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This program computes model II simple linear regression using the following
methods: major axis (MA), standard major axis (SMA), ordinary least squares (OLS), and
ranged major axis (RMA). Information about these methods is available, for instance, in
section 10.3.2 of Legendre and Legendre (1998) and in sections 14.13 and 15.7 of Sokal and
Rohlf (1995)*. Parametric 95% confidence intervals are computed for the slope and
intercept parameters. A permutation test is available to determine the significance of the
slopes of MA, OLS and RMA and also for the correlation coefficient.

Bartlett’s three-group model II regression method, described by the above-mentioned
authors, is not computed by the program because it suffers several drawbacks. Its main
handicap is that the regression lines are not the same depending on whether the grouping
(into three groups) is made based on x or y. The regression line is not guaranteed to pass
through the centroid of the scatter of points and the slope estimator is not symmetric, i.e. the
slope of the regression y = f(x) is not the reciprocal of the slope of the regression x = f(y).

Model II regression should be used when the two variables in the regression equation
are random, i.e. not controlled by the researcher. Model I regression using least squares
underestimates the slope of the linear relationship between the variables when they both
contain error; see example 4 below. Detailed recommendations follow.

Recommendations on the use of model II regression methods

Considering the results of simulation studies, Legendre and Legendre (1998) offer the
following recommendations to ecologists who have to estimate the parameters of the
functional linear relationships between variables that are random and measured with error
(Table 1).

*  In Sokal and Rohlf (Biometry, 2nd edition, 1981: 551), the numerical result for MA regression for the
example data set is wrong. The mistake has been corrected in the 1995 edition.
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1. If the magnitude of the random variation (i.e. the error variance*) on the response variable
y is much larger (i.e. more than three times) than that on the explanatory variable x, use OLS.
Otherwise, proceed as follows.

2. Check whether the data are approximately bivariate normal, either by looking at a scatter
diagram or by performing a formal test of significance. If not, attempt transformations to
render them bivariate normal. For data that are or can be made to be reasonably bivariate
normal, consider recommendations 3 and 4. If not, see recommendation 5.

3. For bivariate normal data, use major axis (MA) regression if both variables are expressed
in the same physical units (untransformed variables that were originally measured in the
same units) or are dimensionless (e.g. log-transformed variables), if it can reasonably be
assumed that the error variances of the variables are approximately equal. 

When no information is available on the ratio of the error variances and there is no reason to believe that it
would differ from 1, MA may be used provided that the results are interpreted with caution. MA produces
unbiased slope estimates and accurate confidence intervals (Jolicoeur, 1990).

*  Contrary to the sample variance, the error variance on x or y cannot be estimated from the data. An estimate
can only be made from knowledge of the way the variables were measured.

Table 1 Application of the model II regression methods. The numbers in the left-hand column refer to
the corresponding paragraphs in the text.

Par. Method Conditions of application Test possible

1 OLS Error on y >> error on x Yes

3 MA Distribution is bivariate normal Yes
Variables are in the same physical units or dimensionless
Variance of error about the same for x and y 

4 Distribution is bivariate normal
Error variance on each axis proportional to variance of corresponding variable

4.1 RMA Check scatter diagram: no outlier Yes

4.2 SMA Correlation r is significant No

5 OLS Distribution is not bivariate normal Yes
Relationship between x and y is linear

6 OLS To compute forecasted (fitted) or predicted  values Yes
(Regression equation and confidence intervals are irrelevant)

7 MA To compare observations to model predictions Yes

ŷ
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MA may also be used with dimensionally heterogeneous variables when the purpose of the analysis is (1) to
compare the slopes of the relationships between the same two variables measured under different conditions
(e.g. at two or more sampling sites), or (2) to test the hypothesis that the major axis does not significantly differ
from a value given by hypothesis (e.g. the relationship E = b1m where, according to the famous equation of
Einstein, b1 = c2, c being the speed of light in vacuum).

4. For bivariate normal data, if MA cannot be used because the variables are not expressed
in the same physical units or the error variances on the two axes differ, two alternative
methods are available to estimate the parameters of the functional linear relationship if it can
reasonably be assumed that the error variance on each axis is proportional to the variance of
the corresponding variable, i.e. (the error variance of y / the sample variance of y) ≈ (the
error variance of x / the sample variance of x). This condition is often met with counts
(e.g. number of plants or animals) or log-transformed data (McArdle, 1988).

4.1. Ranged major axis regression (RMA) can be used. The method is described below. Prior
to RMA, one should check for the presence of outliers, using a scatter diagram of the
objects.

4.2. Standard major axis regression (SMA) can be used. One should first test the significance
of the correlation coefficient (r) to determine if the hypothesis of a relationship is supported.
No SMA regression equation should be computed when this condition is not met. 

This remains a less-than-ideal solution since SMA slope estimates cannot be tested for significance.
Confidence intervals should also be used with caution: simulations have shown that, as the slope departs from
±1, the SMA slope estimate is increasingly biased and the confidence interval includes the true value less and
less often. Even when the slope is near ±1 (e.g. example 5), the confidence interval is too narrow if n is very
small or if the correlation is weak.

5. If the distribution is not bivariate normal and the data cannot be transformed to satisfy that
condition (e.g. if the distribution possesses two or several modes), one should wonder
whether the slope of a regression line is really an adequate model to describe the functional
relationship between the two variables. Since the distribution is not bivariate normal, there
seems little reason to apply models such as MA, SMA or RMA, which primarily describe
the first principal component of a bivariate normal distribution. So, (1) if the relationship is
linear, OLS is recommended to estimate the parameters of the regression line. The
significance of the slope should be tested by permutation, however, because the
distributional assumptions of parametric testing are not satisfied. (2) If a straight line is not
an appropriate model, polynomial or nonlinear regression should be considered.

6. When the purpose of the study is not to estimate the parameters of a functional
relationship, but simply to forecast or predict values of y for given x’s, use OLS in all cases.
OLS is the only method that minimizes the squared residuals in y. The OLS regression line
itself is meaningless. Do not use the standard error and confidence bands, however, unless x
is known to be free of error (Sokal and Rohlf, 1995: 545, Table 14.3); this warning applies in
particular to the 95% confidence intervals computed for OLS by this program.
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7. Observations may be compared to the predictions of a statistical or deterministic model
(e.g. simulation model) in order to assess the quality of the model. If the model contains
random variables measured with error, use MA for the comparison since observations and
model predictions should be in the same units. 

If the model fits the data well, the slope is expected to be 1 and the intercept 0. A slope that significantly differs
from 1 indicates a difference between observed and simulated values which is proportional to the observed
values. For relative-scale variables, an intercept which significantly differs from 0 suggests the existence of a
systematic difference between observations and simulations (Mesplé et al., 1996).

8. With all methods, the confidence intervals are large when n is small; they become smaller
as n goes up to about 60, after which they change much more slowly. Model II regression
should ideally be applied to data sets containing 60 observations or more. Some of the
examples presented below have fewer observations; they are only presented for illustration.

Ranged major axis regression

Ranged major axis regression (RMA) is only described in Legendre and Legendre
(1998: 511-512). It is computed as follows:

1. Transform the y and x variables into y' and x', respectively, whose range is 1. Two
formulas are available for ranging, depending on the nature of the variables: 

• For variables whose variation is expressed relative to an arbitrary zero (interval-scale
variables, e.g. temperature in °C), the formula for ranging is:

   or   (1)

• For variables whose variation is expressed relative to a true zero value (ratio-scale or
relative-scale variables, e.g. species abundances, or temperature expressed in °K), the
recommended formula for ranging assumes a minimum value of 0; eq. 1 reduces to:

   or   (2)

2. Compute MA regression between the ranged variables y' and x'. Test the significance of
the slope estimate by permutation if needed.

3. Back-transform the estimated slope, as well as its confidence interval limits, to the
original units by multiplying them by the ratio of the ranges:

(3)
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4. Recompute the intercept b0 and its confidence interval limits, using the original centroid
 of the scatter of points and the estimates of the slope b1 and its confidence limits:

(4)

The RMA slope estimator has several desirable properties when the variables x and y
are not expressed in the same units or when the error variances on the two axes differ.
(1) The slope estimator scales proportionally to the units of the two variables: the position of
the regression line in the scatter of points remains the same irrespective of any linear change
of scale of the variables. (2) The estimator is sensitive to the covariance of the variables; this
is not the case for SMA. (3) Finally, and contrary to SMA, it is possible to test the hypothesis
that an RMA slope estimate is equal to a stated value, in particular 0 or 1. As in MA, the test
may be done either by permutation, or by comparing the confidence interval of the slope to
the hypothetical value of interest. Thus, whenever MA regression cannot be used because of
incommensurable units or because the error variances on the two axes differ, RMA
regression can be used. There is no reason, however, to use RMA when MA is justified.

Prior to RMA, one should check for the presence of outliers, using a scatter diagram of
the objects. RMA should not be used in the presence of outliers because they cause
important changes to the estimates of the ranges of the variables. Outliers that are not
aligned fairly well with the dispersion ellipse of the objects may have an undesirable
influence on the slope estimate. The identification and treatment of outliers is discussed in
Sokal and Rohlf (1995, Section 13.4). Outliers may, in some cases, be eliminated from the
data set, or they may be subjected to a winsorizing procedure described by these authors.

Input file 

Prepare a rectangular data table with rows as objects and columns as variables, without
identifiers for the rows or columns. Either the explanatory variable x or the response variable
y can be first; the program asks about the positions of the variables in the file (x first or y
first). The columns are separated either by a tab or by any number of spaces; leading spaces
are ignored. Save this data table to an ASCII (text) file.

Output file

The output file contains the following results:

1. Simple regression equation ( ) using major axis regression (MA). The
regression line is the major axis of the dispersion ellipse, hence its name. It is also called the
first principal component of the scatter of objects. Details of the computation are given by
Sokal and Rohlf (1995, Box 15.6). The program computes the regression equation as well as
parametric 95% confidence intervals for the slope and intercept parameters.

x y,( )

b0 y b1x–=

ŷ b0 b1x+=
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2. Same output, using standard major axis regression (SMA). Standard major axis regression
is major axis regression computed from standardized variables; the slope estimate is back-
transformed to the original variable units. The slope is estimated by the ratio bSMA = ±sy/sx .
If the two variables have about the same variance, bSMA ≈ ±1.

3. Same output, using ordinary least squares regression (OLS). The coefficients of
correlation (r) and determination (r2) are also computed. With random data, bOLS ≈ 0.

4. Same output, using ranged major axis regression (RMA). Ranged major axis regression is
major axis regression (MA) computed from ranged data. Computation details are given in
the previous section. RMA is offered as an option by the program because it entails extra
questions about ranging the variables; users of the program may not want to decide about
this unless they are specifically interested in the results of RMA regression.

5. Permutation tests may be carried out for the slopes of MA, OLS and RMA and for the
correlation coefficient r. Results of the tests of bOLS and the correlation r are always
identical since these two tests are equivalent. The slope of SMA cannot be tested by
permutation (Legendre and Legendre, 1998: 511). When the slope of MA or RMA is larger
than 1 (or < –1), the permutation test of significance is carried out on the slope b' = 1/b of the
regression of x on y which is smaller than 1 (or > –1) (Legendre and Legendre, 1998: 508).
The same applies to RMA; in that case, the test involves the slope as estimated from the
ranged data, and not the slope value back-transformed to the original units of the variables.

For the slopes of MA, OLS and RMA, the permutation tests are carried out using the
slope estimates b themselves as the reference statistics. In OLS simple linear regression, a
permutation test of significance based on the r statistic is equivalent to a permutation test
based on the pivotal t-statistic associated with bOLS (Legendre and Legendre, 1998: 21). On
the other hand, across the permutations, the slope estimate (bOLS) differs from r by a
constant (sy/sx) since bOLS = rxy sy/sx , so that bOLS and r are equivalent statistics for
permutation testing. As a consequence, a permutation test of bOLS is equivalent to a
permutation test carried out using the pivotal t-statistic associated with bOLS. This is not the
case in multiple linear regression, however, as shown by Anderson and Legendre (1999).

If the objective is simply to assess the relationship between the two variables under
study, one can simply compute the correlation coefficient r and test its significance. A
parametric test can be used when the assumption of binormality can safely be assumed to
hold, or a permutation test when it cannot.

For the intercept of OLS, the confidence interval is computed using the standard
formulas found in textbooks of statistics; results are identical to those of standard statistical
software. No such formula, providing correct α-coverage, is known for the other three
methods. In the program, the confidence intervals for the intercepts of MA, SMA and RMA
are computed by projecting the bounds of the confidence intervals of the slopes onto the
ordinate; this results in an underestimation of these confidence intervals.
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In MA or RMA regression, the bounds of the confidence interval (C.I.) of the slope
may, on occasions, lie outside quadrants I and IV of the plane centred on the centroid of the
bivariate distribution. When the lower bound of the confidence interval corresponds to a line
in quadrant III (Fig. 1a), it has a positive slope; the RMA regression line of example 5
provides an example of this phenomenon. Likewise, when the upper bound of the
confidence interval corresponds to a line in quadrant II (Fig. 1b), it has a negative slope. In
other instances, the confidence interval of the slope may occupy all 360° of the plane, which
results in it having no bounds. The bounds are then noted 0.00000; see example 5.

In SMA or OLS, confidence interval bounds cannot lie outside quadrants I and IV. In
SMA, the regression line always lies at a +45° or –45° angle in the space of the standardized
variables; the SMA slope is a back-transformation of ±45° to the units of the original
variables. In OLS, the slope is always at an angle closer to zero than the major axis of the
dispersion ellipse of the points, i.e. it always underestimates the MA slope in absolute value.

A “secret command” allows users to obtain the list of the reference and permuted
values obtained during tests of significance of the slopes of MA and RMA. In answer to the
question:

Compute ranged major axis regression (RMA)?
(0) no,  (1) yes

Figure 1 (a) If a MA regression line has the lower bound of its confidence interval (C.I.) in quadrant III, this
bound has a positive slope (+2.75 in example). (b) Likewise, if a MA regression line has the upper
bound of its confidence interval in quadrant II, this bound has a negative slope (–5.67 in example).
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if one gives –1 as the answer instead of 1, the program writes to a file, called
“Permutations”, the values of bma (slope of MA, which is converted to 1/bMA in the
program if bMA > 1), brma (slope of RMA in ranged variable units, which is converted to
1/bRMA in the program if bRMA > 1) and brmaC (slope of RMA converted back to the
original units of variables x and y), as computed in Subroutine Regression of the program.
The reference (unpermuted) values are found on the first row of that file.

Example 1

Input file

This example compares observations to the values forecasted by a model. A hospital
surgical unit wanted to forecast survival of patients undergoing a particular type of liver
surgery. Four explanatory variables were measured on patients. The response variable Y was
survival time, which was log10-transformed. The data are described in detail in Section 8.2
of Neter et al. (1996) who also provide the original data sets. The data were divided in two
groups of 54 patients. The first group was used to construct forecasting models whereas the
second group was reserved for model validation. Several regression models were studied.
One of them, which uses variables X3 = enzyme function test score and X4 = liver function
test score, is used as the basis for the present example. The multiple regression equation is
the following:

 = 1.388778 + 0.005653 X3 + 0.139015 X4 

This equation was applied to the second data set (also 54 patients) to produce
forecasted survival times. In the present example, these values are compared to the observed
survival times. Fig. 2 shows the scatter diagram with log10(observed survival time) in
abscissa and forecasted values in ordinate. The MA regression line is shown with its 95%
confidence region. The 45° line, which would correspond to perfect forecasting, is also
shown for comparison.

Output file: MA, SMA and OLS equations, 95% C.I., and tests of significance. The RMA
method, which is optional, was not computed since MA is the only appropriate method in
this example.

 Model II regression
 for situations where variables y and x are both random.
 Estimation of the parameters of the functional equation
 y = b0 + b1*x
                     © Pierre Legendre, 1994, 1999, 2000
 Département de sciences biologiques,  Univ. de Montréal

                ------------------------               

Ŷ
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 Methods:   major axis (MA),  standard major axis (SMA),
 ordinary least-squares (OLS),  ranged major axis (RMA).

 Permutation tests: r and slopes of MA, OLS and RMA. The
 slope of SMA cannot be tested by permutation (H0:b1=0).

 -------------------------------------------------------

 Input data file: EX1_54x2.txt

 -------------------------------------------------------------------

 Major axis (MA):
 Eigenvalues:   lambda 1 =        0.13324  lambda 2 =        0.01090

 b0 =   0.48720    b1 =   0.74921    angle (°) =  36.84093

 95% C.I. of slope     = [   0.62166,    0.89456]
 95% C.I. of intercept = [   0.17258,    0.76331]    (underestimate)

 -------------------------------------------------------------------

 Standard major axis (SMA):

 b0 =   0.41155    b1 =   0.78416    angle (°) =  38.10197

 95% C.I. of slope     = [   0.67428,    0.91193]
 95% C.I. of intercept = [   0.13496,    0.64939]    (underestimate)

 C.I. of slope following Jolicoeur & Mosimann (1968), McArdle (1988)

Figure 2 Scatter diagram of the
Example 1 data showing the
major axis (MA) regression line
and its 95% confidence region
(grey). The 45° line (dashed) is
drawn for reference. The cross
indicates the centroid of the
bivariate distribution. The MA
regression line passes through
this centroid.
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 -------------------------------------------------------------------

 Ordinary least-squares (OLS):
           r =   0.83873   coeff. of determination (r^2) =   0.70347

 b0 =   0.68530    b1 =   0.65770    angle (°) =  33.33276

 95% C.I. of slope     = [   0.53887,    0.77652]
 95% C.I. of intercept = [   0.42569,    0.94490]

 -------------------------------------------------------------------

 b0 = intercept, b1 = slope,  xbar =     2.16466, ybar =     2.10898

 Code 999.99999 if the slope is infinite (90° angle).

 Code   0.00000 if the limits of the C.I. cannot be computed.
 This may happen when the two eigenvalues are too similar;
 the C.I. then incorporates all 360° of the plane.

 --------------------------------------------
 Permutation tests on slopes and correlation
 --------------------------------------------

 Number of random permutations:   999

 ------------------------------------------------
 Method    Stat.    LT    EQ    GT   One-tailed p
 ------------------------------------------------

 MA      0.74921   999     1     0     0.00100

 OLS     0.65770   999     1     0     0.00100

 Corr    0.83873   999     1     0     0.00100
 ------------------------------------------------

The interesting aspect of the MA regression equation is that the regression line is not
parallel to the 45° line drawn in Fig. 2. The 45° line is not included in the 95% confidence
interval of the MA slope, which goes from tan–1(0.62166) = 31.87° to
tan–1(0.89456) = 41.81°. The Figure shows that the forecasting equation overestimates
survival below the mean and underestimates it above the mean. Note that the OLS
regression line, which is often (erroneously) used by researchers for comparisons of this
type, would show an even greater discrepancy (33.3° angle) from the 45° line, compared to
the MA regression line (36.8° angle).
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Example 2

Input file

The following table presents observations at 20 sites from a study on predator-prey
relationships (Hines et al. 1998). y is the number of bivalves (Macomona liliana) larger than
15 mm in size, found in 0.25 m2 quadrats of sediment; x is the number of sediment
disturbance pits of a predator, the eagle ray (Myliobatis tenuicaudatus), found within circles
of a 15 m radius around the bivalve quadrats. 

______________________ ______________________

No. predators No. prey No. predators No. prey
x y x y

______________________ ______________________

2 29 11 53
3 18 5 27
8 29 8 41
4 29 15 58
8 49 7 31
3 33 13 71
8 53 18 59
9 33 6 42
2 20 19 71
4 40 14 54

______________________ ______________________

The variables x and y are expressed in the same physical units and are estimated with
sampling error, and their distribution is approximately bivariate normal. The error variance
is not the same for x and y but, since the data are animal counts, it seems reasonable to
assume that the error variance along each axis is proportional to the variance of the
corresponding variable. The correlation is significant: r = 0.86, p < 0.001. RMA and SMA
are thus appropriate for this data set; MA and OLS are not. Fig. 3 shows the scatter diagram.
The various regression lines are presented to allow their comparison.

Output file: MA, SMA, OLS and RMA regression equations, confidence intervals, and tests
of significance (heading removed). That the 95% confidence intervals of the SMA and RMA
intercepts do not include 0 may be due to different reasons: (1) the relationship may not be
perfectly linear; (2) the C.I. of the intercepts are underestimated; (3) the predators (eagle
rays) may not be attracted to sampling locations containing few prey (bivalves).
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 -------------------------------------------------------

 Input data file: EX2_20x2.txt

 -------------------------------------------------------------------

 Major axis (MA):
 Eigenvalues:   lambda 1 =      269.82124  lambda 2 =        6.41823

 b0 =  13.05968    b1 =   3.46591    angle (°) =  73.90584

 95% C.I. of slope     = [   2.66310,    4.86857]
 95% C.I. of intercept = [   1.34742,   19.76310]    (underestimate)

 -------------------------------------------------------------------

 Standard major axis (SMA):

 b0 =  16.45205    b1 =   3.05963    angle (°) =  71.90073

 95% C.I. of slope     = [   2.38281,    3.92871]
 95% C.I. of intercept = [   9.19529,   22.10353]    (underestimate)

 C.I. of slope following Jolicoeur & Mosimann (1968), McArdle (1988)

Figure 3 Scatter diagram of the Example 2 data
(number of bivalves as a function of the
number of eagle rays) showing the major axis
(MA), standard major axis (SMA), ordinary
least-squares (OLS) and ranged major axis
(RMA regression lines. SMA and RMA are
the appropriate regression lines in this
example. The cross indicates the centroid of
the bivariate distribution. The four regression
lines pass through this centroid.
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 -------------------------------------------------------------------

 Ordinary least-squares (OLS):
           r =   0.86008   coeff. of determination (r^2) =   0.73974

 b0 =  20.02675    b1 =   2.63153    angle (°) =  69.19283

 95% C.I. of slope     = [   1.85858,    3.40448]
 95% C.I. of intercept = [  12.49099,   27.56251]

 -------------------------------------------------------------------

 Ranged major axis (RMA):
 ymin =   0.00000 ymax =  71.00000 xmin =   0.00000 xmax =  19.00000
 Eigenvalues:   lambda 1 =        0.11509  lambda 2 =        0.00827

 b0 =  17.25651    b1 =   2.96329    angle (°) =  71.35239

 95% C.I. of slope     = [   2.17426,    3.95653]
 95% C.I. of intercept = [   8.96300,   23.84493]    (underestimate)

 -------------------------------------------------------------------

 b0 = intercept, b1 = slope,  xbar =     8.35000, ybar =    42.00000

 Code 999.99999 if the slope is infinite (90° angle).

 Code   0.00000 if the limits of the C.I. cannot be computed.
 This may happen when the two eigenvalues are too similar;
 the C.I. then incorporates all 360° of the plane.

 --------------------------------------------
 Permutation tests on slopes and correlation
 --------------------------------------------

 Number of random permutations:   999

 ------------------------------------------------
 Method    Stat.    LT    EQ    GT   One-tailed p [1]
 ------------------------------------------------

 MA      3.46591   999     1     0     0.00100

 OLS     2.63153   999     1     0     0.00100

 Corr    0.86008   999     1     0     0.00100

 RMA     2.96329   999     1     0     0.00100
 ------------------------------------------------

[1] In this table of the output file, the rows correspond, respectively, to the MA, OLS and
RMA slopes and to the coefficient of correlation r (‘Corr’). ‘Stat.’ is the value of the statistic
being tested for significance. As explained in the “Output file” section, the statistic actually
used by the program for the test of the MA slope, in this example, is the inverse of the bMA
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slope estimate (1/3.46591 = 0.28852) because the reference value of the statistic in this
permutation test must not exceed 1.

One-tailed probabilities (‘One-tailed p’) are computed in the direction of the sign of the
coefficient. For a one-tailed test in the upper tail (i.e. for a coefficient with a positive sign), p
= (EQ + GT)/(Number of permutations + 1). For a test in the lower tail (i.e. for a coefficient
with a negative sign), p = (LT + EQ)/(Number of permutations + 1), where

• LT is the number of values under permutation that are smaller than the reference value;

• EQ is the number of values under permutation that are equal to the reference value of
the statistic, plus 1 for the reference value itself;

• GT is the number of values under permutation that are greater than the reference value. 

Example 3

Input file

The following table presents data used by Sokal and Rohlf (1995, Box 14.12) to
illustrate model II regression analysis. They concern the mass (x) of unspawned females of a
California fish, the cabezon (Scorpaenichthys marmoratus), and the number of eggs they
subsequently produced (y). One may be interested to estimate the functional equation
relating the number of eggs to the mass of females before spawning. The physical units of
the variables are as in the table published by Sokal and Rohlf (1995: 546). 

_________________________________

Mass (×100 g) No. eggs (×1000)
x y

_________________________________

14 61
17 37
24 65
25 69
27 54
33 93
34 87
37 89
40 100
41 90
42 97

_________________________________



15

Since the variables are in different physical units and are estimated with error, and
their distribution is approximately bivariate normal, RMA and SMA are appropriate for this
example; MA is inappropriate. The OLS regression line is meaningless; in model II
regression, OLS should only be used for forecasting or prediction. It is plotted in Fig. 4 only
to allow comparison. 

The RMA and SMA regression lines are nearly indistinguishable in this example. The
slope of RMA can be tested for significance (H0: bRMA = 0), however, whereas the SMA
slope cannot. The 95% confidence intervals of the intercepts of RMA and SMA, although
underestimated, include the value 0, as expected if a linear model applies to the data: a
female with a mass of 0 is expected to produce no egg.

Another interesting property of RMA and SMA is that their estimates of slope and
intercept change proportionally to changes in the units of measurement. One can easily
verify that by changing the decimal places in the Example 2 data file and recomputing the
regression equations. RMA and SMA share this property with OLS. MA regression does not
have this property; this is why it should only be used with variables that are in the same
physical units, as those of Example 1.

Output file: MA, SMA, OLS and RMA equations, 95% C.I., and tests of significance
(heading removed).

Figure 4 Scatter diagram of the Example 3
data (number of eggs produced as
a function of the mass of
unspawned females) with the
ranged major axis (RMA),
standard major axis (SMA) and
ordinary least-squares (OLS)
regression lines. RMA and SMA
are the appropriate regression
lines in this example. The cross
indicates the centroid of the
bivariate distribution. The three
regression lines pass through this
centroid.

0

20

40

60

80

100

120

0 10 20 30 40 50

Fish mass (×100 g)
N

o.
 e

gg
s 

(×
10

00
)

SMA

OLS

RMA



16

 -------------------------------------------------------

 Input data file: EX3_11x2.txt

 -------------------------------------------------------------------

 Major axis (MA):
 Eigenvalues:   lambda 1 =      494.63400  lambda 2 =       17.49327

 b0 =   6.65663    b1 =   2.30173    angle (°) =  66.51716

 95% C.I. of slope     = [   1.60430,    3.72440]
 95% C.I. of intercept = [ -36.54082,   27.83295]    (underestimate)

 -------------------------------------------------------------------

 Standard major axis (SMA):

 b0 =  12.19378    b1 =   2.11937    angle (°) =  64.74023

 95% C.I. of slope     = [   1.49672,    3.00104]
 95% C.I. of intercept = [ -14.57693,   31.09957]    (underestimate)

 C.I. of slope following Jolicoeur & Mosimann (1968), McArdle (1988)
 -------------------------------------------------------------------

 Ordinary least-squares (OLS):
           r =   0.88232   coeff. of determination (r^2) =   0.77849

 b0 =  19.76682    b1 =   1.86996    angle (°) =  61.86337

 95% C.I. of slope     = [   1.11780,    2.62211]
 95% C.I. of intercept = [  -4.09838,   43.63201]

 -------------------------------------------------------------------

 Ranged major axis (RMA):
 ymin =   0.00000 ymax = 100.00000 xmin =   0.00000 xmax =  42.00000
 Eigenvalues:   lambda 1 =        0.08926  lambda 2 =        0.00550

 b0 =  13.17967    b1 =   2.08690    angle (°) =  64.39718

 95% C.I. of slope     = [   1.35993,    3.12944]
 95% C.I. of intercept = [ -18.47574,   35.25317]    (underestimate)

 -------------------------------------------------------------------

 b0 = intercept, b1 = slope,  xbar =    30.36364, ybar =    76.54545

 Code 999.99999 if the slope is infinite (90° angle).

 Code   0.00000 if the limits of the C.I. cannot be computed.
 This may happen when the two eigenvalues are too similar;
 the C.I. then incorporates all 360° of the plane.
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 --------------------------------------------
 Permutation tests on slopes and correlation
 --------------------------------------------

 Number of random permutations:   999

 ------------------------------------------------
 Method    Stat.    LT    EQ    GT   One-tailed p
 ------------------------------------------------

 MA      2.30173   998     1     1     0.00200

 OLS     1.86996   998     1     1     0.00200

 Corr    0.88232   998     1     1     0.00200

 RMA     2.08690   998     1     1     0.00200
 ------------------------------------------------

Example 4

Input file

Mesplé et al. (1996) generated a variable X containing 100 values drawn at random
from a uniform distribution in the interval [0, 10]. They then generated two other variables,
N1 and N2, containing values drawn at random from a normal distribution N(0, 1). These
variables were combined to create two new variables x = (X + N1) and y = (X + N2). The
relationship constructed in this way between x and y is perfect and should have a slope of 1,
despite the fact that there is normal error added independently to x and y. 

Output file

The various model II regression methods were applied to this data set with the
following results (heading removed):
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 -------------------------------------------------------

 Input data file: E4_100x2.txt

 -------------------------------------------------------------------

 Major axis (MA):
 Eigenvalues:   lambda 1 =       17.56697  lambda 2 =        0.95341

 b0 =   0.29059    b1 =   0.96029    angle (°) =  43.83962

 95% C.I. of slope     = [   0.86957,    1.06006]
 95% C.I. of intercept = [  -0.21218,    0.74777]    (underestimate)

 -------------------------------------------------------------------

 Standard major axis (SMA):

 b0 =   0.27034    b1 =   0.96431    angle (°) =  43.95915

 95% C.I. of slope     = [   0.88261,    1.05358]
 95% C.I. of intercept = [  -0.17951,    0.68207]    (underestimate)

 C.I. of slope following Jolicoeur & Mosimann (1968), McArdle (1988)
 -------------------------------------------------------------------

 Ordinary least-squares (OLS):
           r =   0.89690   coeff. of determination (r^2) =   0.80443

 b0 =   0.77135    b1 =   0.86489    angle (°) =  40.85618

 95% C.I. of slope     = [   0.77940,    0.95038]
 95% C.I. of intercept = [   0.26636,    1.27633]

 -------------------------------------------------------------------

 Ranged major axis (RMA):
 ymin =  -1.51400 ymax =  10.58600 xmin =  -0.81100 xmax =  10.78200
 Eigenvalues:   lambda 1 =        0.12558  lambda 2 =        0.00678

 b0 =  -0.46075    b1 =   0.95560    angle (°) =  43.69937

 95% C.I. of slope     = [   0.86511,    1.05464]
 95% C.I. of intercept = [  -0.18483,    0.77021]    (underestimate)

 -------------------------------------------------------------------

 b0 = intercept, b1 = slope,  xbar =     5.03918, ybar =     5.12968

 Code 999.99999 if the slope is infinite (90° angle).

 Code   0.00000 if the limits of the C.I. cannot be computed.
 This may happen when the two eigenvalues are too similar;
 the C.I. then incorporates all 360° of the plane.
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--------------------------------------------
 Permutation tests on slopes and correlation
 --------------------------------------------

 Number of random permutations:   999

 ------------------------------------------------
 Method    Stat.    LT    EQ    GT   One-tailed p
 ------------------------------------------------

 MA      0.96029   999     1     0     0.00100

 OLS     0.86489   999     1     0     0.00100

 Corr    0.89690   999     1     0     0.00100

 RMA     0.95560   999     1     0     0.00100
 ------------------------------------------------

The noticeable aspect is that with OLS regression, the confidence interval of the slope
does not include the value 1 and the confidence interval of the intercept does not include the
value 0. The OLS slope underestimates the real slope of the bivariate functional relationship,
which is 1 by construct in this example. This illustrates the fact that OLS, considered as
model I regression method, is inadequate to estimate the slope of the functional relationship
between these variables. As a model II regression method, OLS would only be appropriate
to predict the values  from x (point 6 in Table 1).

With all the other model II regression methods, the confidence intervals of the slopes
include the value 1 and the confidence intervals of the intercepts include the value 0, as
expected for this data set because of the way the data were generated.

Example 5

Input file

Two vectors of 100 random data drawn from a normal distribution N(0, 1) were
generated. One expects to find a null correlation with this type of data which were submitted
to the model II regression program.

Output file: MA, SMA, OLS and RMA equations, 95% C.I., and tests of significance
(heading removed). Fig. 5 shows the scatter diagram. The various regression lines are
presented to allow their comparison.

ŷ
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 -------------------------------------------------------

 Input data file: E5_100x2.txt

 -------------------------------------------------------------------

 Major axis (MA):
 Eigenvalues:   lambda 1 =        1.07132  lambda 2 =        0.88571

 b0 =   0.11293    b1 =  -0.60005    angle (°) = -30.96569

 95% C.I. of slope     = [   0.00000,    0.00000]
 95% C.I. of intercept = [   0.00000,    0.00000]    (underestimate)

 -------------------------------------------------------------------

 Standard major axis (SMA):

 b0 =   0.14184    b1 =  -0.95633    angle (°) = -43.72118

 95% C.I. of slope     = [  -1.16625,   -0.78419]
 95% C.I. of intercept = [   0.12788,    0.15888]    (underestimate)

 C.I. of slope following Jolicoeur & Mosimann (1968), McArdle (1988)
 -------------------------------------------------------------------

 Ordinary least-squares (OLS):
           r =  -0.08377   coeff. of determination (r^2) =   0.00702

 b0 =   0.07074    b1 =  -0.08011    angle (°) =  -4.58017

 95% C.I. of slope     = [  -0.27114,    0.11092]
 95% C.I. of intercept = [  -0.12205,    0.26354]

Figure 5 Scatter diagram of the Example 5 data
(random numbers) showing the major
axis (MA), standard major axis
(SMA), ordinary least-squares (OLS)
and ranged major axis (RMA
regression lines. The correlation
coefficient is not significantly different
from zero. The cross indicates the
centroid of the bivariate distribution.
The four regression lines pass through
this centroid.
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 -------------------------------------------------------------------

 Ranged major axis (RMA):
 ymin =  -1.98676 ymax =   2.35266 xmin =  -2.66496 xmax =   2.39702
 Eigenvalues:   lambda 1 =        0.05091  lambda 2 =        0.03863

 b0 =   0.26978    b1 =  -2.53297    angle (°) = -68.45619

 95% C.I. of slope     = [   1.63300,   -0.39805]
 95% C.I. of intercept = [   0.09654,   -0.06827]    (underestimate)

 -------------------------------------------------------------------

 b0 = intercept, b1 = slope,  xbar =     0.08114, ybar =     0.06424

 Code 999.99999 if the slope is infinite (90° angle).

 Code   0.00000 if the limits of the C.I. cannot be computed.
 This may happen when the two eigenvalues are too similar;
 the C.I. then incorporates all 360° of the plane.

 --------------------------------------------
 Permutation tests on slopes and correlation
 --------------------------------------------

 Number of random permutations:   999

 ------------------------------------------------
 Method    Stat.    LT    EQ    GT   One-tailed p
 ------------------------------------------------

 MA     -0.60005   215     1   784     0.21600

 OLS    -0.08011   215     1   784     0.21600

 Corr   -0.08377   215     1   784     0.21600

 RMA    -2.53297   284     1   715     0.28500
 ------------------------------------------------

Neither the correlation nor any of the regression coefficients are significant; this is as
expected from the way the data were generated. Note that the slope estimates differ widely
among methods. The MA slope is bMA = –0.60005 but its confidence interval, noted
[0.00000, 0.00000], covers all 360° of the plane, as stated in the comment underneath the
regression table. The RMA slope estimate is bRMA = –2.53297. OLS, which should only be
used to predict the values  from x (point 6 in Table 1), tends to produce slopes near zero for
random data: bOLS = –0.08011.

Since the correlation is not significant, SMA should not have been computed. This
method tends to produce slopes near 1; with the present example, the slope is indeed near 1
(bSMA = –0.95633) since the standard deviations of the two variables are nearly equal

ŷ
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(sx = 1.01103, sy = 0.96688). This example shows that RMA does not necessarily produce
results that are similar to SMA.

The confidence intervals of the slope and intercept of RMA provide an example of the
phenomenon of inversion of the confidence limits described in Fig. 1.

Program distribution

A computer program written by P. Legendre is available from our base WWWeb site.
Distribution includes the FORTRAN source code, user’s manuals, sample files and different
versions of the executable program. Versions for MacOS (68k or PowerPC) and 32-bit DOS
(suitable for DOS sessions under Windows 95/98/NT) are provided. WWWeb address:
<http://www.fas.umontreal.ca/biol/legendre/>.
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Reference to the program

Users of the model II regression program can refer to it through the present user’s manual:

Legendre, P. 2001. Model II regression – User’s guide. Département de sciences
biologiques, Université de Montréal. 23 pp.
Available from the WWWeb site <http://www.fas.umontreal.ca/biol/legendre/>.


