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Abstract 
Phylogenetic conservatism of microbial traits has paved the way for phylogeny-based predictions, allowing us to move from descriptive 
to predictive functional microbial ecology. Here, we applied phylogenetic eigenvector mapping to predict the presence of genes 
indicating potential functions of ammonia-oxidizing archaea (AOA), which are important players in nitrogen cycling. Using 160 nearly 
complete AOA genomes and metagenome assembled genomes from public databases, we predicted the distribution of 18 ecologically 
relevant genes across an updated amoA gene phylogeny, including a novel variant of an ammonia transporter found in this study. All 
selected genes displayed a significant phylogenetic signal and gene presence was predicted with an average of >88% accuracy, >85% 
sensitivity, and >80% specificity. The phylogenetic eigenvector approach performed equally well as ancestral state reconstruction of 
gene presence. We implemented the predictive models on an amoA sequencing dataset of AOA soil communities and showed key
ecological predictions, e.g. that AOA communities in nitrogen-rich soils were predicted to have capacity for ureolytic metabolism while
those adapted to low-pH soils were predicted to have the high-affinity ammonia transporter (amt2). Predicting gene presence can
shed light on the potential functions that microorganisms perform in the environment, further contributing to a better mechanistic
understanding of their community assembly.
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Introduction 
Genomic information is essential for indirect trait-based approaches 
in microbial ecology, which can provide mechanistic explanations 
to ecological dynamics and ecosystem functions [1]. Microbial 
enzyme-encoding genes are often associated with the organismal 
functional traits and tend to be phylogenetically conserved [2, 3], 
which provides a foundation for phylogeny-based t rait prediction
[4–6]. We can therefore use massive amounts of environmental 
sequencing data to predict the probability of presence of certain 
microbial genes, thus inferring the potential functions that 
microorganisms perform in the environment. In this way, we 
can functionally characterize taxa whose genomes are not yet 
available or that represent a minor fraction in metagenomes.
Phylogeny-based imputations of traits has generally used
either ancestral state reconstruction by means of phylogenetic
generalized least squares [6–8] or phylogenetic eigenvector maps
[9–11]. In contrast to ancestral state reconstruction, phylogenetic 
eigenvectors offer the additional advantage of accommodating 
different modes of evolution, as well as the possibility of
using phylogenetic signals together with abiotic factors when
predicting traits or species distributions [12]. While phylogenetic 
eigenvectors have been used in a wide range of studies for 

macroorganisms, they hav e yet to be applied to microbial
communities.

Among microorganisms, ammonia-oxidizing archaea (AOA) 
are an optimal group to evaluate the power of phylogenetic 
eigenvectors for predicting gene distribution. First, they are key 
players in the nitrogen cycle and inhabit most ecosystems on
earth [13, 14]. Given their ecological relevance, AOA genomes 
and metagenome-assembled genomes (MAGs) are increasingly 
available, thus expanding our k nowledge of the potential
functions of archaeal genes [15–17]. Second, there is a coherence 
between the organismal phylogeny and that of the amoA gene 
encoding the ammonia monooxygenase subunit A, which has 
long been used as a marker gene for AOA in environmental
studies [13, 18–21]. This has resulted in the availability of a global
amoA phylogeny [21] that reflects the distribution of the organism 
across different earth environments. This adds to previous studies 
pointing at the niche specialization of certain AOA clades a cross
varying levels of pH and other environmental properties [22– 
24]. Whether or not gene content can be predicted using the 
amoA phylogeny, thus providing a basis for a mor e mechanistic
understanding of AOA community assembly, remains uncertain.

The aim of this work was to predict gene presence/absence 
in AOA using the amoA phylogenetic signal. To reach this goal,
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we updated a recent amoA gene reference phylogeny of AOA [21] 
by adding 160 highly complete AOA genomes and MAGs avail-
able in public databases. The updated phylogen y was then used
together with phylogenetic eigenvector mapping [11] to predict 
the presence of a set of genes (Table 1) belonging to four func-
tional categories selected from a comparative genomics study
[16]. We validated the predictions using hold-out validations and 
compared them to estimations based on ancestral state recon-
struction. Finally, we implemented the predictive approach on soil
AOA communities obtained from a field study [25] and linked 
the predicted AOA gene presence to soil properties by means of 
simultaneous analysis of environmental characteristics, species
distributions, and species traits [26]. This study demonstrates 
that phylogenetic eigenvector maps are useful for highly accurate 
predictions of gene distributions in AOA and can inform a bout
their potential functions in the environment and the mechanisms
underpinning community assembly.

Materials and methods
Update of the archaeal amoA reference phylogeny
To update the amoA phylogeny developed by Alves et al. [21], we 
first downloaded all genomes from isolates and MAGs fr om the
National Center for Biotechnology Information (NCBI; https:// 
www.ncbi.nlm.nih.gov/) and the Joint Genome Institute (JGI;
https://genome.jgi.doe.gov/portal/), up to October 2021 using the 
search terms “Thaumarchaeota” and “Crenarchaeota,” since the 
search was done prior to the current taxonomy of the phylum 
harboring AOA (Nitrososphaerota). Sequences of 1527 archaeal
genomes and MAGs were initially screened for the presence of
amoA genes using HMMER (http://hmmer.org) and the translated 
alignment from Alves et al. [21] as seed alignment. Significant 
hits (e-value <10−6) were then aligned by amino acid to the 
original seed alignment using HMMER. An initial phylogeny of the 
signif icant hits, together with the 1190 sequences from Alves et al.
[21] was generated from the nucleotide alignment u sing FastTree
2.1 [27] to ensure the correct identification of AOA amoA genes. It 
is important to note that we used a final dataset of 1190 sequences
that Alves et al. [21] obtained as a result of excluding rogue 
sequences from their initial alignment of 1206 sequences. The 
alignment a nd tree were then inspected using the ARB software
[28] to correct alignment errors and remove fragmented or poor 
quality (i.e. multiple “N”s) sequences, r esulting in a total of 457
genomes and MAGs with amoA gene (Supplementary Table S1). 
We further discarded genomes/MAGs with <80% completeness or 
>5% contamination as determined by BUSCO [29] (archaea_odb10 
database), as well as those with identical amoA sequences and 
the same presence/absence values of the selected genes (see 
below) to remove duplicate taxa. We further tested whether the
amoA sequences were chimeras by using the reference-based
chimera detection algorithm implemented in VSEARCH (v2.3.4)
[30] software using the dataset of Alves et al. [21] as a reference 
and deleted 8 genomes/MAGs having chimeric amoA sequences. 
At the end, amoA sequences from 160 high-quality genomes and 
MAGs were added to the original alignment of 1190 sequences
in Alves et al. [21], and the total alignment was used to build 
maximum likelihood phylogenies using the IQTree software
[31], version 2.1.3. The tree search was carried out using three 
rounds of 20 independent tree searches, in which perturbation 
strength settings (–pers parameter in IQTree) of 0.1, 0.5, and 
1.0 were used for each round, respectively. The r esulting trees
were checked individually, and the tree with both the highest
likelihood and coherence with the Alves et al. [21] topology was 

selected as the final reference tree. Automatic model selection [32] 
resulted in GTR + F + R9 being selected as the best substitution 
model, and node support was determined by ultrafast bootstrap 
appr oximation and SH-aLRT tests using 1000 replicates for each
support metric [33]. During the tree search one sequence from 
Alves et al., “NC-Alpha-OTU2” was the same as two other amoA 
sequences in our high-quality genomes and was thus removed 
by IQ-tree. Therefore, the final phylogenetic tree contained 1189
amoA sequences from Alves et al. [21] and the 160 amoA sequences 
from the high-quality genomes and MAGs we added. The display 
of the phylogenetic trees was produced using iTOL [34]  and  the  
“ggtree” package in R [35]. 

Selection of genes for predictions and screening
of genomes
We selected 18 genes for phylogenetic modeling (Table 1) based 
on the comparative genomic study by Kerou et al. [16]. These genes 
were (i) distributed across different AOA lineages to avoid genes 
only present in an isolated clade within the phylogeny and (ii) 
involved in pathways related to different ecological functions and 
especially relevant to soil AOA. The selected genes belonged to 
four categories: nitrogen metabolism (N-metabolism in figures) 
(amt and ureC genes), carbon and amino acid metabolism (C/AA-
metabolism in figures) (metE, proDH, rocA genes), c hemotaxis and
motility (cheA, cheY, f laK, f laI, tadC genes), and environmental
adaptation (ipct, nhaP, trk, and cspC genes). We downloaded the
orthologous gene protein alignment from each of these genes
from the EggNOG 5.0 database (http://eggnog5.embl.de)  using  
the arCOG ID reported by Kerou et al. [16]. When more than one 
arCOG was provided, we used each of them separately. With 
the alignments obtained from the EggNOG database, the 160 
AOA genomes/MAGs were screened for the presence/absence 
of each gene using HMMER (e-value <0.01). To ensure that 
gene hits were accurate, we retriev ed the protein sequences
found on the genomes/MAGs, aligned them with the reference
protein alignment from the EggNOG database, and constructed
phylogenies using the fastTree2 software [27], version 2.1.11. The 
location of the hits relative to the reference sequences within the 
phylogenies was examined to make sure that they were i n fact
hits of the searched genes and not artifacts or other homologs
with different functions.

In the specific case of the ammonium transporter gene (amt), 
and due to its ecological relevance, the gene phylogeny was used 
to further classify the hits as Amt2 (high-affinity) or Amt1 (low-
affinity) type of transporter [36–38]. The hits falling together with 
Nitrosocosmicus taxa in the phylogeny were assigned the low-
affinity transporter type (Amt1), as all sequenced Nitrosocosmicus
taxa encode uniquely one low-affinity Amt [39–42]. It should be 
noted here that other studies have used the reverse nomenclature, 
in which Amt1 and Amt2 are defined as high- and low-affinity
transporters, respectively [43–45]. To clarify these inconsistencies 
in the nomenclature, we screened the Amt hits of our study for
the primers used by Nakagawa and Stahl [37] for both types of 
transporters and found that the amt2 primers from Nakagawa
and Stahl [37] matched the genes that were defined as amt1 in
Offre et al. [43] and vice-versa. Therefore, we refer here to the 
gene encoding the high-affinity transporter as amt2 [36, 37], which 
corresponds to the amt1 in Offre et al. [43].  The  procedure  of  
checking the amt hits using phylogenies allowed us to find a third 
type of ammonium transporter uniquely present in the Nitrosocal-
dales (NC) lineage (Supplementary Text S1; Supplementary Figs S1
and S2;  a  nd Supplementary Table S2). The gene names and arCOG 
references are provided in Table 1.
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Test of phylogenetic signal for selected genes
We tested the phylogenetic signal of each gene using the phylo.d 
function from the caper package [46], running 1000 permutations. 
This method determines the strength and the statistical signifi-
cance of the phylogenetic signal for binary traits, i.e. in this study 
binary trait refers to the pr esence/absence of a specific gene,
compared to random and Brownian motion distributions of the
trait [47]. The resultant parameter (D) equals 1 when the binary 
trait has a random distribution across the phylogeny, and 0 if 
under Brownian motion. D values can be <0 if the trait distribution 
is more clustered than expected under Brownian motion, and >1 
if it is more overdispersed than expected by random. The phylo.d 
function tests D for significant departure from 1 when the trait
is phylogenetically conserved, and a significant departure from 0
when the trait does not follow a Brownian evolutionary model.

Prediction of gene presence/absence using 
phylogenetic eigenvectors and comparison to
ancestral state reconstruction
The input for the predictions of gene presence was the final amoA 
phylogenetic tree and the matrix of presence/absence of the 18 
genes across the 160 AOA genomes/MAGs. We then used phy-
logenetic eigenvectors obtained from the phylogenetic tree and 
compared the prediction results to those obtained b y ancestral
state reconstruction. In both cases, we predicted the probability of
the presence of each gene in the taxa across the amoA phylogeny
that had unknown genomes.

The phylogenetic eigenvector-based predictions were done in 
three steps: (1) decompose the phylogenetic tree into eigenvectors, 
(2) fit and regularize individual predictive models for each gene 
using the eigenvectors as the descriptors, and (3) estimate the 
presence/absence of the genes from the models of Step 2 on 
the taxa with unknown genomes given their locations in the
phylogeny. To decompose the phylogenetic tree into eigenvectors
(Step 1), we used R package MPSEM [48]. The input for the MPSEM 
package is the phylogenetic tree containing all tips, i.e. taxa with 
and without gene information. The MPSEM package calculates an 
influence matrix using only the tips of the tree for which there 
is information about presence/absence of genes by pruning from 
the tree the taxa without gene information. From the influence 
matrix, phylogenetic eigenvectors were obtained by singular value 
decomposition. When calculating the phylogenetic eigenvectors, 
we fixed argument a = 0 to assume a Brownian motion evolution of 
all genes . In Step 2, the phylogenetic eigenvectors were then used
as fixed factors in a multiple logistic regression whose coefficients
were regularized using elastic net regularization. For model reg-
ularization, we used the R package glmnet [49] with arguments 
family = “binomial” and α = 0.5 to use same amounts of both L1 

(LASSO) and L2 (ridge regression) shrinkage. The penalization
hyper-parameter (λ) was tuned using leave-one-out cross valida-
tion within the training dataset and choosing the λ value that 
provided the highest accuracy of the predictions. The outcome 
of Step 2 is a regularized model that predicts the probability of 
gene presence given the eigenvectors’ values. We classified the 
probabilities of the predictive model into presence or absence by 
choosing a thr eshold that maximizes both true-positive (sensitiv-
ity) and true-negative rate (specificity) of the predictions. For this,
we created ROC curves using the R package pROC [50] with the 
function roc and used the function coords to select a threshold for 
classification that would r ender the highest Youden’s J statistic,
where J = sensitivity + specificity − 1. Probabilities that had values 
equal to or greater than the selected threshold were classified 
as presence, whereas probabilities lower than the threshold were 

classified as absence. The final output of Step 2 is a model
with tuned λ and classification threshold parameter that predict 
the gene presence for a taxon given its phylogenetic eigenvector 
scores. We then obtained the eigenvector scores for taxa with 
unknown genomes and used them on the model of Step 2 to 
predict the gene presence. Function getGraphLocations from the 
MPSEM package places the taxa with unknown genomes in the ini-
tial influence matrix of Step 1 and function Locations2PEMscores 
obtains the phylogenetic eigenvector scores. It is important to 
note that the influence matrix and phylogenetic eigenvectors are 
not obtained using all tips of the tree, but only the ones with
known gene information. For taxa with unknown information, we
calculated the eigenvector score values, which are projections of
new influence matrix coordinates on the eigenvectors obtained
from the initial influence matrix (see Guénard et al. [11], for details 
on this procedure). Thus, the number of phylogenetic eigenvectors 
of the training dataset, and therefore the number of coefficients 
of the predictive model, is independent of the number of taxa to 
be predicted. We provide the code that can be used for analysis o f
other datasets by providing the phylogenetic tree and its associ-
ated presence/absence table with and without missing values in
the input data.

The ancestral state reconstruction was done with R package
picante R [51]. We used the phyEstimateDisc function to predict 
the genes of the AOA taxa with unknown genomes. In this proce-
dure, for each taxon with unknown gene presence data, the phy-
logenetic tree is rerooted on the most recent ancestor common 
to the unobserved taxon and the r est of the phylogeny. The gene
presence or absence of the unobserved taxon is then estimated
from the ancestral state reconstruction of the root of the rerooted
phylogeny [7, 52]. The function phyEstimateDisc provides a trait 
state, i.e. presence or absence, for a given threshold (default = 0.5), 
as well as a value for the statistical support of the state.

Validation of the predicti ve models
We validated the predictions of each gene using a 20% hold-out 
validation. This procedure consists of randomly removing 20% 
of the initial dataset before creating the predictive model and 
validating it on the removed samples. We repeated this procedure 
500 times, always randomizing the taxa included in the held-out 
dataset. For each gene, we obtained the mean accuracy, sensitivity, 
and specificity of the prediction. We also varied the proportion 
of taxa to be held out in the validations to 30% and 40% and
obtained accuracies of 87.1% and 86.4%, respectively (compared
to >88% accuracy at 20% hold out). We could not increase the
proportion of data to be held out because many genes were class
unbalanced. Both sensitivity and specificity were obtained using
R package pROC.

We validated the accuracy of the predictions at the genome/-
MAG level using leave-one-out cross validation, in which we 
deleted each genome/MAG from the dataset in turn and used the 
rest of the genomes to predict the gene content of the previously
removed genome or MAG.

Implementation of predictive modeling on 
natural comm unities: a case study
To illustrate how predicting AOA gene distribution could link 
community composition, potential functions, and environmental 
properties, we used data from a previous study that characterized 
AOA communities by amoA amplicon sequencing on 50 sampling 
points across an agricultural area in which soil properties were
measured (see Enwall et al. [53] and Jones and Hallin [25], for more 
information). The study site is a 44 ha farm divided into 14 fields,
with sampling points taken at 51 locations throughout the fields
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based on environmental gradients identified in a previous study
[54]. We deleted one of the locations (S17) because it lacked data 
on soil properties. We predicted the presence/absence of the 18 
genes on the AOA communities a nd linked the gene composition
with the soil properties that were reported by Enwall et al. [53]. 

To predict the gene presence of the AOA members of the 
soil communities, we used the representative sequences of the 
oper ational taxonomical units (OTUs) (162 in total) from the study
of Jones and Hallin [25]. In that study, OTUs were obtained by clus-
tering the postprocessed reads at 97% nucleotide similarity using
the UPARSE algorithm [55]. We then placed the amoA sequences 
of each OTU on the reference phylogeny using the EPA-ng [56] 
(accessed at https://github.com/pierrebarbera/epa-ng) and gappa 
software [57] (accessed at https://github.com/lczech/gappa). The 
output of these analyses is a phylogenetic tree containing all 
sequences of our reference phylogeny and the representative OTU 
sequences to be predicted as grafted leaves. We used this phy-
logenetic tree and grafted leaves to implement the phylogenetic
eigenvector modeling described above. The output was a matrix
with presence/absence of all 18 genes for each OTU in the study.

We studied the link between the predicted genes (Q matrix) 
and the soil properties (R matrix) mediated by community com-
position (L matrix) by performing a RLQ analysis followed by a
univariate fourth-corner analysis [26, 58, 59]. RLQ is an ordination 
method that displays the covariation of traits, i.e. the predicted 
gene presence, and environmental properties providing site and 
species (hereinafter OTUs) scores, and a global test for signifi-
cance. The fourth-corner correlations, on the other hand, provide 
tests of single associations between predicted gene presence and
environmental properties. The two methods are complementary
and can be performed sequentially. For the RLQ analysis and
following Dray et al. [26], we calculated three separate ordinations 
using the ade4 package for R [60]: (1) a correspondence analy-
sis for the community data, i.e. OTU table, using the function 
dudi.coa; (2) a combination of principal component analysis and 
multiple correspondence analyses using the environmental data 
matrix, i.e. soil properties, after standardization using the func-
tion dudi.hillsmith; and (3) a principal component analysis for
the predicted genes presence/absence without standardization
using the function dudi.pca. The three ordinations were analyzed
together using the rlq function of the ade4 package for R [60]. 
The RLQ analysis was tested for significance using the randtest 
function of the ade4 package with argument modeltype = 6 for the 
permutation test. This model performs two sequential permuta-
tional tests, a first one testing the link between OTUs distribution 
and environmental conditions (Model 2), and a second testing 
the link between OTUs distribution and predicted gene presence
(Model 4). When both tests are significant, the highest of the two
P-value provides the statistical significance for the global tests of
association between gene distribution and environment [61]. 

To test which specific gene was associated with each soil 
property, we performed a fourth-corner analysis using the fourth-
corner function from the ade4 package, with modeltype = 6, 99 999 
permutations, a nd “false discovery rate” as the multiple testing
correction method for the P-value.

Results 
Congruence between amoA phylogeny and 
content of genes for predictions
To perform the phylogenetic eigenvector-based predictions, we 
first updated the archaeal amoA gene r eference phylogeny from

Alves et al. [21], which now contains 1349 unique amoA sequences, 
including those from 160 highly complete AOA genomes of
isolates and MAGs distributed across most amoA lineages
(Supplementary Fig. S3). After screening the genomes and MAGs 
for the pr esence/absence of the genes selected for modeling
(Table 1), we found that Nitrososphaerales (NS) taxa overall lacked 
genes associated with motility (tadC, with the exception of NS-
α), osmotic regulation (trk), and thermoadaptation ( cpsC). The
metE gene, responsible for methionine synthesis in energy-
limiting environments [16], was found in Nitrosopumilales (NP) 
clades associated to deep sea waters (NP-α and -θ), as well
as in NC and Nitrosotaleales (NT) (Fig. 1A). Genes encoding the 
high- and low-affinity ammonium transporters (Amt2 and Amt1, 
respectively [36, 37], see details in Methods) were identified based 
on their positions within a phylogenetic tree of translated Amt
sequences [43]. When doing this, we identified a gene encoding 
a novel variant of the ammonia transporter protein specifically 
associated with the NC amoA lineage, hereafter referred to as Amt-
NC. All taxa having the amt-NC gene also had the amt2 (Fig. 1A). 
We found two subgroups of the ammonium transporter gene amt-
NC, hereinafter amt-NC.1 and amt-NC.2 (Supplementary Fig. S1), 
which corresponded to the groups into which Luo et al. [17] 
divided the NC lineage based on the concatenation of 122 archaeal 
genes (Supplementary Text S1). The amino acid composition of 
the Amt-NC was identical to the Amt types described by Offre
et al. [43] at the ammonium-binding sites, i.e. they contained the 
same histidine lining the transporter pore [43] and had the same 
amino acids in several conserved loci (Supplementary Fig. S2). 
However, it differed in several loci across the r egions described
by Offre et al. [43]  (Supplementary Fig. S2). Our findings of a 
potentially novel variant of the ammonia transporter are solely 
based on phylogenetic alignment and differences in amino acid 
composition. Future studies should validate its function a nd
examine if there are functional differences between the proteins
encoded by the amt-NC and amt1 and amt2 genes.

All selected genes were phylogenetically conserved (Table 1). 
The distance between the 160 isolate genomes and MAGs in a 
principal component ordination including all 18 genes reflected
the lineage classification of the AOA taxa (Fig. 1B), supporting 
a coherence between the amoA phylogeny and the overall gene 
content of available genomes and MAGs.

Phylogeny-based predictions of selected genes
We used the gene content and phylogenetic relatedness of the 
160 genomes and MAGs to build predictive models of gene pres-
ence. For each of the 18 genes, we used elastic net regular-
ized regr essions, with the phylogenetic eigenvectors as predictors
and the presence of each gene as response. The models with
optimized λ penalization and classification threshold p arame-
ters (Supplementary Table S3) were then used to predict gene 
presence across the amoA reference phylogeny using the phy-
logenetic eigenvector scores of unobserved taxa as input. T he
predicted presence of most genes varied across and within amoA
lineages (Supplementary Table S4). For example, the gene encod-
ing the high-affinity ammonia transporter (amt2) was predicted 
to be present in nearly all lineages except NS-ζ . In contrast, 
the low-affinity ammonia transporter (amt1) and urease (ureC) 
genes were predicted to be within most NS clades yet wer e more
unevenly distributed or absent across NT and NP clades (Fig. 2; 
Supplementary Tables S4 and S5). Regarding genes involved in 
carbon and amino acid metabolism, the gene responsible for B-
12 independent methionine synthesis (metE) was predicted to be
present in all NC and in most NT taxa. Across NP clades, metE
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Figure 1. Distribution of the 18 selected genes in AOA genomes. (A) The presence/absence of 18 ecologically relevant genes (Table 1), across a 
phylogeny of 160 AOA isolate genomes and MAGs. Outer rings depict presence (filled squares) and absence (no squares) of specific genes. Clades 
within each AOA lineage are denoted by Greek letters. The phylogeny of 160 genomes is the result o f pruning taxa that lack genomic information from 
the updated reference phylogeny. For bootstrap node support of the lineages of the amoA updated phylogeny, see Supplementary Fig. S3. (B) Principal 
component analysis of the 160 genomes and MAGs based on a presence–absence matrix for the 1 8 selected genes.

was predicted to be present in NP-α and -β,  as  well  a  s in most
NP-θ and some NP-η, -ε,  and -γ (Fig. 2; Supplementary Tables S4
and S5). Genes involved in chemotaxis and motility showed the 
highest within-clade variation, where presence of genes related 
to archaellum formation (f laK and f laI) varied between taxa of
the NP-γ clade (Fig. 2; Supplementary Tables S4 and S5), while 

nearly all lineages except NP-ε and -α were predicted to have the 
cheY gene, encoding a response regulator associated with chemo-
taxis. Regarding environmental adaptation, genes associated with 
osmotic regulation (nhaP, trk) and thermoadaptation ( cpsC) were
also predicted to be present more often in NP clades and less often
in NS (Fig. 2; Supplementary Tables S4 and S5). The presence of
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Figure 2. Predictions of gene presence/absence across the archaeal amoA reference phylogeny using phylogenetic eigenvectors. Outer rings depict 
predicted presence (filled squares) and absence (no squares) of specific genes (see Table 1 for definition). Circular markers at the tips represent the 
isolate genomes and MAGs with >80% completeness and <5% contamination that were used to train the predictive model. Clades within each AOA 
lineages are denoted by Greek letters. Nodes with >80 SH-aLRT and >70 ultrafast bootstrap are indicated by solid points , whereas those with >80 
SH-aLRT support only are indicated by lighter-shaded points. For better visualization, we o nly display bootstrap values for lineages and clades. See
Supplementary Fig. S3 for all bootstrap values across deeper nodes .

ipct gene was mostly restricted to taxa of the NP-α clade. A sim-
ilar pattern of gene presence was obtained using ancestral state
reconstruction (Supplementary Fig. S4; Supplementary Tables S6
and S7); a co-inertia analyses, i.e. a test of collinearity between two 
matrices, performed on phylogenetic eigenvector- and ancestral 
state reconstruction-based pr edictions had a R2 of 0.73.

The phylogenetic eigenvector-based predictions of gene pres-
ence for all genes resulted in an average of 88.4% accuracy, 
86.1% sensitivity, and 82% specificity based on a 20% hold-out-
validation (Table 1). Ancestral state reconstruction of gene pres-
ence resulted in similar levels of accuracy, sensitivity, and speci-
ficity of predictions (89.5%, 86.3%, and 83%, respectively; Table 1). 
For both methods, the predictive accuracy increased linearly with 
the strength of the phylogenetic signal (R2 = 0.71 and 0.68 for 
phylogenetic eigenv ectors and ancestral state reconstructions,
respectively, Supplementary Fig. S5). 

Link between predicted genes and soil pr operties: a case
study
To exemplify how predictions of gene presence/absence can 
contribute to indirect trait-based studies, we placed the amoA 
sequences of the members of 50 AOA communities from arable 

land in the updated amoA reference phylogeny, predicted the
gene presence among these amoA-based OTUs (Fig. 3A), and 
tested the link between predicted genes and soil properties by
performing RLQ [58] and fourth-corner [59] analyses. The first 
RLQ axis showed that OTUs predicted to have genes encoding the 
high-affinity ammonia transporter (amt2), chemotaxis response 
(cheY2), and proline dehydrogenase (proDH) genes yet lacking the 
nhaP gene were more associated with most of the sites with
lower pH (pH = 5.7–6.0 in sites S19, 21, 23, and 28; Figs. 3B  and  
C). The second RLQ axis highlighted two specific genes, i.e. the 
low-affinity ammonia transporter (amt1) and the ureC, which were  
most closely associated to sites with higher levels of total nitrogen
and carbon, and more moderate soil pH (pH = 6.1–6.2 in sites S29,
31, 34, 37; Figs. 3B and C). When testing the univariate associations 
of each gene and soil property using the fourth-corner approach, 
significant correlations were only found before correcting the
P-values for multiple testing (Supplementary Fig. S6). 

Discussion 
Predicting gene presence can inform about key potential func-
tions that microorganisms perform in the environment without
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Figure 3. Association of predicted genes of AOA communities with soil properties across 44 ha of arable land. (A) Our updated amoA reference 
phylogeny with the placements of the 162 operational taxonomical units (OTUs) as grafted leaves. For visualization purposes, the relative abundances 
of the OTUs are displayed as circles on the nodes where they w ere placed. The circle size is proportional (fifth root) to their relative abundance. Outer 
rings depict predicted presence (filled squares) and absence (no squares) of specific genes for each OTU (see Table 1 for definition). None of the OTUs 
belonged to NP nor NC, and therefore both lineages are collapsed in the tree. Clades within each AOA lineage are denoted by Greek letters. Nodes with 
>80 SH-aLRT and >70 ultrafast bootstrap are indicated by solid points, whereas t hose with >80 SH-aLRT support only are indicated by lighter-shaded 
points. For better visualization, we only display bootstrap values for lineages and clades. See Supplementary Fig. S3 for all bootstrap values across 
deeper nodes. (B) Biplot of the RLQ analysis displaying scores of 50 sites (S1–S50) and 162 operational taxonomical units (OTUs) in circles and plus (+) 
signs, respectively. OTU symbols were jittered for visualization purposes. (C) Biplots of the RLQ analysis displaying association between predicted 
genes (red) and observed soil properties (blue). PAO refers to potential ammonia oxidation rates. The genes whose predicted values were all 0 or 1 were 
not included in the RLQ analysis. The global P-value associated with the RLQ analysis was 0.02.
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having access to their full genomes. In this study, we predicted the 
presence of a set of genes of AOA with >88% accuracy using the 
amoA phylogenetic signals implemented in phylogenetic eigen-
vectors. The overall distribution of our isolate genomes and MAGs 
acr oss the phylogeny supports the reliability of these predictions,
particularly for AOA belonging to clades with good genome rep-
resentation (see Supplementary Table S8). While genome and 
MAG incompleteness may limit infer ences of potential microbial
functions [62], we did not find any association between predictiv e
accuracy and genome completeness (Supplementary Fig. S7A). 
We only observed a weak trend suggesting that the presence 
of genes in highly complete genomes was pr edicted with lower
sensitivity and higher specificity than in less complete genomes
(Supplementary Fig. S7B and C). Thus, including more incomplete 
genomes in the training dataset could increase false-negative
predictions.

The high prediction accuracy can be explained by the strength 
of the phylogenetic signal of the selected genes. All the screened 
genes were conserved phylogenetically, in line with previous stud-
ies [16, 19], and the strength of the phylogenetic signal was 
positively correlated with the accuracy of the predictions [5, 6]. For 
example, the amt-NC gene had one of the strongest phylogenetic 
signals and displayed the highest prediction accuracy, while the 
ureC gene had one of the weakest signals and displayed the lowest 
accuracy. The differences in phylogenetic signal between genes 
are likely to be the evolutionary result of niche specialization. The 
amt-NC variant of the amt gene, described here for the first time,
encodes an ammonia transporter that is present only in Nitrosocal-
dus AOA inhabiting thermal waters (Supplementary Text S1), and 
is therefore localized in a single clade within the amoA phylogeny. 
By contrast, the ureC gene tends to be phylogenetically dispersed. 
In agreement, soil AO A thrive in conditions in which ammonia is
supplied slowly through mineralization of organic matter [63], and 
urease genes are abundant in Nitrososphaerota communities in 
oligotrophic marine environments [64]. The overall high accuracy 
of the predictions may also be the result of the availability of 
AOA genomes and MAGs across the amoA phylogeny. Accordingly,
predictions on genomes and MAGs belonging to the NS-ζ and 
NC-α, NP -ε,  and  NP-α clades had the highest accuracies, and 
these AOA lineages were well-represented by genomes with close
phylogenetic relatedness to the within-clade available relatives [5, 
65]  (Supplementary Table S8). Phylogenetic modeling of potential 
microbial traits should be therefore restricted to groups of or gan-
isms with good genomic representation in the databases [4, 66]. 

Predictions of gene distribution can provide a mechanistic 
understanding of community assembly in the environment. By 
implementing the gene presence predictions in multivariate mod-
els of AOA communities in soils with varying physical and chem-
ical properties, we show that AOA communities adapted to low 
pH soils are more likely to have the high-affinity ammonia trans-
porter (amt2), chemotaxis gene cheY2, and proline dehydroge-
nase gene proDH. This makes sense given the low availability of
ammonia at low pH and is in line with previous studies showing
down-regulation of bacterial chemotaxis genes at high pH and
involvement of proline metabolism in abiotic stress response
[67, 68]. By contrast, high pH sites were associated with OTUs 
predicted to have the nhap gene encoding a protein related to 
Na+ /H+ antiporters, which are more important for homeostasis
under neutral or alkaline conditions [69]. Resource rich sites 
with high amounts of total nitrogen and soil organic carbon, 
located in areas with higher influx of nitrogen via biological N2

fixation [22], were related to the increase of relative abundance 
of AOA taxa with predicted potential for ureolytic metabolism 

(ureC). Accordingl y, nitrogen addition may increase the abundance
of ureC genes [70]. Higher potential ammonia oxidation activity 
was linked to taxa with the low-affinity ammonium transporter. 
This could be because the high ammonium concentrations used 
in the activity assay favored the a mmonia oxidizers with low
ammonia affinity or those that prefer inorganic to organic N
sources, including ammonia-oxidizing bacteria [71]. Overall, our 
predictions on soil AOA communities show that the combination 
of gene presence predictions with RLQ and fourth-corner analyses 
can shed light on mechanisms of community assembly. This 
approach can be expanded to microbial groups other than AOA 
to decipher ecological dynamics, gi ven a well curated reference
database and phylogeny to which either amplicon, metagenomic,
or metatranscriptomic data can be mapped.

Phylogenetic eigenvector mapping can complement the 
broadly used ancestral state reconstruction when performing 
phylogeny-based modeling. We show that both methods have 
similar values of accuracy, sensitivity, and specificity of the 
predictions, and accuracy values between these two methods 
across all genes were highly correlated (R2 = 0.97). B ased on
co-inertia testing, both predictions across the phylogeny were
associated with a high RV coefficient value, i.e. a correlation
metric between two multivariate sets of variables [10], of 0.73. 
When setting the threshold for classifying probabilities at 0.5 
in our phylogenetic eigenvector models, which is the default for
ancestral state reconstruction in the R package picante [51], the 
RV increased to 0.78. The use of either phylogenetic eigenvector 
maps or ancestral state reconstruction d epends on the role of
phylogeny in the analyses [72, 73]. When predicting presence of 
gene using only phylogenetic signals, both methods give similar 
results, with ancestral state re construction not requiring the
extra step of selecting or regularizing a model [6]. Regularizing a 
model may particularly be challenging when dealing with uneven 
class distribution. For example, when predicting the pr esence of
the amt-NC gene across the phylogeny, the optimized λ hyper-
parameter of the elastic net was 0.31, and all coefficient estimates 
shrank to 0, i.e. all taxa in the phylogeny w ould have the same
probability of gene presence. Although modifying the λ value 
would render the same class predictions between phylogenetic 
eigenvectors and ancestral state reconstruction, the latter 
method does not rely on hyper-parameter tuning and therefore 
more useful on cases with very few presences or absences of 
specific genes. On the other hand, phylogenetic eigen vectors can
be used when modeling phylogenetic signal together with other
factors, e.g. abiotic variables or gene co-occurrences, which is
useful when estimating traits on partially incomplete databases
[74, 75]. Although in this study we use phylogenetic eigenvector 
maps to predict the probability of gene presence and not functions 
themselves, our approach could be used to predict high-level 
functional trait activities when information about them is present
in the input data. In addition, the procedure used by the MPSEM
R [48] package to calculate phylogenetic eigenvectors can use 
phylogenetic networks as input. Thus, phylogenetic eigenvectors 
can potentially be used for microorganisms for which horizontal 
gene transfer occurs, as well as for organisms that undergo
reticulate speciation or hybridization [76]. Finally, the sets of 
latent descriptors produced by phylogenetic eigenvector mapping 
can be used with other modeling approaches, such as support 
vector machines, gradient boost machines, or artificial neural 
netw orks. Although some studies report a better performance
of ancestral state reconstruction over phylogenetic eigenvectors
[77], perhaps because of model selection issues, the present 
study shows that both can provide similar accuracies, while
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phylogenetic eigenvector maps constitute a more versatile tool
for phylogenetic modeling.

To conclude, we show that we can move toward gene distri-
bution predictions in microbial ecology. Whereas the absence of 
many microbial genomes can limit the implementation of trait-
based studies in microbial ecology, many microbial genes are 
conserved phylogenetically, and their presence can be predicted 
using such tools as phylogenetic eigenvectors and ancestral state 
reconstruction. Predictive modeling of potential m icrobial func-
tions can provide useful information to understand how evo-
lution shapes the genetic content of microorganisms, how that
determines their distribution in the environment, and how that
ultimately may impact ecosystem functions.
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