the canonical eigenvalue as a fraction of the total variance in matrix Y
(eigenvalue = 0.083, P = 0.001):

 EigvalPercent = YhatXX.eig$values[1] / sum(diag(cov(Y)))
 EigvalPercent

This standardized eigenvalue gives the partial contribution of ‘Depth’ to the explanation of the
variance of Y in the presence of the other variables of matrix X (semipartial R2).

 Practicals using the R language 29

6.2.2. Example of partial canonical analysis (here RDA) using ‘vegan’

Compute the partial (unique) contribution of variable "Depth" to the explanation of the variance
of Y in the presence of the other variables of matrix X:

 rda.out = rda(Table11.3[1:6] ~ Depth + Condition(Coral+Sand+Other), data = Table11.3)
or else (same results):
 rda.out = rda(Y.mat, X.mat[,1], X.mat[,2:4])
 anova(rda.out)

Permutation test for rda under reduced model

Model: rda(X = Y.mat, Y = X.mat[, 1], Z = X.mat[, 2:4])
 Df Var F N.Perm Pr(>F)
Model 1 9.3407 12.322 999 0.002 **
Residual 6 4.5481

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Compute the semipartial R2; there is no adjusted R-square in partial RDA.

 RsquareAdj(rda.out)

6.3. Canonical correspondence analysis (CCA)

Beware: there are cca functions in other R packages, in particular in ade4.

CCA example 1: spider data
 library(vegan)

Load the data set "spiders.RData" by dragging it out to the R console, or using the load() command.
The data files "spiders" and "spiders.env4" will appear among the files of your R console.

Download the two data tables (response and explanatory variables)
 ls()
 dim(spiders) # Response variables
 dim(spiders.env4) # Explanatory variables
 (spider.cca = cca(spiders ~ ., spiders.env4))
 plot(spider.cca, scaling=1)
 summary(spider.cca, scaling=1, axes=3)
 anova(spider.cca) # Test of significance of the canonical relationahip (R2)

CCA example 2: the cafés of Neuchâtel (D. Borcard)
 library(vegan)
 cafes.spe = read.table(file.choose()) # Read the data file "Cafes_10x6_spe.txt"
 cafes.env = read.table(file.choose()) # Read the data file "Cafes_10x3_env.txt"
 (cafes.cca = cca(cafes.spe, cafes.env))
 plot(cafes.cca, scaling=1)
 summary(cafes.cca, scaling=2, axes=3)
 anova(cafes.cca)

 Practicals using the R language 30

7. Two-way Manova by RDA
Use RDA to carry out a two-way multivariate analysis of variance (Manova).

The two crossed factors (A, B) are represented by Helmert contrasts. Their interaction is
represented by variables that are the product of the variables coding for the main factors. Properties:
(1) the sum of each variable is zero; (2) all variables are orthogonal (their scalar products are all
zero). The group of variables coding for factor A is orthogonal to the group of variables coding for
factor B and to the group of variables coding for the interaction A*B.

1. Read the data table (24 rows, 5 columns)
table.sp = read.table(file.choose()) # Read the data file "Table_sp.txt"
table.sp
Row labels indicate levels of factors A (3 levels) and B (4 levels), and the replicate number (1, 2)

2. Generate variables representing the two factors

Use ‘gl’ to generate a variable representing factor A with 3 levels and 8 replicates
A = gl(3, 8)

Use ‘gl’ to generate a variable representing factor B with 4 levels and 2 replicates repeated 3 times
B = gl(4, 2, length=24)
Check that the values so produced correspond to the arrangement of the factors in the data table

3. Create Helmert contrasts for the factors, as well as variables representing the interaction A*B
Examine the documentation files of functions ‘model.matrix’, ‘contrast’, and ‘contr.helmert’

helmert = model.matrix(~ A*B, contrasts=list(A="contr.helmert", B="contr.helmert"))
Examine this table. Which columns represent factor A? Factor B? The interaction?
apply(helmert[,2:12], 2, sum) # Check property 1 of Helmert contrasts
t(helmert[,2:12]) %*% helmert[,2:12] # Check property 2; or: cor(helmert[,2:12])

4. Test the interaction using RDA. Factors A and B form the matrix of covariables

interaction.rda = rda(table.sp, helmert[,7:12], helmert[,2:6])
anova(interaction.rda, model="direct") # Is the interaction significant?

5. Test main factor A using RDA. Factor B and the interaction form the matrix of covariables.

factorA.rda = rda(table.sp, helmert[,2:3], helmert[,4:12])
anova(factorA.rda, model="direct") # Is factor A significant?

6. Test main factor B using RDA. Factor A and the interaction form the matrix of covariables.

factorB.rda = rda(table.sp, helmert[,4:6], helmert[,c(2:3, 7:12)])
anova(factorB.rda, model="direct") # Is factor B significant?

Can you calculate the R-square corresponding to the explanation by factors A and B (separately)?

 Practicals using the R language 31

8. Selection of explanatory variables in RDA

8.1. Forward selection using forward.sel() of the ‘adespatial’ package

This function uses two files: the response variables and the explanatory variables.

library(adespatial)
Examine the documentation file of function forward.sel()
 ?forward.sel

Load the data set "spiders.RData" by dragging it out to the R console, or using the load() command.
The data files "spiders" and "spiders.env15" will appear among the files of your R console.
 ls()
 dim(spiders) # Response variables
 dim(spiders.env15) # Explanatory variables

Function forward.sel() produces a table showing the stepwise inclusion of the explanatory
variables. The user decides from this table which variables will be retained for the RDA
computed using “vegan”.

 res = forward.sel(spiders, spiders.env15)

Quick method to run vegan’s rda() function, using only the selected columns (variables) of file
“spiders.env15”. Example using only the first three variables selected by forward.sel():

 rda(spiders, spiders.env15[, res$order[1:3]])

8.2. Forward, backward or stepwise selection using ordistep() or ordiR2step()

Functions ordistep() and ordiR2step() are available in the vegan package.
Function ordiR2step() produces the same selection as forward.sel() described in section 8.1.

Read the documentation file and run the Examples:

?ordistep # or: ?ordiR2step

 Practicals using the R language 32

9. Spatial detrending

It is important to remove linear spatial trends that may be present in the response data prior to most
forms of spatial analysis. That includes spatial eigenfunction (dbMEM) analysis (section 10). Linear
trends represent processes acting at a scale much larger than the study area. These processes cannot
be modelled correctly using data acquired in the study area only.

1. Detrending by regression, function lm(). Univariate case.

var1 = c(1:20)
var2 = rnorm(20,0,3)
var3 = var1 + var2
plot(var1, var3) # Examine variable ‘var3’ produced, as a function of ‘var1’ (abscissa)

model.lm = lm(var3 ~ var1)
resid = residuals(model.lm)
plot(var1, resid) # Examine the residuals, as a function of ‘var1’ (abscissa)

==========

2. Detrending the response data by multivariate regression, manual eq. 10.16.
Example using the mite data (multivariate) available in {vegan}
library(vegan)
data(mite) # Species data, 70 x 35
data(mite.xy) # Site coordinates, 70 x 2
Y = mite
X = mite.xy

Centre Y and X
Y = scale(Y, center=TRUE, scale= FALSE)
X = scale(X, center= TRUE, scale= FALSE)
Matrix algebra equation for multivariate regression and calculation of residuals
mite.res = Y - (X %*% solve(t(X)%*%X) %*% t(X) %*% Y)

==========

3. Detrending multivariate response data by regression, function lm().
Example: multivariate mite data

mite.lm = lm(as.matrix(mite) ~ ., mite.xy)
mite.resid = residuals(mite.lm)
head(mite.resid)

Check the results

sum(abs(mite.res - mite.resid)) # The two sets of residuals do not differ
diag(cor(mite.res, mite.resid)) # The two sets of residuals have correlations of 1

 Practicals using the R language 33

10. dbMEM spatial (or temporal) eigenfunction analysis (formerly called PCNM analysis)1

Load the packages required for this exercise.
It is important to load the packages in the specified order, loading ade4 before adegraphics. In that
way, some functions of ade4 are masked (i.e. they are turned off) by the same-name functions of new
package adegraphics. Later, the same-name functions of ade4 will be discarded.

library(ade4)
library(adegraphics)
library(adespatial)

Load the mite data files available in {vegan}

library(vegan)
data(mite) # Mite species data from "vegan", 70 x 35
data(mite.xy) # Geographic coordinates from "vegan", 70 x 2

Transform the species data (Practicals p. 16)
mite.hel <- decostand(mite, "hellinger")

Read file "mite_env.txt" from the folder of Practicals
mite_env = read.table(file.choose())

Plot a rough map of the 70 sampling points
plot(mite.xy, asp=1)
text(mite.xy, labels=rownames(mite.xy), pos=3)

========

dbMEM analysis by steps

1. Detrend the species data (Practicals p. 32)

mite.lm = lm(as.matrix(mite.hel) ~ as.matrix(mite.xy))
mite.resid = residuals(mite.lm)

1 The pcnm() function of vegan produces classical PCNM eigenfunctions, for which the eigenvalues do not
correspond to the associated Moran’s I indices; the eigenvectors modelling positive spatial correlation are,
however, perfectly correlated to the same-rank dbMEM eigenfunctions. They act in the same way when they
are used as explanatory variables in a regression or RDA model. Typically, for n sites, PCNMs produce
approximately 2n/3 eigenfunctions that have positive eigenvalues. The last third of those have negative
Moran’s I, which indicate that they model negative spatial correlation. The pcnm() function of vegan can use
weights, and this allows the construction of PCNM variables that remain orthogonal when they are used in
canonical correspondence analysis (vegan’s function cca(), section 6.3 in these Practicals).

 Practicals using the R language 34

2. Construct the dbMEM eigenfunctions using the dbmem() function. See ?dbmem. Note that
dbmem() can use the xy coordinates of the sites or a pre-computed geographic distance matrix.
The default option of argument MEM.autocor is to compute only the eigenfunctions modelling
positive spatial correlation. However, other options are available for argument MEM.autocor.

?dbmem

mite.dbmem = dbmem(mite.xy, silent=FALSE) # Note the truncation value
summary(mite.dbmem)

Examine the positive eigenvalues
attributes(mite.dbmem)$values

Get the dbMEM eigenvectors modelling positive spatial correlation
mite.mem = as.matrix(mite.dbmem)
dim(mite.mem) # How many are there?

Plot the spatial weighting matrix of this analysis, showing all edges > truncation value
s.label(mite.xy, nb = attr(mite.dbmem, "listw"))

Plot maps of the first 9 dbMEM eigenfunctions using the new s.value() function of adegraphics:
s.value(mite.xy, mite.dbmem[,1:9])

This plot can also be obtained using function s.value() of ade4 (slower); it involves, however, the
writing of a for loop:

par(mfrow=c(3,3))
for(i in 1:9) {
ade4::s.value(mite.xy, mite.mem[,i], addaxes=FALSE, include.origin=FALSE,
 sub=paste("dbMEM #",i), csub=1.5)
}

Compute and test the Moran’s I values associated with the dbMEM eigenfunctions
One can check that the eigenvalues are perfectly proportional to Moran’s I

(test <- moran.randtest(mite.dbmem, nrepet = 999))
plot(test$obs, attr(mite.dbmem, "values"), xlab = "Moran's I", ylab = "Eigenvalues")

Plot the decreasing values of Moran’s I describing the successive dbMEM eigenfunctions.
The red line is the expected value of Moran’s I under H0.

plot(test$obs, xlab="MEM rank", ylab="Moran's I")
abline(h=-1/(nrow(mite.xy) - 1), col="red")

3. Compute the R2 and the R2

adjusted for the global model that includes all positive dbMEM

RsquareAdj(rda(mite.resid, mite.mem))

4. Forward selection (p. 28): identify the significant dbMEM among those that model positive
spatial correlation. Use the adjusted R2 above as value for stopping criterion “adjR2thresh”.

(mite.sel = forward.sel(mite.resid, mite.mem, adjR2thresh=0.2455))

The selected dbMEM variables are listed in vector "mite.sel$order" (column 2 of output table)
(mite.sel$order)

 Practicals using the R language 35

Obtain an ordered list of the selected variable numbers:

(sel.dbmem = sort(mite.sel$order))

Look at the adjusted R-square of the model containing the 8 selected dbMEM (line 8 of table):
mite.sel[8,]

5. Draw maps of the selected eigenfunctions using the new s.value() function of adegraphics:

s.value(mite.xy, mite.mem[,sel.dbmem])

This plot can be obtained using function s.value() of ade4 (slower); it involves writing a for loop:

par(mfrow=c(3,3))
for(i in 1:length(sel.dbmem)) {
ade4::s.value(mite.xy, mite.mem[,sel.dbmem[i]], addaxes=FALSE, include.origin=FALSE,
sub=paste("dbMEM #", sel.dbmem[i]), csub=1.5) }

6. Canonical analysis (RDA): compute the dbMEM spatial model

mite.rda = rda(mite.resid ~ ., data=as.data.frame(mite.mem[,sel.dbmem]))
anova(mite.rda)
anova(mite.rda, by="axis")

How many axes of the canonical model are significant at level alpha = 0.05?
anova(mite.rda, by="axis", cutoff=0.05)

7. Draw maps of the three significant canonical axes using function s.value() of ade4 (larger maps)

par(mfrow=c(1,3))
for(i in 1:3) {
ade4::s.value(mite.xy, mite.rdaCCAu[,i], addaxes=FALSE, include.origin=FALSE,
sub=paste("Canonical axis #",i), csub=1.5) }

These maps could have been produced with the s.value() function of adegraphics. Can you do it?

8. Other examples of dbMEM analysis are found in the documentation file of the function
?dbmem

========

 Practicals using the R language 36

11. Variation partitioning

Function varpart (from ‘vegan’) partitions the variation of a response table Y with respect to 2, 3,
or 4 explanatory tables X1, X2, X3, X4. The underlying method of analysis is canonical redundancy
analysis (RDA). It is not necessary to eliminate collinear variables from the explanatory tables before
partitioning. The transformations available in decostand (described section 4 above) can be called as
options of the varpart function. As usual in R, the help file of varpart is obtained by:

 library(vegan)
 ?varpart

The examples provided with the function varpart use Borcard’s soil mite data, available in vegan.

 data(mite)
 data(mite.env)
 data(mite.pcnm) # These are classical PCNM eigenfunctions. See note at bottom of p. 30.

Example for two explanatory tables, "mite.env" and "mite.pcnm". "mite" is the Y (response)
table. "mite.env" contains multistate qualitative variables coded as factors.

There are two ways to write the model:
1. One can write the file names one after the other, starting with the response table Y, followed by
the explanatory data tables. The general format is: result = varpart(Y, X1, X2)

Table ‘mite.env’ contains the nominal variable ‘Substrate’ coded as a factor. We must, first, create
a new table in which that variable will be recoded by dummy variables. In this example, the ordinal
variable ‘Shrub’ has a mostly linear contribution to the explanation of the mite data.

 mm = model.matrix(~ SubsDens +WatrCont +Substrate +as.numeric(Shrub) +Topo, mite.env)[,-1]

The function ‘model.matrix’ creates a first column of ‘1’ that is used to compute the intercept in
regression. The statement [,-1] at the end of the line removes that column before creating ‘mm’.

 result2 = varpart(mite, mm, mite.pcnm, transfo="hel")
 result2

The parameter transfo="hel" specifies that the Hellinger transformation is to be applied to the
response table (‘mite’) before variation partitioning. varpart calls decostand for the transformation.

2. Researchers who are used to writing regression models with a ‘tilde’ (~), in function lm, can use
the same form in varpart. Using this writing, it is not necessary to unpack the variables coded as
factors before running varpart.

 result2 = varpart(mite, ~ SubsDens + WatrCont + Substrate + as.numeric(Shrub) + Topo,
mite.pcnm, data=mite.env, transfo="hel")
 result2 # Same result as above
 showvarparts(2) # Plot a Venn diagram with the fraction names
 plot(result2, bg=2:3) # Plot a Venn diagram with the fraction values
This new version of varpart appeared in version 2.3-1 of vegan. It produces coloured Venn
diagrams upon request. The choice of colours is specified by parameter ‘bg’ (background colours).

The testable fractions can be tested for significance using vegan’s function rda.
For example, we will test the significance of fraction [a] as follows.

Function rda does not allow one to include a table of covariables residing in a separate file when
using the formula with tilde (~). Before calling rda, one must first recode the nominal variable

 Practicals using the R language 37

‘Substrate’ in table ‘mite.env’, if this recoding has not already been done.

 mm = model.matrix(~ SubsDens +WatrCont +Substrate +as.numeric(Shrub) +Topo, mite.env)[,-1]

The following call to rda contains a call to decostand to apply a Hellinger transformation, specified
by "hel", to the mite data prior to the rda.
 rda.result = rda(decostand(mite, "hel"), mm, mite.pcnm)
 anova(rda.result)

Example for three explanatory tables. The two following calls to varpart are equivalent.

1. First, create matrices of dummy variables (design matrices) for the variables coded as factors:

 mm1 = model.matrix(~ SubsDens + WatrCont, mite.env)[,-1]
 mm2 = model.matrix(~ Substrate + as.numeric(Shrub) + Topo, mite.env)[, -1]
 result3 = varpart(mite, mm1, mm2, mite.pcnm, transfo="hellinger")
 showvarparts(3) # No colours were specified using parameter ‘bg’
 plot(result3, bg=2:4) # The numbers determine the colours; try different combinations

Parameters can be added to print negative fractions (they are not printed in the default options), set
the number of decimals (parameter ‘digits’), and choose the font size (parameter ‘cex’). Example:

 plot(result3, cutoff = -Inf, digits=5, cex = 0.7, bg=5:7)

2. If one prefers to write the model in the functional (~) form:

 result3 = varpart(mite, ~ SubsDens+WatrCont, ~ Substrate + as.numeric(Shrub) + Topo,
mite.pcnm, data=mite.env, transfo="hel")
 showvarparts(3, bg=2:4)
 plot(result3, bg=5:7)

For four explanatory tables, the function is called using the general form:

 result4 = varpart(Y, X1, X2, X3, X4) # Y = response table, X[1 ... 4] = explanatory tables
 showvarparts(4, bg=4:7)

Hint: varpart can be used to obtain the adjusted R-square for a single explanatory variable: type the
explanatory table’s name twice, as in the following example: result1 = varpart(Y, X1, X1)

 Practicals using the R language 38

12. Clustering and partitioning methods

12.1. Partitioning the objects into groups using the K-means method

1. Prepare the data table. Example: file "Bears.txt" (beware: column 1 has a header)
bears = read.table(file.choose(), header=TRUE, row.names=1)
Eliminate column 5, which is a qualitative variable. K-means requires quantitative variables.
bears.mat = as.matrix(bears[,1:4])

The variables must first be standardized because they are not expressed in the same physical units.

bears2 = apply(bears.mat, 2, scale, center=TRUE, scale=TRUE)

Note: the parameter ‘2’ indicates to center by columns, not by rows;
‘center=TRUE’ indicates to center the data on the variables’ means; ‘scale=TRUE’ calls for
division of the centered values by the variables’ standard deviations.

Or standardize using the ‘decostand’ function of ‘vegan’:

bears2 = decostand(bears.mat, "stand")

2. Compute partitioning into 5 groups (param. ‘centers’) using ‘cclust’ of the ‘cclust’ package.
This function offers a variety of convex clustering methods; the default method is K-means.
‘cclust’ is not the best choice for K-means because it does not allow users to automatically repeat
the analysis a large number of times. That function is interesting for other reasons, though.

library(cclust)
result.cclust.5 = cclust(bears2, centers=5)
result.cclust.5 # A brief summary of the results
summary(result.cclust.5) # Structure of the output file giving detailed results

Graphs can be obtained where the groups are identified on bivariate plots of the data:
plot(bears.mat[,1:2], col=result.cclust.5$cluster) # K-means results on plot of variables 1 and 2
plot(bears.mat[,3:4], col=result.cclust.5$cluster) # K-means results on plot of variables 3 and 4

Extension to PCA: compute a PCA of ‘bears.mat’, then plot K-means results on ordination:

bears.pca = rda(Bear2) # Compute PCA using function ‘rda’ of ‘vegan’
plot(summary(bears.pca)$sites, col=result.cclust.5$cluster)

Compute stopping criteria using the ‘clustIndex’ function of ‘cclust’. These criteria allow one
to choose the best partition among those corresponding to different values of K.
Milligan & Cooper (1985) recommend to maximize the Calinski-Harabasz index (F-statistic).
The maximum of ‘ssi’ is another good indicator of the best partition in the least-squares sense.

clustIndex(result.cclust.5, bears2)
clustIndex(result.cclust.5, bears2, index=c("calinski","ssi")) # Compute 2 indices only

3. Compute partitioning in 5 groups (parameter ‘centers’) using ‘kmeans’ of the ‘stats’ package.

This is a more interesting function for K-means because the analysis can be automatically repeated
a large number of times (parameter ‘nstart’). The function finds the best solution (smallest value of
sum of within-groups sums-of-squares) after repeating the analysis ‘nstart’ times.

result.km.5 = kmeans(bears2, centers=5, nstart=100)

 Practicals using the R language 39

result.km.5

K-means clustering with 5 clusters of sizes 6, 5, 5, 5, 8

Cluster means:
 Estimated.age Mass.kg Height.cm Length.cm
1 -0.4429883 0.4064977 0.2937206 0.9624910
2 -1.0359111 -0.9007854 -1.6099529 -0.9332289
3 0.9404982 -0.3309587 0.8412004 -0.4314848
4 1.3357801 1.8625307 1.1580161 1.4969575
5 -0.4429883 -0.6991148 -0.4635802 -0.8045206

Clustering vector:
 [1] 5 5 2 2 1 1 1 2 2 1 2 5 5 1 5 5 5 5 1 3 3 4 4 3 3 4 4 4 3

Within cluster sum of squares by cluster:
[1] 3.3117416 0.9739777 1.8493394 0.6940644 4.1964065

Available components:
[1] "cluster" "centers" "withinss" "size"

Look at the structure of the file. You can use any of the subfiles in further analyses.

summary(result.km.5)

Compute the sum of the squared within-group residuals (or “error” sum-of-squares, SSE):

SSE = sum(result.km.5$withinss)
SSE
[1] 11.02553

Compute stopping criteria using the ‘clustIndex’ function of ‘cclust’:

clustIndex(result.km.5, bears2, index=c("calinski","ssi"))

Repeat the K-means analysis for K = 2, K = 3, K = 4, K = 5 and compare the values of the indices.
Do the indices reach a maximum for some intermediate value of K? Which partition is the best?
Which index seems the most useful?

result.km.2 = kmeans(bears2, centers=2, nstart=100)
clustIndex(result.km.2, bears2, index=c("calinski","ssi"))
result.km.3 = kmeans(bears2, centers=3, nstart=100)
clustIndex(result.km.3, bears2, index=c("calinski","ssi"))
result.km.4 = kmeans(bears2, centers=4, nstart=100)
clustIndex(result.km.4, bears2, index=c("calinski","ssi"))
result.km.5 = kmeans(bears2, centers=5, nstart=100)
clustIndex(result.km.5, bears2, index=c("calinski","ssi"))
result.km.6 = kmeans(bears2, centers=6, nstart=100)
clustIndex(result.km.6, bears2, index=c("calinski","ssi"))
result.km.7 = kmeans(bears2, centers=7, nstart=100)
clustIndex(result.km.7, bears2, index=c("calinski","ssi"))

4. Compute K-means for a range of values of K using ‘cascadeKM’ of the ‘vegan’ package.
This function is a wrapper for the ‘kmeans’ function of the ‘stats’ package, that is, a function that
uses a basic function, adding new properties to it. It creates several partitions forming a cascade

 Practicals using the R language 40

from small (parameter ‘inf.gr’) to large values of K (parameter ‘sup.gr’).

result.cascadeKM = cascadeKM(bears2, inf.gr=2, sup.gr=10, iter = 100, criterion = 'ssi')

Look at the structure of the results file:

summary(result.cascadeKM)

The element ‘partition’ contains a table showing the group attributed to each object:

result.cascadeKM$partition

Element ‘results’ gives the SSE statistic as well as the value of the criterion (“calinski” or “ssi”) for
each value of K. It is easy to identify the partition for which the criterion is maximum. Element ‘size’
gives the number of objects in each group of every partition.

A plot shows the group attributed to each object for each partition (rows of the graph). The groups
are represented by different colours; there are two colours for K = 2, three colours for K = 3, and so
on. Another graph shows the values of the chosen stopping criterion for the different values of K:

out.bears = plot(result.cascadeKM)

Option ‘sort=TRUE’ reorders the objects in such a way as to put together, insofar as possible, the
objects pertaining to each group:

out.bears = plot(result.cascadeKM, sortg=TRUE)

The R output object, called ‘out.bears’ in this example, contains a table showing the group
attributed to each object, taking into account the new order of the objects.

 Practicals using the R language 41

12.2. Hierarchical agglomerative clustering

Example: file ‘Bears.txt’
First, standardize the variables in file bears
before computing the matrix of Euclidean distances (see section 3).

bears = read.table(file.choose(), header=TRUE, row.names=1) # Read the file "Bears.txt"
bears.mat = as.matrix(bears[,1:4])
bears2 = decostand(bears.mat, "stand") # Standardize the variables
bears.D1 = dist(bears2, method="eucl") # Compute Euclidean distance

Methods available in hclust: "ward.D", "ward.D2", "single", "complete", "average" (= UPGMA),
"mcquitty" (= WPGMA), "median" (= WPGMC)" and "centroid" (= UPGMC).

Agglomerative clustering, UPGMA method: hclust(D, method = "average", members=NULL)
bears.cl = hclust(bears.D1, method="average")
plot(bears.cl) # Plot the dendrogram
plot(bears.cl, hang=-1)

Examine the following functions:
?identify
?rect.hclust
?cutree
?dendrogram # See in particular option "horiz"

Compute cophenetic correlation # Documentation file: ?cophenetic
bears.coph = cophenetic(bears.cl) # Cophenetic distances of the dendrogram
cor(bears.D1, bears.coph) # Cophenetic correlation

=========
Examples of hierarchical agglomerative clustering: Screws and bolts

1. Hierarchical clustering, using only the binary data in the matrix

Screws=read.table(file.choose()) # Read the file "Screws_and_bolts.txt"
Screws.bin=Screws[, 2:9]
library(ade4)
screws.D1=dist.binary(Screws.bin, method=1) # Compute D = sqrt(1 – Jaccard similarity)
screws.cl=hclust(screws.D1, method="average")
plot(screws.cl)

2. Read a square distance matrix (in ASCII) pre-computed by another program

screws.S15=read.table(file.choose()) # Read the file "Screws_D=1-S15.txt"
screws.D=as.dist(screws.S15) # Give type “dist” to the distance matrix
screws.cl2=hclust(screws.D, method="average")
plot(screws.cl2)

=========

 Practicals using the R language 42

Hierarchical agglomerative clustering: the Ward method

 Two different algorithms are found in the literature for Ward clustering. In the hclust function
of R version >= 3.1.1, the algorithm used by option "ward.D" does not implement Ward's (1963)
clustering criterion; this is equivalent to the only option "ward" available in R versions <= 3.0.3.
Following Murtagh and Legendre (2013), the hclust function was modified in R version 3.1.1; the
new option "ward.D2" implements the Ward (1963) criterion. In that algorithm, the dissimilarities are
squared before cluster updating. Note that function agnes(*, method="ward") (AGglomerative
NESting) of {cluster} also implements Ward's (1963) clustering criterion.

Example –
1. Using function agnes(*, method="ward")

 library(cluster) # Documentation file: ?agnes
 bears.agnes.Ward.D2 <- agnes(bears.D1, diss=TRUE, method="ward")
 plot(bears.agnes.Ward.D2)
 bears.agnes.Ward.D2$height # List of fusion levels
 range(bears.agnes.Ward.D2$height) # Range of the fusion levels

2. Using function hclust(*, method="ward.D2")

 bears.hclust.Ward.D2 <- hclust(bears.D1, method="ward.D2")
 plot(bears.hclust.Ward.D2)
 bears.hclust.Ward.D2$height # List of fusion levels
 range(bears.hclust.Ward.D2$height) # Range of the fusion levels

3. Using function hclust(*, method="ward.D")
 Note: in R versions <= 3.0.3, hclust(*, method="ward") produced the same result

 bears.cl <- hclust(bears.D1^2, method="ward.D") # Use squared distances
 bears.cl$height <- sqrt(bears.cl$height) # Square-root the fusion levels
 plot(bears.cl, hang=-1) # Draw the dendrogram
 bears.cl$height # List of fusion levels
 range(bears.cl$height) # Range of the fusion levels

Are the fusion levels the same in all three methods? Are the fusion levels ranges the same? What is
the cause of these differences?

=========

 Practicals using the R language 43

Agglomerative clustering of the spider data

Load the data set "spiders.RData" by dragging it out to the R console, or using the load() command.
The data file "spiders" will appear among the files of your R console.

1. Compute the percentage difference dissimilarity (alias Bray-Curtis D) using 'vegdist' (vegan
package; see section 3.2), followed by agglomerative clustering using hclust() (method="average")
and agnes() (method="ward"). Compute the cophenetic correlation for the hclust() result.

2. Compute the Hellinger distance: (1) compute a Hellinger transformation of the data (section 4)
followed by (2) computation of the Euclidean distance (section 3.1). (3) Then, compute
agglomerative clustering using hclust() (method="average") and agnes() (method="ward"). Compute
the cophenetic correlation for the hclust() result.

3. This exercise will use presence-absence data. Compute the Jaccard distance on the data file using
function dist.binary() of ade4; see section 3.3. Users don’t have to pre-transform the data to
presence-absence, the dist.binary() function takes care of that transformation. The computed
dissimilarities are actually D = sqrt(1 – Jaccard similarity). Finally, compute clustering using hclust()
(method= "average") and agnes() (method="ward"). Compute cophenetic correlation for the hclust()
result.

Compare the results, as well as the cophenetic correlations, obtained in #1, 2 et 3. Which
dissimilarity measure produces the dendrogram with the highest cophenetic correlation?

=========

 Practicals using the R language 44

13. Correlograms

Correlograms with tests of significance of individual correlation coefficients are available in:

library(spdep)

We will compute correlograms for two variables of the file mite_env.txt, which is available among
the data sets of this Short Course. The file mite.env is also available in the vegan package. Variable
#1 is Substrate density (‘SubsDens’) and variable #2 is Water content (‘WatrCont’).

Load the mite data files available in {vegan}
library(vegan)
data(mite.env) # Environmental data, 70 x 5

subs.density <- mite.env[,1]

The geographic coordinates are found in the file mite_xy.txt. Create the file of neighbors.

data(mite.xy) # Geographic coordinates, 70 x 2
nb1 <- dnearneigh(as.matrix(mite.xy), 0, 0.7)

Compute the correlogram.

mite.correlog <- sp.correlogram(nb1, subs.density, order=14, method="I", zero.policy=TRUE)
print(mite.correlog)
plot(mite.correlog)

Correct the probabilities for multiple testing using a Bonferroni correction.

print(mite.correlog, "bonferroni")
plot(mite.correlog)

The correlogram based on the spatial correlation function is obtained as follows:

mite.correlog2 <- sp.correlogram(nb1, subs.density, order=14, method="corr", zero.policy=TRUE)
print(mite.correlog2)
plot(mite.correlog2)

Exercise: compute the correlogram for the variable ‘water.content’.

water.content <- mite.env[,2]

 Practicals using the R language 45

14. Variogram and interpolated maps by kriging

1. Basic mapping
World and country maps are available in R. Examples:

library(maps) # Basic package to draw maps
library(mapdata) # Package with specialized maps, e.g. ‘rivers’
map('world') # or map() # Worls map centered on Europe and Africa
map('world2') # World map centered on the Pacific Ocean

Maps by country are also available, for example the map of China.

map(region='china') # Map of China without provinces, from the package ‘maps’
map('china') # Map of China with provinces, from the package ‘mapdata’

Draw capitals of Southeast Asia countries, plus Taipei for perspective

capitals = read.table(file.choose()) # Read the file "SoutheastAsia_capitals.txt"
map(region=

c('cambodia','laos','myanmar','thailand','vietnam','brunei','indonesia','malaysia','philippines'))
points(capitals[,2], capitals[,1], cex=2, pch=20, col="red")
text(capitals [,2], capitals [,1], rownames(capitals), pos=4)

Repeat the exercise using the following map as the base map

map(region= c('china',

'cambodia','laos','myanmar','thailand','vietnam','brunei','indonesia','malaysia','philippines'))

=========

2. Construct an empirical variogram

library(geoR)

library(vegan)
data(mite) # Species data, 70x35
data(mite.env) # Environmental data, 70 x 5
data(mite.xy) # Site coordinates, 70 x 2

water.content <- as.matrix(mite.env[,2])

vario.water <- variog(coords=mite.xy, data=water.content)
plot(vario.water)

Fit a variogram model. Save it before quitting the Eyefit window.

x11() # For Mac OS X only: open x11 before ‘eyefit’. Operation not necessary in Windows.
model.water <- eyefit(vario.water) # Click on “Save” to save the model, then “Quit’.

3. Conventional kriging for fixed variogram model, variable ‘water.content’

3.1. Define a grid for interpolation. The sampled area is a rectangle 2.5m x 10 m.
Beware: The grid spacing must be at least as fine as the precision of the point coordinates
located near the margins of the area to be mapped.

pred.grid <- expand.grid(seq(0, 2.5, 0.05), seq(0, 10, 0.05))

 Practicals using the R language 46

3.2. Interpolate by ordinary kriging (abbreviated "ok").

kc.water <- krige.conv(coords=mite.xy, data=water.content, loc= pred.grid,

krige=krige.control(type.krige="ok", obj.model=model.water))

3.3. Map the point estimates and the prediction variance.

Provide space for two graphs side by side in the window.
par(mfrow=c(1,2))

Left portion of the window: draw the interpolated map, using the image.kriging function.
image(kc.water, loc = pred.grid, xlab="X", ylab="Y")

3.4. Add the raw data (standardized) to the map.
Use the s.value function of the ade4 package:
empty squares for values smaller than the mean, full squares for values larger than the mean.

library(ade4)
s.value(mite.xy, scale(water.content), add.plot=TRUE, csize=0.8, clegend=0)

3.5. Right portion of the window: draw the map of prediction variance.

Define the axes
x <- seq(0, 2.5, 0.05)
y <- seq(0, 10, 0.05)

Write the kriging variance information to a matrix
krige.water.var <- matrix(kc.water$krige.var, nrow=length(x), ncol=length(y))

Draw the map of kriging variance, using the image function of the graphics package.
image(x=x, y=y, z=krige.water.var, asp=1, col=heat.colors(30))

Exercise: repeat the mapping operations by kriging for mite species #15, square-root transformed.

sp15.sqrt <- sqrt(mite.spe[,15])

 Practicals using the R language 47

15. Linear discriminant analysis – Daniel Borcard, 31 mars 2009

Load required packages
library(ade4)
library(vegan)

Preparation of the Doubs data (package ade4). See: http://fr.wikipedia.org/wiki/Doubs_(rivière)
data(doubs)
spe <- doubs$poi # Species abundances
env <- doubs$mil # Environmental data
spa <- doubs$xy # Geographical coordinates

Remove empty site 8
spe <- spe[-8,]
env <- env[-8,]
spa <- spa[-8,]

Correct a mistake in env object
env[6,1] <- 268
env[7,1] <- 324

Remove the 'das' variable from the env dataset
env = env[,-1]

Transform the species dataset to allow RDA
spe.hel = decostand(spe, "hellinger")

Create subset of 3 explanatory variables: altitude, oxygen concentration and
biological oxygen demand

env.pars2 <- as.matrix(env[,c(1,9,10)])

Create four groups of sites based on the clustering dendrogram of the fish abundances

gr = cutree(hclust(vegdist(spe.hel,"euc")^2,"ward"),4) ### D^2 ###
gr

Verify multivariate homogeneity of within-group variances
using Marti Anderson's betadisper() function {vegan}

env.pars2.d1 <- dist(env.pars2)
env.MHV <- betadisper(env.pars2.d1,gr)
anova(env.MHV) # Parametric test
permutest(env.MHV) # Permutational test

 # Variances are NOT homogeneous. Let us try a log
 # transformation on variables alt and dbo
env.pars3 <- cbind(log(env$alt), env$oxy, log(env$dbo))
colnames(env.pars3) <- c("alt.ln", "oxy", "dbo.ln")
row.names(env.pars3) <- row.names(env)
env.pars3.d1 <- dist(env.pars3)
env.MHV2 <- betadisper(env.pars3.d1,gr)
permutest(env.MHV2)

 # This time the variances are homogeneous! We can proceed.

 Practicals using the R language 48

Test of significance of among-group dispersion:
compute Wilks’ lambda (eq. 11.42) and test its significance (eq. 11.43).

Computation of LDA (discrimination)

library(MASS)
env.pars3.df <- as.data.frame(env.pars3)
spe.lda <- lda(gr ~ alt.ln + oxy + dbo.ln, data=env.pars3.df)
spe.lda

The result object contains the information necessary to interpret the LDA
summary(spe.lda)

Examine the elements in the output object –
Group means for the 3 variables
spe.lda$means

Normalized eigenvectors (matrix C, eq. 11.33) = standardized
discriminant function coefficients
C <- spe.lda$scaling

Canonical eigenvalues
spe.lda$svd^2
sum.sl <- sum(spe.lda$svd^2)
proportion.of.trace <- spe.lda$svd^2/sum.sl

Position of the objects in the space of the canonical variates
F <- predict(spe.lda)$x
alternative way: F <- scale(env.pars3.df, center=TRUE, scale=FALSE) %*% C

Classification of the objects
spe.class <- predict(spe.lda)$class

Posterior probabilities of objects belonging to the groups
spe.post <- predict(spe.lda)$posterior

Table of prior vs predicted
spe.table <- table(gr, spe.class)

 Practicals using the R language 49

Percentage of correct classification
diag(prop.table(spe.table, 1))

Plot of objects in the space of the canonical variates
with colors according to their classification
plot(F[,1], F[,2], type="n")
text(F[,1], F[,2], row.names(env), col=c(as.numeric(spe.class)+1))
abline(v=0, lty="dotted")
abline(h=0, lty="dotted")
Draw 95% ellipses around groups
library(ellipse)
for(i in 1:length(levels(as.factor(gr)))) {
 cov <- cov(F[gr==i,])
 centre <- apply(F[gr==i,], 2, mean)
 lines(ellipse(cov,centre=centre, level=0.95))
}

Classification of a new object (identification)
A new object is created with ln(alt)=6.8, oxygen=90 and ln(dbo)=3.2
new = c(6.8, 90, 3.2)
new = as.data.frame(t(new)) # ‘new’ must be a row table
colnames(new) = colnames(env.pars3)
predict.new <- predict(spe.lda, newdata=new)
predict.new

 # In which group has the new object has been classified?
 # Note: group numbers in vector ‘gr’ may differ among computer platforms and versions of
R.
 # This calculation could have been done in the same way for a whole table of new
observations.

LDA with jackknife-based classification (i.e., leave-one-out cross-validation)

spe.lda.jac <- lda(gr ~ alt.ln + oxy + dbo.ln, data=env.pars3.df, CV=TRUE)
summary(spe.lda.jac)

Number and percentages of correct classification
spe.jac.class <- spe.lda.jac$class
spe.jac.table <- table(gr,spe.jac.class)
spe.jac.table # Classification table (see Manuel p. 629)
diag(prop.table(spe.jac.table,1))

The classification success in “spe.jac.table” seems not as good as the result in “spe.table”.
Remember, however, that “spe.table” shows an a posteriori classification of the objects that
have been used in the computations. It is too optimistic. By comparison, cross-validation results
are obtained by computing the ‘lda’ and classification of each object, in turn, with that object
taken out of the ‘lda’ calculation. It is more realistic.

 Practicals using the R language 50

16. Some common statistical procedures available in R

Common statistical tests available in package « stats »

t.test: Student's t-test. Paired t-test: paired=TRUE
pairwise.t.test: a posteriori comparisons between groups by t-test
var.test: F-test of the ratio of two variances
bartlett.test: Bartlett's test of homogeneity of variances
friedman.test: Friedman's test (nonparametric analysis of variance without replication)
kruskal.test: Kruskal-Wallis test
ks.test: Kolmogorov-Smirnov goodness-of-fit test
mcnemar.test: McNemar's test
power.t.test: power of t-test, one or two samples
shapiro.test: Shapiro-Wilk's normality test
wilcox.test: Wilcoxon rank sum and signed rank tests. Mann-Whitney U-test: paired=FALSE

chisq.test: contingency table analysis, Pearson's chi-square statistic.
 One gives either two vectors, or a contingency table.
 One can obtain a permutation test as an option.

aov: analysis of variance. The factor(s) must be declared “as.factor”.
summary.aov: ‘aov' results
manova: multivariate analysis of variance
summary.manova: ‘manova' results

Confidence intervals

t.test: Student's t-test and confidence intervals, 1 or 2 groups.
confint: confidence intervals of the parameters of a model fitted to the data
confint.glm (MASS package): confidence intervals of the parameters of a model fitted to the data
norm.ci (BOOT package): confidence intervals based on normal approximation
boot.ci (BOOT package): bootstrap confidence intervals
print.bootci (BOOT package): prints the bootstrap confidence intervals
intervals (librairie NLME): confidence intervals of coefficients

Multiple regression

lm (package stats) is used to fit linear models. It can be used to carry out regression, single stratum
analysis of variance and analysis of covariance (although aov may provide a more convenient
interface for these). This function also computes multivariate regressions for multivariate response
tables.

 Practicals using the R language 51

Linear discriminant analysis

library(MASS)
lda (MASS): linear discriminant analysis
ldahist: histogram of diagram of group densities
pairs.lda: scattergrams for pairs of groups
plot.lda: diagrams for objects of class “lda”
predict.lda: lda-based classification of multivariate objects

library(ade4)
discrimin: linear discriminant analysis

library(labdsv)
spcdisc: a form of discriminant analysis for species data

library(sonarX)
This library is distributed on the ESA Web page http://esapubs.org/archive/, inside “Ecological
Archives A016-047-S1”.
ldaTest: linear discriminant analysis

Canonical correlation analysis

CCorA : function available on the Web page http://www.bio.umontreal.ca/legendre/

Statistical distributions

Example : FDist for the F distribution –
Ask for information about the F distribution:

?FDist

Applications :

 pf(F,df1,df2,lower.tail=FALSE) to find probabilities associated to the F distribution
 qf(prob,df1,df2,lower.tail=FALSE) to find a value of F corresponding to a given probability
 rf(n,df1,df2) to obtain n random numbers extracted from the specified F distribution
 df(F,df1,df2) to obtain the density of the F distribution for a given value of F

Ask for information about the other frequently used distributions:

?Normal
?TDist
?Chisquare
?Lognormal
?Binomial
?Multinomial
?NegBinomial
?mvrnorm in package MASS

 Practicals using the R language 52

17. Using R as a calculator

A simple sum

 1+1
[1] 2

Square root of a number

 sqrt(10)
[1] 3.162278

Create a sequence of numbers Information : ?seq

 seq(0,5,length=6)
[1] 0 1 2 3 4 5

Generate a graph Information : ?plot

 plot(sin(seq(0,2*pi,length=100)))

Create a vector of values

 x = c(2,3,5,2,7,1)
 x

[1] 2 3 5 2 7 1

Calculate the mean

 mean(x)
[1] 3.333333

Calculate the standard deviation

 sd(x)
[1] 2.250926

Calculate the standard error of the mean

 sd(x)/sqrt(6)
[1] 0.9189366

Sort a vector of values Information : ?sort

 sort(x)
[1] 1 2 2 3 5 7
or try
 y=sort(x)
 y
[1] 1 2 2 3 5 7

 Practicals using the R language 53

Random normal generator Information : ?rnorm

 x=rnorm(10,0,1)
 mean(x)
 sd(x)

 x=rnorm(1000,mean=10,sd=5)
 mean(x)
 sd(x)

Generate a column vector with zeros Information : ?matrix

 Vector=matrix(0,10,1)
 Vector
 [,1]
 [1,] 0
 [2,] 0
 [3,] 0
 [4,] 0
 [5,] 0
 [6,] 0
 [7,] 0
 [8,] 0
 [9,] 0
[10,] 0

Create a sequence of actions: a ‘for’ loop

Use a ‘for’ loop to compute a cumulative mean of random numbers. The
cumulative mean should converge to the true mean as the number of values
included in the calculation increases.

 n = 30 # n = sample size
 vec.means = vector(mode="numeric", length=(n-1))
 true.mean = 5
 x = rnorm(n, mean=true.mean, sd=1) # Information: ?rnorm
 for(i in 2:n) {
 vec.means[i-1] = sum(x[1:i])/i
 }

Print the vector of mean values
 vec.means
 plot(vec.means, ylim=c(true.mean-1, true.mean+1))
 abline(h=true.mean, col="red")

=========================

